[657] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #ifndef __Vector2_H__
|
---|
| 26 | #define __Vector2_H__
|
---|
| 27 |
|
---|
| 28 |
|
---|
| 29 | #include "OgrePrerequisites.h"
|
---|
| 30 | #include "OgreMath.h"
|
---|
| 31 |
|
---|
| 32 | namespace Ogre
|
---|
| 33 | {
|
---|
| 34 |
|
---|
| 35 | /** Standard 2-dimensional vector.
|
---|
| 36 | @remarks
|
---|
| 37 | A direction in 2D space represented as distances along the 2
|
---|
| 38 | orthoganal axes (x, y). Note that positions, directions and
|
---|
| 39 | scaling factors can be represented by a vector, depending on how
|
---|
| 40 | you interpret the values.
|
---|
| 41 | */
|
---|
| 42 | class _OgreExport Vector2
|
---|
| 43 | {
|
---|
| 44 | public:
|
---|
| 45 | union {
|
---|
| 46 | struct {
|
---|
| 47 | Real x, y;
|
---|
| 48 | };
|
---|
| 49 | Real val[2];
|
---|
| 50 | };
|
---|
| 51 |
|
---|
| 52 | public:
|
---|
| 53 | inline Vector2()
|
---|
| 54 | {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | inline Vector2( Real fX, Real fY )
|
---|
| 58 | : x( fX ), y( fY )
|
---|
| 59 | {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | inline Vector2( Real afCoordinate[2] )
|
---|
| 63 | : x( afCoordinate[0] ),
|
---|
| 64 | y( afCoordinate[1] )
|
---|
| 65 | {
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | inline Vector2( int afCoordinate[2] )
|
---|
| 69 | {
|
---|
| 70 | x = (Real)afCoordinate[0];
|
---|
| 71 | y = (Real)afCoordinate[1];
|
---|
| 72 | }
|
---|
| 73 |
|
---|
| 74 | inline Vector2( const Real* const r )
|
---|
| 75 | : x( r[0] ), y( r[1] )
|
---|
| 76 | {
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | inline Vector2( const Vector2& rkVector )
|
---|
| 80 | : x( rkVector.x ), y( rkVector.y )
|
---|
| 81 | {
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | inline Real operator [] ( size_t i ) const
|
---|
| 85 | {
|
---|
| 86 | assert( i < 2 );
|
---|
| 87 |
|
---|
| 88 | return *(&x+i);
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | inline Real& operator [] ( size_t i )
|
---|
| 92 | {
|
---|
| 93 | assert( i < 2 );
|
---|
| 94 |
|
---|
| 95 | return *(&x+i);
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | /** Assigns the value of the other vector.
|
---|
| 99 | @param
|
---|
| 100 | rkVector The other vector
|
---|
| 101 | */
|
---|
| 102 | inline Vector2& operator = ( const Vector2& rkVector )
|
---|
| 103 | {
|
---|
| 104 | x = rkVector.x;
|
---|
| 105 | y = rkVector.y;
|
---|
| 106 |
|
---|
| 107 | return *this;
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | inline bool operator == ( const Vector2& rkVector ) const
|
---|
| 111 | {
|
---|
| 112 | return ( x == rkVector.x && y == rkVector.y );
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | inline bool operator != ( const Vector2& rkVector ) const
|
---|
| 116 | {
|
---|
| 117 | return ( x != rkVector.x || y != rkVector.y );
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | // arithmetic operations
|
---|
| 121 | inline Vector2 operator + ( const Vector2& rkVector ) const
|
---|
| 122 | {
|
---|
| 123 | Vector2 kSum;
|
---|
| 124 |
|
---|
| 125 | kSum.x = x + rkVector.x;
|
---|
| 126 | kSum.y = y + rkVector.y;
|
---|
| 127 |
|
---|
| 128 | return kSum;
|
---|
| 129 | }
|
---|
| 130 |
|
---|
| 131 | inline Vector2 operator - ( const Vector2& rkVector ) const
|
---|
| 132 | {
|
---|
| 133 | Vector2 kDiff;
|
---|
| 134 |
|
---|
| 135 | kDiff.x = x - rkVector.x;
|
---|
| 136 | kDiff.y = y - rkVector.y;
|
---|
| 137 |
|
---|
| 138 | return kDiff;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | inline Vector2 operator * ( Real fScalar ) const
|
---|
| 142 | {
|
---|
| 143 | Vector2 kProd;
|
---|
| 144 |
|
---|
| 145 | kProd.x = fScalar*x;
|
---|
| 146 | kProd.y = fScalar*y;
|
---|
| 147 |
|
---|
| 148 | return kProd;
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | inline Vector2 operator * ( const Vector2& rhs) const
|
---|
| 152 | {
|
---|
| 153 | Vector2 kProd;
|
---|
| 154 |
|
---|
| 155 | kProd.x = rhs.x * x;
|
---|
| 156 | kProd.y = rhs.y * y;
|
---|
| 157 |
|
---|
| 158 | return kProd;
|
---|
| 159 | }
|
---|
| 160 |
|
---|
| 161 | inline Vector2 operator / ( Real fScalar ) const
|
---|
| 162 | {
|
---|
| 163 | assert( fScalar != 0.0 );
|
---|
| 164 |
|
---|
| 165 | Vector2 kDiv;
|
---|
| 166 |
|
---|
| 167 | Real fInv = 1.0 / fScalar;
|
---|
| 168 | kDiv.x = x * fInv;
|
---|
| 169 | kDiv.y = y * fInv;
|
---|
| 170 |
|
---|
| 171 | return kDiv;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | inline Vector2 operator - () const
|
---|
| 175 | {
|
---|
| 176 | Vector2 kNeg;
|
---|
| 177 |
|
---|
| 178 | kNeg.x = -x;
|
---|
| 179 | kNeg.y = -y;
|
---|
| 180 |
|
---|
| 181 | return kNeg;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | inline friend Vector2 operator * ( Real fScalar, const Vector2& rkVector )
|
---|
| 185 | {
|
---|
| 186 | Vector2 kProd;
|
---|
| 187 |
|
---|
| 188 | kProd.x = fScalar * rkVector.x;
|
---|
| 189 | kProd.y = fScalar * rkVector.y;
|
---|
| 190 |
|
---|
| 191 | return kProd;
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | // arithmetic updates
|
---|
| 195 | inline Vector2& operator += ( const Vector2& rkVector )
|
---|
| 196 | {
|
---|
| 197 | x += rkVector.x;
|
---|
| 198 | y += rkVector.y;
|
---|
| 199 |
|
---|
| 200 | return *this;
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | inline Vector2& operator -= ( const Vector2& rkVector )
|
---|
| 204 | {
|
---|
| 205 | x -= rkVector.x;
|
---|
| 206 | y -= rkVector.y;
|
---|
| 207 |
|
---|
| 208 | return *this;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | inline Vector2& operator *= ( Real fScalar )
|
---|
| 212 | {
|
---|
| 213 | x *= fScalar;
|
---|
| 214 | y *= fScalar;
|
---|
| 215 |
|
---|
| 216 | return *this;
|
---|
| 217 | }
|
---|
| 218 |
|
---|
| 219 | inline Vector2& operator /= ( Real fScalar )
|
---|
| 220 | {
|
---|
| 221 | assert( fScalar != 0.0 );
|
---|
| 222 |
|
---|
| 223 | Real fInv = 1.0 / fScalar;
|
---|
| 224 |
|
---|
| 225 | x *= fInv;
|
---|
| 226 | y *= fInv;
|
---|
| 227 |
|
---|
| 228 | return *this;
|
---|
| 229 | }
|
---|
| 230 |
|
---|
| 231 | /** Returns the length (magnitude) of the vector.
|
---|
| 232 | @warning
|
---|
| 233 | This operation requires a square root and is expensive in
|
---|
| 234 | terms of CPU operations. If you don't need to know the exact
|
---|
| 235 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
| 236 | instead.
|
---|
| 237 | */
|
---|
| 238 | inline Real length () const
|
---|
| 239 | {
|
---|
| 240 | return Math::Sqrt( x * x + y * y );
|
---|
| 241 | }
|
---|
| 242 |
|
---|
| 243 | /** Returns the square of the length(magnitude) of the vector.
|
---|
| 244 | @remarks
|
---|
| 245 | This method is for efficiency - calculating the actual
|
---|
| 246 | length of a vector requires a square root, which is expensive
|
---|
| 247 | in terms of the operations required. This method returns the
|
---|
| 248 | square of the length of the vector, i.e. the same as the
|
---|
| 249 | length but before the square root is taken. Use this if you
|
---|
| 250 | want to find the longest / shortest vector without incurring
|
---|
| 251 | the square root.
|
---|
| 252 | */
|
---|
| 253 | inline Real squaredLength () const
|
---|
| 254 | {
|
---|
| 255 | return x * x + y * y;
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
| 259 | @remarks
|
---|
| 260 | The dot product can be used to calculate the angle between 2
|
---|
| 261 | vectors. If both are unit vectors, the dot product is the
|
---|
| 262 | cosine of the angle; otherwise the dot product must be
|
---|
| 263 | divided by the product of the lengths of both vectors to get
|
---|
| 264 | the cosine of the angle. This result can further be used to
|
---|
| 265 | calculate the distance of a point from a plane.
|
---|
| 266 | @param
|
---|
| 267 | vec Vector with which to calculate the dot product (together
|
---|
| 268 | with this one).
|
---|
| 269 | @returns
|
---|
| 270 | A float representing the dot product value.
|
---|
| 271 | */
|
---|
| 272 | inline Real dotProduct(const Vector2& vec) const
|
---|
| 273 | {
|
---|
| 274 | return x * vec.x + y * vec.y;
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | /** Normalises the vector.
|
---|
| 278 | @remarks
|
---|
| 279 | This method normalises the vector such that it's
|
---|
| 280 | length / magnitude is 1. The result is called a unit vector.
|
---|
| 281 | @note
|
---|
| 282 | This function will not crash for zero-sized vectors, but there
|
---|
| 283 | will be no changes made to their components.
|
---|
| 284 | @returns The previous length of the vector.
|
---|
| 285 | */
|
---|
| 286 | inline Real normalise()
|
---|
| 287 | {
|
---|
| 288 | Real fLength = Math::Sqrt( x * x + y * y);
|
---|
| 289 |
|
---|
| 290 | // Will also work for zero-sized vectors, but will change nothing
|
---|
| 291 | if ( fLength > 1e-08 )
|
---|
| 292 | {
|
---|
| 293 | Real fInvLength = 1.0 / fLength;
|
---|
| 294 | x *= fInvLength;
|
---|
| 295 | y *= fInvLength;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | return fLength;
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 |
|
---|
| 302 |
|
---|
| 303 | /** Returns a vector at a point half way between this and the passed
|
---|
| 304 | in vector.
|
---|
| 305 | */
|
---|
| 306 | inline Vector2 midPoint( const Vector2& vec ) const
|
---|
| 307 | {
|
---|
| 308 | return Vector2(
|
---|
| 309 | ( x + vec.x ) * 0.5,
|
---|
| 310 | ( y + vec.y ) * 0.5 );
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | /** Returns true if the vector's scalar components are all greater
|
---|
| 314 | that the ones of the vector it is compared against.
|
---|
| 315 | */
|
---|
| 316 | inline bool operator < ( const Vector2& rhs ) const
|
---|
| 317 | {
|
---|
| 318 | if( x < rhs.x && y < rhs.y )
|
---|
| 319 | return true;
|
---|
| 320 | return false;
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | /** Returns true if the vector's scalar components are all smaller
|
---|
| 324 | that the ones of the vector it is compared against.
|
---|
| 325 | */
|
---|
| 326 | inline bool operator > ( const Vector2& rhs ) const
|
---|
| 327 | {
|
---|
| 328 | if( x > rhs.x && y > rhs.y )
|
---|
| 329 | return true;
|
---|
| 330 | return false;
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | /** Sets this vector's components to the minimum of its own and the
|
---|
| 334 | ones of the passed in vector.
|
---|
| 335 | @remarks
|
---|
| 336 | 'Minimum' in this case means the combination of the lowest
|
---|
| 337 | value of x, y and z from both vectors. Lowest is taken just
|
---|
| 338 | numerically, not magnitude, so -1 < 0.
|
---|
| 339 | */
|
---|
| 340 | inline void makeFloor( const Vector2& cmp )
|
---|
| 341 | {
|
---|
| 342 | if( cmp.x < x ) x = cmp.x;
|
---|
| 343 | if( cmp.y < y ) y = cmp.y;
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | /** Sets this vector's components to the maximum of its own and the
|
---|
| 347 | ones of the passed in vector.
|
---|
| 348 | @remarks
|
---|
| 349 | 'Maximum' in this case means the combination of the highest
|
---|
| 350 | value of x, y and z from both vectors. Highest is taken just
|
---|
| 351 | numerically, not magnitude, so 1 > -3.
|
---|
| 352 | */
|
---|
| 353 | inline void makeCeil( const Vector2& cmp )
|
---|
| 354 | {
|
---|
| 355 | if( cmp.x > x ) x = cmp.x;
|
---|
| 356 | if( cmp.y > y ) y = cmp.y;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
| 360 | @remarks
|
---|
| 361 | This method will return a vector which is perpendicular to this
|
---|
| 362 | vector. There are an infinite number of possibilities but this
|
---|
| 363 | method will guarantee to generate one of them. If you need more
|
---|
| 364 | control you should use the Quaternion class.
|
---|
| 365 | */
|
---|
| 366 | inline Vector2 perpendicular(void) const
|
---|
| 367 | {
|
---|
| 368 | return Vector2 (-y, x);
|
---|
| 369 | }
|
---|
| 370 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
| 371 | lies perpendicular to them both.
|
---|
| 372 | @remarks
|
---|
| 373 | The cross-product is normally used to calculate the normal
|
---|
| 374 | vector of a plane, by calculating the cross-product of 2
|
---|
| 375 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
| 376 | of a triangle).
|
---|
| 377 | @param
|
---|
| 378 | vec Vector which, together with this one, will be used to
|
---|
| 379 | calculate the cross-product.
|
---|
| 380 | @returns
|
---|
| 381 | A vector which is the result of the cross-product. This
|
---|
| 382 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
| 383 | - call Vector3::normalise on the result if you wish this to
|
---|
| 384 | be done. As for which side the resultant vector will be on, the
|
---|
| 385 | returned vector will be on the side from which the arc from 'this'
|
---|
| 386 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
| 387 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
| 388 | @par
|
---|
| 389 | For a clearer explanation, look a the left and the bottom edges
|
---|
| 390 | of your monitor's screen. Assume that the first vector is the
|
---|
| 391 | left edge and the second vector is the bottom edge, both of
|
---|
| 392 | them starting from the lower-left corner of the screen. The
|
---|
| 393 | resulting vector is going to be perpendicular to both of them
|
---|
| 394 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
| 395 | (assuming you're using a CRT monitor, of course).
|
---|
| 396 | */
|
---|
| 397 | inline Vector2 crossProduct( const Vector2& rkVector ) const
|
---|
| 398 | {
|
---|
| 399 | return Vector2(-rkVector.y, rkVector.x);
|
---|
| 400 | }
|
---|
| 401 | /** Generates a new random vector which deviates from this vector by a
|
---|
| 402 | given angle in a random direction.
|
---|
| 403 | @remarks
|
---|
| 404 | This method assumes that the random number generator has already
|
---|
| 405 | been seeded appropriately.
|
---|
| 406 | @param
|
---|
| 407 | angle The angle at which to deviate in radians
|
---|
| 408 | @param
|
---|
| 409 | up Any vector perpendicular to this one (which could generated
|
---|
| 410 | by cross-product of this vector and any other non-colinear
|
---|
| 411 | vector). If you choose not to provide this the function will
|
---|
| 412 | derive one on it's own, however if you provide one yourself the
|
---|
| 413 | function will be faster (this allows you to reuse up vectors if
|
---|
| 414 | you call this method more than once)
|
---|
| 415 | @returns
|
---|
| 416 | A random vector which deviates from this vector by angle. This
|
---|
| 417 | vector will not be normalised, normalise it if you wish
|
---|
| 418 | afterwards.
|
---|
| 419 | */
|
---|
| 420 | inline Vector2 randomDeviant(
|
---|
| 421 | Real angle) const
|
---|
| 422 | {
|
---|
| 423 |
|
---|
| 424 | angle *= Math::UnitRandom() * Math::TWO_PI;
|
---|
| 425 | Real cosa = cos(angle);
|
---|
| 426 | Real sina = sin(angle);
|
---|
| 427 | return Vector2(cosa * x - sina * y,
|
---|
| 428 | sina * x + cosa * y);
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | /** Returns true if this vector is zero length. */
|
---|
| 432 | inline bool isZeroLength(void) const
|
---|
| 433 | {
|
---|
| 434 | Real sqlen = (x * x) + (y * y);
|
---|
| 435 | return (sqlen < (1e-06 * 1e-06));
|
---|
| 436 |
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 | /** As normalise, except that this vector is unaffected and the
|
---|
| 440 | normalised vector is returned as a copy. */
|
---|
| 441 | inline Vector2 normalisedCopy(void) const
|
---|
| 442 | {
|
---|
| 443 | Vector2 ret = *this;
|
---|
| 444 | ret.normalise();
|
---|
| 445 | return ret;
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
| 449 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
| 450 | */
|
---|
| 451 | inline Vector2 reflect(const Vector2& normal) const
|
---|
| 452 | {
|
---|
| 453 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 | // special points
|
---|
| 457 | static const Vector2 ZERO;
|
---|
| 458 | static const Vector2 UNIT_X;
|
---|
| 459 | static const Vector2 UNIT_Y;
|
---|
| 460 | static const Vector2 NEGATIVE_UNIT_X;
|
---|
| 461 | static const Vector2 NEGATIVE_UNIT_Y;
|
---|
| 462 | static const Vector2 UNIT_SCALE;
|
---|
| 463 |
|
---|
| 464 | /** Function for writing to a stream.
|
---|
| 465 | */
|
---|
| 466 | inline _OgreExport friend std::ostream& operator <<
|
---|
| 467 | ( std::ostream& o, const Vector2& v )
|
---|
| 468 | {
|
---|
| 469 | o << "Vector2(" << v.x << ", " << v.y << ")";
|
---|
| 470 | return o;
|
---|
| 471 | }
|
---|
| 472 | };
|
---|
| 473 |
|
---|
| 474 | }
|
---|
| 475 | #endif
|
---|