[692] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #ifndef __Vector2_H__
|
---|
| 26 | #define __Vector2_H__
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | #include "OgrePrerequisites.h"
|
---|
| 30 | #include "OgreMath.h"
|
---|
| 31 |
|
---|
| 32 | namespace Ogre
|
---|
| 33 | {
|
---|
| 34 |
|
---|
| 35 | /** Standard 2-dimensional vector.
|
---|
| 36 | @remarks
|
---|
| 37 | A direction in 2D space represented as distances along the 2
|
---|
| 38 | orthoganal axes (x, y). Note that positions, directions and
|
---|
| 39 | scaling factors can be represented by a vector, depending on how
|
---|
| 40 | you interpret the values.
|
---|
| 41 | */
|
---|
| 42 | class _OgreExport Vector2
|
---|
| 43 | {
|
---|
| 44 | public:
|
---|
| 45 | union {
|
---|
| 46 | struct {
|
---|
| 47 | Real x, y;
|
---|
| 48 | };
|
---|
| 49 | Real val[2];
|
---|
| 50 | };
|
---|
| 51 |
|
---|
| 52 | public:
|
---|
| 53 | inline Vector2()
|
---|
| 54 | {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | inline Vector2(const Real fX, const Real fY )
|
---|
| 58 | : x( fX ), y( fY )
|
---|
| 59 | {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | inline explicit Vector2( const Real scaler )
|
---|
| 63 | : x( scaler), y( scaler )
|
---|
| 64 | {
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | inline explicit Vector2( const Real afCoordinate[2] )
|
---|
| 68 | : x( afCoordinate[0] ),
|
---|
| 69 | y( afCoordinate[1] )
|
---|
| 70 | {
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | inline explicit Vector2( const int afCoordinate[2] )
|
---|
| 74 | {
|
---|
| 75 | x = (Real)afCoordinate[0];
|
---|
| 76 | y = (Real)afCoordinate[1];
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | inline explicit Vector2( Real* const r )
|
---|
| 80 | : x( r[0] ), y( r[1] )
|
---|
| 81 | {
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | inline Vector2( const Vector2& rkVector )
|
---|
| 85 | : x( rkVector.x ), y( rkVector.y )
|
---|
| 86 | {
|
---|
| 87 | }
|
---|
| 88 |
|
---|
| 89 | inline Real operator [] ( const size_t i ) const
|
---|
| 90 | {
|
---|
| 91 | assert( i < 2 );
|
---|
| 92 |
|
---|
| 93 | return *(&x+i);
|
---|
| 94 | }
|
---|
| 95 |
|
---|
| 96 | inline Real& operator [] ( const size_t i )
|
---|
| 97 | {
|
---|
| 98 | assert( i < 2 );
|
---|
| 99 |
|
---|
| 100 | return *(&x+i);
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | /** Assigns the value of the other vector.
|
---|
| 104 | @param
|
---|
| 105 | rkVector The other vector
|
---|
| 106 | */
|
---|
| 107 | inline Vector2& operator = ( const Vector2& rkVector )
|
---|
| 108 | {
|
---|
| 109 | x = rkVector.x;
|
---|
| 110 | y = rkVector.y;
|
---|
| 111 |
|
---|
| 112 | return *this;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | inline Vector2& operator = ( const Real fScalar)
|
---|
| 116 | {
|
---|
| 117 | x = fScalar;
|
---|
| 118 | y = fScalar;
|
---|
| 119 |
|
---|
| 120 | return *this;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | inline bool operator == ( const Vector2& rkVector ) const
|
---|
| 124 | {
|
---|
| 125 | return ( x == rkVector.x && y == rkVector.y );
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | inline bool operator != ( const Vector2& rkVector ) const
|
---|
| 129 | {
|
---|
| 130 | return ( x != rkVector.x || y != rkVector.y );
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | // arithmetic operations
|
---|
| 134 | inline Vector2 operator + ( const Vector2& rkVector ) const
|
---|
| 135 | {
|
---|
| 136 | Vector2 kSum;
|
---|
| 137 |
|
---|
| 138 | kSum.x = x + rkVector.x;
|
---|
| 139 | kSum.y = y + rkVector.y;
|
---|
| 140 |
|
---|
| 141 | return kSum;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | inline Vector2 operator - ( const Vector2& rkVector ) const
|
---|
| 145 | {
|
---|
| 146 | Vector2 kDiff;
|
---|
| 147 |
|
---|
| 148 | kDiff.x = x - rkVector.x;
|
---|
| 149 | kDiff.y = y - rkVector.y;
|
---|
| 150 |
|
---|
| 151 | return kDiff;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | inline Vector2 operator * ( const Real fScalar ) const
|
---|
| 155 | {
|
---|
| 156 | Vector2 kProd;
|
---|
| 157 |
|
---|
| 158 | kProd.x = fScalar*x;
|
---|
| 159 | kProd.y = fScalar*y;
|
---|
| 160 |
|
---|
| 161 | return kProd;
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | inline Vector2 operator * ( const Vector2& rhs) const
|
---|
| 165 | {
|
---|
| 166 | Vector2 kProd;
|
---|
| 167 |
|
---|
| 168 | kProd.x = rhs.x * x;
|
---|
| 169 | kProd.y = rhs.y * y;
|
---|
| 170 |
|
---|
| 171 | return kProd;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | inline Vector2 operator / ( const Real fScalar ) const
|
---|
| 175 | {
|
---|
| 176 | assert( fScalar != 0.0 );
|
---|
| 177 |
|
---|
| 178 | Vector2 kDiv;
|
---|
| 179 |
|
---|
| 180 | Real fInv = 1.0 / fScalar;
|
---|
| 181 | kDiv.x = x * fInv;
|
---|
| 182 | kDiv.y = y * fInv;
|
---|
| 183 |
|
---|
| 184 | return kDiv;
|
---|
| 185 | }
|
---|
| 186 |
|
---|
| 187 | inline Vector2 operator - () const
|
---|
| 188 | {
|
---|
| 189 | Vector2 kNeg;
|
---|
| 190 |
|
---|
| 191 | kNeg.x = -x;
|
---|
| 192 | kNeg.y = -y;
|
---|
| 193 |
|
---|
| 194 | return kNeg;
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | // overloaded operators to help Vector2
|
---|
| 198 | inline friend Vector2 operator * ( const Real fScalar, const Vector2& rkVector )
|
---|
| 199 | {
|
---|
| 200 | Vector2 kProd;
|
---|
| 201 |
|
---|
| 202 | kProd.x = fScalar * rkVector.x;
|
---|
| 203 | kProd.y = fScalar * rkVector.y;
|
---|
| 204 |
|
---|
| 205 | return kProd;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | inline friend Vector2 operator + (const Vector2& lhs, const Real rhs)
|
---|
| 209 | {
|
---|
| 210 | Vector2 ret(rhs);
|
---|
| 211 | return ret += lhs;
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | inline friend Vector2 operator + (const Real lhs, const Vector2& rhs)
|
---|
| 215 | {
|
---|
| 216 | Vector2 ret(lhs);
|
---|
| 217 | return ret += rhs;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | inline friend Vector2 operator - (const Vector2& lhs, const Real rhs)
|
---|
| 221 | {
|
---|
| 222 | return lhs - Vector2(rhs);
|
---|
| 223 | }
|
---|
| 224 |
|
---|
| 225 | inline friend Vector2 operator - (const Real lhs, const Vector2& rhs)
|
---|
| 226 | {
|
---|
| 227 | Vector2 ret(lhs);
|
---|
| 228 | return ret -= rhs;
|
---|
| 229 | }
|
---|
| 230 | // arithmetic updates
|
---|
| 231 | inline Vector2& operator += ( const Vector2& rkVector )
|
---|
| 232 | {
|
---|
| 233 | x += rkVector.x;
|
---|
| 234 | y += rkVector.y;
|
---|
| 235 |
|
---|
| 236 | return *this;
|
---|
| 237 | }
|
---|
| 238 |
|
---|
| 239 | inline Vector2& operator += ( const Real fScaler )
|
---|
| 240 | {
|
---|
| 241 | x += fScaler;
|
---|
| 242 | y += fScaler;
|
---|
| 243 |
|
---|
| 244 | return *this;
|
---|
| 245 | }
|
---|
| 246 |
|
---|
| 247 | inline Vector2& operator -= ( const Vector2& rkVector )
|
---|
| 248 | {
|
---|
| 249 | x -= rkVector.x;
|
---|
| 250 | y -= rkVector.y;
|
---|
| 251 |
|
---|
| 252 | return *this;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | inline Vector2& operator -= ( const Real fScaler )
|
---|
| 256 | {
|
---|
| 257 | x -= fScaler;
|
---|
| 258 | y -= fScaler;
|
---|
| 259 |
|
---|
| 260 | return *this;
|
---|
| 261 | }
|
---|
| 262 |
|
---|
| 263 | inline Vector2& operator *= ( const Real fScalar )
|
---|
| 264 | {
|
---|
| 265 | x *= fScalar;
|
---|
| 266 | y *= fScalar;
|
---|
| 267 |
|
---|
| 268 | return *this;
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 | inline Vector2& operator /= ( const Real fScalar )
|
---|
| 272 | {
|
---|
| 273 | assert( fScalar != 0.0 );
|
---|
| 274 |
|
---|
| 275 | Real fInv = 1.0 / fScalar;
|
---|
| 276 |
|
---|
| 277 | x *= fInv;
|
---|
| 278 | y *= fInv;
|
---|
| 279 |
|
---|
| 280 | return *this;
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | /** Returns the length (magnitude) of the vector.
|
---|
| 284 | @warning
|
---|
| 285 | This operation requires a square root and is expensive in
|
---|
| 286 | terms of CPU operations. If you don't need to know the exact
|
---|
| 287 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
| 288 | instead.
|
---|
| 289 | */
|
---|
| 290 | inline Real length () const
|
---|
| 291 | {
|
---|
| 292 | return Math::Sqrt( x * x + y * y );
|
---|
| 293 | }
|
---|
| 294 |
|
---|
| 295 | /** Returns the square of the length(magnitude) of the vector.
|
---|
| 296 | @remarks
|
---|
| 297 | This method is for efficiency - calculating the actual
|
---|
| 298 | length of a vector requires a square root, which is expensive
|
---|
| 299 | in terms of the operations required. This method returns the
|
---|
| 300 | square of the length of the vector, i.e. the same as the
|
---|
| 301 | length but before the square root is taken. Use this if you
|
---|
| 302 | want to find the longest / shortest vector without incurring
|
---|
| 303 | the square root.
|
---|
| 304 | */
|
---|
| 305 | inline Real squaredLength () const
|
---|
| 306 | {
|
---|
| 307 | return x * x + y * y;
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
| 311 | @remarks
|
---|
| 312 | The dot product can be used to calculate the angle between 2
|
---|
| 313 | vectors. If both are unit vectors, the dot product is the
|
---|
| 314 | cosine of the angle; otherwise the dot product must be
|
---|
| 315 | divided by the product of the lengths of both vectors to get
|
---|
| 316 | the cosine of the angle. This result can further be used to
|
---|
| 317 | calculate the distance of a point from a plane.
|
---|
| 318 | @param
|
---|
| 319 | vec Vector with which to calculate the dot product (together
|
---|
| 320 | with this one).
|
---|
| 321 | @returns
|
---|
| 322 | A float representing the dot product value.
|
---|
| 323 | */
|
---|
| 324 | inline Real dotProduct(const Vector2& vec) const
|
---|
| 325 | {
|
---|
| 326 | return x * vec.x + y * vec.y;
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 | /** Normalises the vector.
|
---|
| 330 | @remarks
|
---|
| 331 | This method normalises the vector such that it's
|
---|
| 332 | length / magnitude is 1. The result is called a unit vector.
|
---|
| 333 | @note
|
---|
| 334 | This function will not crash for zero-sized vectors, but there
|
---|
| 335 | will be no changes made to their components.
|
---|
| 336 | @returns The previous length of the vector.
|
---|
| 337 | */
|
---|
| 338 | inline Real normalise()
|
---|
| 339 | {
|
---|
| 340 | Real fLength = Math::Sqrt( x * x + y * y);
|
---|
| 341 |
|
---|
| 342 | // Will also work for zero-sized vectors, but will change nothing
|
---|
| 343 | if ( fLength > 1e-08 )
|
---|
| 344 | {
|
---|
| 345 | Real fInvLength = 1.0 / fLength;
|
---|
| 346 | x *= fInvLength;
|
---|
| 347 | y *= fInvLength;
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | return fLength;
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 |
|
---|
| 354 |
|
---|
| 355 | /** Returns a vector at a point half way between this and the passed
|
---|
| 356 | in vector.
|
---|
| 357 | */
|
---|
| 358 | inline Vector2 midPoint( const Vector2& vec ) const
|
---|
| 359 | {
|
---|
| 360 | return Vector2(
|
---|
| 361 | ( x + vec.x ) * 0.5,
|
---|
| 362 | ( y + vec.y ) * 0.5 );
|
---|
| 363 | }
|
---|
| 364 |
|
---|
| 365 | /** Returns true if the vector's scalar components are all greater
|
---|
| 366 | that the ones of the vector it is compared against.
|
---|
| 367 | */
|
---|
| 368 | inline bool operator < ( const Vector2& rhs ) const
|
---|
| 369 | {
|
---|
| 370 | if( x < rhs.x && y < rhs.y )
|
---|
| 371 | return true;
|
---|
| 372 | return false;
|
---|
| 373 | }
|
---|
| 374 |
|
---|
| 375 | /** Returns true if the vector's scalar components are all smaller
|
---|
| 376 | that the ones of the vector it is compared against.
|
---|
| 377 | */
|
---|
| 378 | inline bool operator > ( const Vector2& rhs ) const
|
---|
| 379 | {
|
---|
| 380 | if( x > rhs.x && y > rhs.y )
|
---|
| 381 | return true;
|
---|
| 382 | return false;
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | /** Sets this vector's components to the minimum of its own and the
|
---|
| 386 | ones of the passed in vector.
|
---|
| 387 | @remarks
|
---|
| 388 | 'Minimum' in this case means the combination of the lowest
|
---|
| 389 | value of x, y and z from both vectors. Lowest is taken just
|
---|
| 390 | numerically, not magnitude, so -1 < 0.
|
---|
| 391 | */
|
---|
| 392 | inline void makeFloor( const Vector2& cmp )
|
---|
| 393 | {
|
---|
| 394 | if( cmp.x < x ) x = cmp.x;
|
---|
| 395 | if( cmp.y < y ) y = cmp.y;
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | /** Sets this vector's components to the maximum of its own and the
|
---|
| 399 | ones of the passed in vector.
|
---|
| 400 | @remarks
|
---|
| 401 | 'Maximum' in this case means the combination of the highest
|
---|
| 402 | value of x, y and z from both vectors. Highest is taken just
|
---|
| 403 | numerically, not magnitude, so 1 > -3.
|
---|
| 404 | */
|
---|
| 405 | inline void makeCeil( const Vector2& cmp )
|
---|
| 406 | {
|
---|
| 407 | if( cmp.x > x ) x = cmp.x;
|
---|
| 408 | if( cmp.y > y ) y = cmp.y;
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
| 412 | @remarks
|
---|
| 413 | This method will return a vector which is perpendicular to this
|
---|
| 414 | vector. There are an infinite number of possibilities but this
|
---|
| 415 | method will guarantee to generate one of them. If you need more
|
---|
| 416 | control you should use the Quaternion class.
|
---|
| 417 | */
|
---|
| 418 | inline Vector2 perpendicular(void) const
|
---|
| 419 | {
|
---|
| 420 | return Vector2 (-y, x);
|
---|
| 421 | }
|
---|
| 422 | /** Calculates the 2 dimensional cross-product of 2 vectors, which results
|
---|
| 423 | in a single floating point value which is 2 times the area of the triangle.
|
---|
| 424 | */
|
---|
| 425 | inline Real crossProduct( const Vector2& rkVector ) const
|
---|
| 426 | {
|
---|
| 427 | return x * rkVector.y - y * rkVector.x;
|
---|
| 428 | }
|
---|
| 429 | /** Generates a new random vector which deviates from this vector by a
|
---|
| 430 | given angle in a random direction.
|
---|
| 431 | @remarks
|
---|
| 432 | This method assumes that the random number generator has already
|
---|
| 433 | been seeded appropriately.
|
---|
| 434 | @param
|
---|
| 435 | angle The angle at which to deviate in radians
|
---|
| 436 | @param
|
---|
| 437 | up Any vector perpendicular to this one (which could generated
|
---|
| 438 | by cross-product of this vector and any other non-colinear
|
---|
| 439 | vector). If you choose not to provide this the function will
|
---|
| 440 | derive one on it's own, however if you provide one yourself the
|
---|
| 441 | function will be faster (this allows you to reuse up vectors if
|
---|
| 442 | you call this method more than once)
|
---|
| 443 | @returns
|
---|
| 444 | A random vector which deviates from this vector by angle. This
|
---|
| 445 | vector will not be normalised, normalise it if you wish
|
---|
| 446 | afterwards.
|
---|
| 447 | */
|
---|
| 448 | inline Vector2 randomDeviant(
|
---|
| 449 | Real angle) const
|
---|
| 450 | {
|
---|
| 451 |
|
---|
| 452 | angle *= Math::UnitRandom() * Math::TWO_PI;
|
---|
| 453 | Real cosa = cos(angle);
|
---|
| 454 | Real sina = sin(angle);
|
---|
| 455 | return Vector2(cosa * x - sina * y,
|
---|
| 456 | sina * x + cosa * y);
|
---|
| 457 | }
|
---|
| 458 |
|
---|
| 459 | /** Returns true if this vector is zero length. */
|
---|
| 460 | inline bool isZeroLength(void) const
|
---|
| 461 | {
|
---|
| 462 | Real sqlen = (x * x) + (y * y);
|
---|
| 463 | return (sqlen < (1e-06 * 1e-06));
|
---|
| 464 |
|
---|
| 465 | }
|
---|
| 466 |
|
---|
| 467 | /** As normalise, except that this vector is unaffected and the
|
---|
| 468 | normalised vector is returned as a copy. */
|
---|
| 469 | inline Vector2 normalisedCopy(void) const
|
---|
| 470 | {
|
---|
| 471 | Vector2 ret = *this;
|
---|
| 472 | ret.normalise();
|
---|
| 473 | return ret;
|
---|
| 474 | }
|
---|
| 475 |
|
---|
| 476 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
| 477 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
| 478 | */
|
---|
| 479 | inline Vector2 reflect(const Vector2& normal) const
|
---|
| 480 | {
|
---|
| 481 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
| 482 | }
|
---|
| 483 |
|
---|
| 484 | // special points
|
---|
| 485 | static const Vector2 ZERO;
|
---|
| 486 | static const Vector2 UNIT_X;
|
---|
| 487 | static const Vector2 UNIT_Y;
|
---|
| 488 | static const Vector2 NEGATIVE_UNIT_X;
|
---|
| 489 | static const Vector2 NEGATIVE_UNIT_Y;
|
---|
| 490 | static const Vector2 UNIT_SCALE;
|
---|
| 491 |
|
---|
| 492 | /** Function for writing to a stream.
|
---|
| 493 | */
|
---|
| 494 | inline _OgreExport friend std::ostream& operator <<
|
---|
| 495 | ( std::ostream& o, const Vector2& v )
|
---|
| 496 | {
|
---|
| 497 | o << "Vector2(" << v.x << ", " << v.y << ")";
|
---|
| 498 | return o;
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | };
|
---|
| 502 |
|
---|
| 503 | }
|
---|
| 504 | #endif
|
---|