[692] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #ifndef __Vector3_H__
|
---|
| 26 | #define __Vector3_H__
|
---|
| 27 |
|
---|
| 28 | #include "OgrePrerequisites.h"
|
---|
| 29 | #include "OgreMath.h"
|
---|
| 30 | #include "OgreQuaternion.h"
|
---|
| 31 |
|
---|
| 32 | namespace Ogre
|
---|
| 33 | {
|
---|
| 34 |
|
---|
| 35 | /** Standard 3-dimensional vector.
|
---|
| 36 | @remarks
|
---|
| 37 | A direction in 3D space represented as distances along the 3
|
---|
| 38 | orthoganal axes (x, y, z). Note that positions, directions and
|
---|
| 39 | scaling factors can be represented by a vector, depending on how
|
---|
| 40 | you interpret the values.
|
---|
| 41 | */
|
---|
| 42 | class _OgreExport Vector3
|
---|
| 43 | {
|
---|
| 44 | public:
|
---|
| 45 | union {
|
---|
| 46 | struct {
|
---|
| 47 | Real x, y, z;
|
---|
| 48 | };
|
---|
| 49 | Real val[3];
|
---|
| 50 | };
|
---|
| 51 |
|
---|
| 52 | public:
|
---|
| 53 | inline Vector3()
|
---|
| 54 | {
|
---|
| 55 | }
|
---|
| 56 |
|
---|
| 57 | inline Vector3( const Real fX, const Real fY, const Real fZ )
|
---|
| 58 | : x( fX ), y( fY ), z( fZ )
|
---|
| 59 | {
|
---|
| 60 | }
|
---|
| 61 |
|
---|
| 62 | inline explicit Vector3( const Real afCoordinate[3] )
|
---|
| 63 | : x( afCoordinate[0] ),
|
---|
| 64 | y( afCoordinate[1] ),
|
---|
| 65 | z( afCoordinate[2] )
|
---|
| 66 | {
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | inline explicit Vector3( const int afCoordinate[3] )
|
---|
| 70 | {
|
---|
| 71 | x = (Real)afCoordinate[0];
|
---|
| 72 | y = (Real)afCoordinate[1];
|
---|
| 73 | z = (Real)afCoordinate[2];
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | inline explicit Vector3( Real* const r )
|
---|
| 77 | : x( r[0] ), y( r[1] ), z( r[2] )
|
---|
| 78 | {
|
---|
| 79 | }
|
---|
| 80 |
|
---|
| 81 | inline explicit Vector3( const Real scaler )
|
---|
| 82 | : x( scaler )
|
---|
| 83 | , y( scaler )
|
---|
| 84 | , z( scaler )
|
---|
| 85 | {
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 |
|
---|
| 89 | inline Vector3( const Vector3& rkVector )
|
---|
| 90 | : x( rkVector.x ), y( rkVector.y ), z( rkVector.z )
|
---|
| 91 | {
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | inline Real operator [] ( const size_t i ) const
|
---|
| 95 | {
|
---|
| 96 | assert( i < 3 );
|
---|
| 97 |
|
---|
| 98 | return *(&x+i);
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | inline Real& operator [] ( const size_t i )
|
---|
| 102 | {
|
---|
| 103 | assert( i < 3 );
|
---|
| 104 |
|
---|
| 105 | return *(&x+i);
|
---|
| 106 | }
|
---|
| 107 |
|
---|
| 108 | /** Assigns the value of the other vector.
|
---|
| 109 | @param
|
---|
| 110 | rkVector The other vector
|
---|
| 111 | */
|
---|
| 112 | inline Vector3& operator = ( const Vector3& rkVector )
|
---|
| 113 | {
|
---|
| 114 | x = rkVector.x;
|
---|
| 115 | y = rkVector.y;
|
---|
| 116 | z = rkVector.z;
|
---|
| 117 |
|
---|
| 118 | return *this;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | inline Vector3& operator = ( const Real fScaler )
|
---|
| 122 | {
|
---|
| 123 | x = fScaler;
|
---|
| 124 | y = fScaler;
|
---|
| 125 | z = fScaler;
|
---|
| 126 |
|
---|
| 127 | return *this;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | inline bool operator == ( const Vector3& rkVector ) const
|
---|
| 131 | {
|
---|
| 132 | return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
|
---|
| 133 | }
|
---|
| 134 |
|
---|
| 135 | inline bool operator != ( const Vector3& rkVector ) const
|
---|
| 136 | {
|
---|
| 137 | return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
|
---|
| 138 | }
|
---|
| 139 |
|
---|
| 140 | // arithmetic operations
|
---|
| 141 | inline Vector3 operator + ( const Vector3& rkVector ) const
|
---|
| 142 | {
|
---|
| 143 | Vector3 kSum;
|
---|
| 144 |
|
---|
| 145 | kSum.x = x + rkVector.x;
|
---|
| 146 | kSum.y = y + rkVector.y;
|
---|
| 147 | kSum.z = z + rkVector.z;
|
---|
| 148 |
|
---|
| 149 | return kSum;
|
---|
| 150 | }
|
---|
| 151 |
|
---|
| 152 | inline Vector3 operator - ( const Vector3& rkVector ) const
|
---|
| 153 | {
|
---|
| 154 | Vector3 kDiff;
|
---|
| 155 |
|
---|
| 156 | kDiff.x = x - rkVector.x;
|
---|
| 157 | kDiff.y = y - rkVector.y;
|
---|
| 158 | kDiff.z = z - rkVector.z;
|
---|
| 159 |
|
---|
| 160 | return kDiff;
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | inline Vector3 operator * ( const Real fScalar ) const
|
---|
| 164 | {
|
---|
| 165 | Vector3 kProd;
|
---|
| 166 |
|
---|
| 167 | kProd.x = fScalar*x;
|
---|
| 168 | kProd.y = fScalar*y;
|
---|
| 169 | kProd.z = fScalar*z;
|
---|
| 170 |
|
---|
| 171 | return kProd;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | inline Vector3 operator * ( const Vector3& rhs) const
|
---|
| 175 | {
|
---|
| 176 | Vector3 kProd;
|
---|
| 177 |
|
---|
| 178 | kProd.x = rhs.x * x;
|
---|
| 179 | kProd.y = rhs.y * y;
|
---|
| 180 | kProd.z = rhs.z * z;
|
---|
| 181 |
|
---|
| 182 | return kProd;
|
---|
| 183 | }
|
---|
| 184 |
|
---|
| 185 | inline Vector3 operator / ( const Real fScalar ) const
|
---|
| 186 | {
|
---|
| 187 | assert( fScalar != 0.0 );
|
---|
| 188 |
|
---|
| 189 | Vector3 kDiv;
|
---|
| 190 |
|
---|
| 191 | Real fInv = 1.0 / fScalar;
|
---|
| 192 | kDiv.x = x * fInv;
|
---|
| 193 | kDiv.y = y * fInv;
|
---|
| 194 | kDiv.z = z * fInv;
|
---|
| 195 |
|
---|
| 196 | return kDiv;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | inline Vector3 operator / ( const Vector3& rhs) const
|
---|
| 200 | {
|
---|
| 201 | Vector3 kDiv;
|
---|
| 202 |
|
---|
| 203 | kDiv.x = x / rhs.x;
|
---|
| 204 | kDiv.y = y / rhs.y;
|
---|
| 205 | kDiv.z = z / rhs.z;
|
---|
| 206 |
|
---|
| 207 | return kDiv;
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 |
|
---|
| 211 | inline Vector3 operator - () const
|
---|
| 212 | {
|
---|
| 213 | Vector3 kNeg;
|
---|
| 214 |
|
---|
| 215 | kNeg.x = -x;
|
---|
| 216 | kNeg.y = -y;
|
---|
| 217 | kNeg.z = -z;
|
---|
| 218 |
|
---|
| 219 | return kNeg;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | // overloaded operators to help Vector3
|
---|
| 223 | inline friend Vector3 operator * ( const Real fScalar, const Vector3& rkVector )
|
---|
| 224 | {
|
---|
| 225 | Vector3 kProd;
|
---|
| 226 |
|
---|
| 227 | kProd.x = fScalar * rkVector.x;
|
---|
| 228 | kProd.y = fScalar * rkVector.y;
|
---|
| 229 | kProd.z = fScalar * rkVector.z;
|
---|
| 230 |
|
---|
| 231 | return kProd;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | inline friend Vector3 operator + (const Vector3& lhs, const Real rhs)
|
---|
| 235 | {
|
---|
| 236 | Vector3 ret(rhs);
|
---|
| 237 | return ret += lhs;
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | inline friend Vector3 operator + (const Real lhs, const Vector3& rhs)
|
---|
| 241 | {
|
---|
| 242 | Vector3 ret(lhs);
|
---|
| 243 | return ret += rhs;
|
---|
| 244 | }
|
---|
| 245 |
|
---|
| 246 | inline friend Vector3 operator - (const Vector3& lhs, const Real rhs)
|
---|
| 247 | {
|
---|
| 248 | return lhs - Vector3(rhs);
|
---|
| 249 | }
|
---|
| 250 |
|
---|
| 251 | inline friend Vector3 operator - (const Real lhs, const Vector3& rhs)
|
---|
| 252 | {
|
---|
| 253 | Vector3 ret(lhs);
|
---|
| 254 | return ret -= rhs;
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | // arithmetic updates
|
---|
| 258 | inline Vector3& operator += ( const Vector3& rkVector )
|
---|
| 259 | {
|
---|
| 260 | x += rkVector.x;
|
---|
| 261 | y += rkVector.y;
|
---|
| 262 | z += rkVector.z;
|
---|
| 263 |
|
---|
| 264 | return *this;
|
---|
| 265 | }
|
---|
| 266 |
|
---|
| 267 | inline Vector3& operator += ( const Real fScalar )
|
---|
| 268 | {
|
---|
| 269 | x += fScalar;
|
---|
| 270 | y += fScalar;
|
---|
| 271 | z += fScalar;
|
---|
| 272 | return *this;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | inline Vector3& operator -= ( const Vector3& rkVector )
|
---|
| 276 | {
|
---|
| 277 | x -= rkVector.x;
|
---|
| 278 | y -= rkVector.y;
|
---|
| 279 | z -= rkVector.z;
|
---|
| 280 |
|
---|
| 281 | return *this;
|
---|
| 282 | }
|
---|
| 283 |
|
---|
| 284 | inline Vector3& operator -= ( const Real fScalar )
|
---|
| 285 | {
|
---|
| 286 | x -= fScalar;
|
---|
| 287 | y -= fScalar;
|
---|
| 288 | z -= fScalar;
|
---|
| 289 | return *this;
|
---|
| 290 | }
|
---|
| 291 |
|
---|
| 292 | inline Vector3& operator *= ( const Real fScalar )
|
---|
| 293 | {
|
---|
| 294 | x *= fScalar;
|
---|
| 295 | y *= fScalar;
|
---|
| 296 | z *= fScalar;
|
---|
| 297 | return *this;
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | inline Vector3& operator *= ( const Vector3& rkVector )
|
---|
| 301 | {
|
---|
| 302 | x *= rkVector.x;
|
---|
| 303 | y *= rkVector.y;
|
---|
| 304 | z *= rkVector.z;
|
---|
| 305 |
|
---|
| 306 | return *this;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | inline Vector3& operator /= ( const Real fScalar )
|
---|
| 310 | {
|
---|
| 311 | assert( fScalar != 0.0 );
|
---|
| 312 |
|
---|
| 313 | Real fInv = 1.0 / fScalar;
|
---|
| 314 |
|
---|
| 315 | x *= fInv;
|
---|
| 316 | y *= fInv;
|
---|
| 317 | z *= fInv;
|
---|
| 318 |
|
---|
| 319 | return *this;
|
---|
| 320 | }
|
---|
| 321 |
|
---|
| 322 | inline Vector3& operator /= ( const Vector3& rkVector )
|
---|
| 323 | {
|
---|
| 324 | x /= rkVector.x;
|
---|
| 325 | y /= rkVector.y;
|
---|
| 326 | z /= rkVector.z;
|
---|
| 327 |
|
---|
| 328 | return *this;
|
---|
| 329 | }
|
---|
| 330 |
|
---|
| 331 |
|
---|
| 332 | /** Returns the length (magnitude) of the vector.
|
---|
| 333 | @warning
|
---|
| 334 | This operation requires a square root and is expensive in
|
---|
| 335 | terms of CPU operations. If you don't need to know the exact
|
---|
| 336 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
| 337 | instead.
|
---|
| 338 | */
|
---|
| 339 | inline Real length () const
|
---|
| 340 | {
|
---|
| 341 | return Math::Sqrt( x * x + y * y + z * z );
|
---|
| 342 | }
|
---|
| 343 |
|
---|
| 344 | /** Returns the square of the length(magnitude) of the vector.
|
---|
| 345 | @remarks
|
---|
| 346 | This method is for efficiency - calculating the actual
|
---|
| 347 | length of a vector requires a square root, which is expensive
|
---|
| 348 | in terms of the operations required. This method returns the
|
---|
| 349 | square of the length of the vector, i.e. the same as the
|
---|
| 350 | length but before the square root is taken. Use this if you
|
---|
| 351 | want to find the longest / shortest vector without incurring
|
---|
| 352 | the square root.
|
---|
| 353 | */
|
---|
| 354 | inline Real squaredLength () const
|
---|
| 355 | {
|
---|
| 356 | return x * x + y * y + z * z;
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
| 360 | @remarks
|
---|
| 361 | The dot product can be used to calculate the angle between 2
|
---|
| 362 | vectors. If both are unit vectors, the dot product is the
|
---|
| 363 | cosine of the angle; otherwise the dot product must be
|
---|
| 364 | divided by the product of the lengths of both vectors to get
|
---|
| 365 | the cosine of the angle. This result can further be used to
|
---|
| 366 | calculate the distance of a point from a plane.
|
---|
| 367 | @param
|
---|
| 368 | vec Vector with which to calculate the dot product (together
|
---|
| 369 | with this one).
|
---|
| 370 | @returns
|
---|
| 371 | A float representing the dot product value.
|
---|
| 372 | */
|
---|
| 373 | inline Real dotProduct(const Vector3& vec) const
|
---|
| 374 | {
|
---|
| 375 | return x * vec.x + y * vec.y + z * vec.z;
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | /** Normalises the vector.
|
---|
| 379 | @remarks
|
---|
| 380 | This method normalises the vector such that it's
|
---|
| 381 | length / magnitude is 1. The result is called a unit vector.
|
---|
| 382 | @note
|
---|
| 383 | This function will not crash for zero-sized vectors, but there
|
---|
| 384 | will be no changes made to their components.
|
---|
| 385 | @returns The previous length of the vector.
|
---|
| 386 | */
|
---|
| 387 | inline Real normalise()
|
---|
| 388 | {
|
---|
| 389 | Real fLength = Math::Sqrt( x * x + y * y + z * z );
|
---|
| 390 |
|
---|
| 391 | // Will also work for zero-sized vectors, but will change nothing
|
---|
| 392 | if ( fLength > 1e-08 )
|
---|
| 393 | {
|
---|
| 394 | Real fInvLength = 1.0 / fLength;
|
---|
| 395 | x *= fInvLength;
|
---|
| 396 | y *= fInvLength;
|
---|
| 397 | z *= fInvLength;
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | return fLength;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
| 404 | lies perpendicular to them both.
|
---|
| 405 | @remarks
|
---|
| 406 | The cross-product is normally used to calculate the normal
|
---|
| 407 | vector of a plane, by calculating the cross-product of 2
|
---|
| 408 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
| 409 | of a triangle).
|
---|
| 410 | @param
|
---|
| 411 | vec Vector which, together with this one, will be used to
|
---|
| 412 | calculate the cross-product.
|
---|
| 413 | @returns
|
---|
| 414 | A vector which is the result of the cross-product. This
|
---|
| 415 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
| 416 | - call Vector3::normalise on the result if you wish this to
|
---|
| 417 | be done. As for which side the resultant vector will be on, the
|
---|
| 418 | returned vector will be on the side from which the arc from 'this'
|
---|
| 419 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
| 420 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
| 421 | This is because OGRE uses a right-handed coordinate system.
|
---|
| 422 | @par
|
---|
| 423 | For a clearer explanation, look a the left and the bottom edges
|
---|
| 424 | of your monitor's screen. Assume that the first vector is the
|
---|
| 425 | left edge and the second vector is the bottom edge, both of
|
---|
| 426 | them starting from the lower-left corner of the screen. The
|
---|
| 427 | resulting vector is going to be perpendicular to both of them
|
---|
| 428 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
| 429 | (assuming you're using a CRT monitor, of course).
|
---|
| 430 | */
|
---|
| 431 | inline Vector3 crossProduct( const Vector3& rkVector ) const
|
---|
| 432 | {
|
---|
| 433 | Vector3 kCross;
|
---|
| 434 |
|
---|
| 435 | kCross.x = y * rkVector.z - z * rkVector.y;
|
---|
| 436 | kCross.y = z * rkVector.x - x * rkVector.z;
|
---|
| 437 | kCross.z = x * rkVector.y - y * rkVector.x;
|
---|
| 438 |
|
---|
| 439 | return kCross;
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | /** Returns a vector at a point half way between this and the passed
|
---|
| 443 | in vector.
|
---|
| 444 | */
|
---|
| 445 | inline Vector3 midPoint( const Vector3& vec ) const
|
---|
| 446 | {
|
---|
| 447 | return Vector3(
|
---|
| 448 | ( x + vec.x ) * 0.5,
|
---|
| 449 | ( y + vec.y ) * 0.5,
|
---|
| 450 | ( z + vec.z ) * 0.5 );
|
---|
| 451 | }
|
---|
| 452 |
|
---|
| 453 | /** Returns true if the vector's scalar components are all greater
|
---|
| 454 | that the ones of the vector it is compared against.
|
---|
| 455 | */
|
---|
| 456 | inline bool operator < ( const Vector3& rhs ) const
|
---|
| 457 | {
|
---|
| 458 | if( x < rhs.x && y < rhs.y && z < rhs.z )
|
---|
| 459 | return true;
|
---|
| 460 | return false;
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | /** Returns true if the vector's scalar components are all smaller
|
---|
| 464 | that the ones of the vector it is compared against.
|
---|
| 465 | */
|
---|
| 466 | inline bool operator > ( const Vector3& rhs ) const
|
---|
| 467 | {
|
---|
| 468 | if( x > rhs.x && y > rhs.y && z > rhs.z )
|
---|
| 469 | return true;
|
---|
| 470 | return false;
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 | /** Sets this vector's components to the minimum of its own and the
|
---|
| 474 | ones of the passed in vector.
|
---|
| 475 | @remarks
|
---|
| 476 | 'Minimum' in this case means the combination of the lowest
|
---|
| 477 | value of x, y and z from both vectors. Lowest is taken just
|
---|
| 478 | numerically, not magnitude, so -1 < 0.
|
---|
| 479 | */
|
---|
| 480 | inline void makeFloor( const Vector3& cmp )
|
---|
| 481 | {
|
---|
| 482 | if( cmp.x < x ) x = cmp.x;
|
---|
| 483 | if( cmp.y < y ) y = cmp.y;
|
---|
| 484 | if( cmp.z < z ) z = cmp.z;
|
---|
| 485 | }
|
---|
| 486 |
|
---|
| 487 | /** Sets this vector's components to the maximum of its own and the
|
---|
| 488 | ones of the passed in vector.
|
---|
| 489 | @remarks
|
---|
| 490 | 'Maximum' in this case means the combination of the highest
|
---|
| 491 | value of x, y and z from both vectors. Highest is taken just
|
---|
| 492 | numerically, not magnitude, so 1 > -3.
|
---|
| 493 | */
|
---|
| 494 | inline void makeCeil( const Vector3& cmp )
|
---|
| 495 | {
|
---|
| 496 | if( cmp.x > x ) x = cmp.x;
|
---|
| 497 | if( cmp.y > y ) y = cmp.y;
|
---|
| 498 | if( cmp.z > z ) z = cmp.z;
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
| 502 | @remarks
|
---|
| 503 | This method will return a vector which is perpendicular to this
|
---|
| 504 | vector. There are an infinite number of possibilities but this
|
---|
| 505 | method will guarantee to generate one of them. If you need more
|
---|
| 506 | control you should use the Quaternion class.
|
---|
| 507 | */
|
---|
| 508 | inline Vector3 perpendicular(void) const
|
---|
| 509 | {
|
---|
| 510 | static const Real fSquareZero = 1e-06 * 1e-06;
|
---|
| 511 |
|
---|
| 512 | Vector3 perp = this->crossProduct( Vector3::UNIT_X );
|
---|
| 513 |
|
---|
| 514 | // Check length
|
---|
| 515 | if( perp.squaredLength() < fSquareZero )
|
---|
| 516 | {
|
---|
| 517 | /* This vector is the Y axis multiplied by a scalar, so we have
|
---|
| 518 | to use another axis.
|
---|
| 519 | */
|
---|
| 520 | perp = this->crossProduct( Vector3::UNIT_Y );
|
---|
| 521 | }
|
---|
| 522 |
|
---|
| 523 | return perp;
|
---|
| 524 | }
|
---|
| 525 | /** Generates a new random vector which deviates from this vector by a
|
---|
| 526 | given angle in a random direction.
|
---|
| 527 | @remarks
|
---|
| 528 | This method assumes that the random number generator has already
|
---|
| 529 | been seeded appropriately.
|
---|
| 530 | @param
|
---|
| 531 | angle The angle at which to deviate
|
---|
| 532 | @param
|
---|
| 533 | up Any vector perpendicular to this one (which could generated
|
---|
| 534 | by cross-product of this vector and any other non-colinear
|
---|
| 535 | vector). If you choose not to provide this the function will
|
---|
| 536 | derive one on it's own, however if you provide one yourself the
|
---|
| 537 | function will be faster (this allows you to reuse up vectors if
|
---|
| 538 | you call this method more than once)
|
---|
| 539 | @returns
|
---|
| 540 | A random vector which deviates from this vector by angle. This
|
---|
| 541 | vector will not be normalised, normalise it if you wish
|
---|
| 542 | afterwards.
|
---|
| 543 | */
|
---|
| 544 | inline Vector3 randomDeviant(
|
---|
| 545 | const Radian& angle,
|
---|
| 546 | const Vector3& up = Vector3::ZERO ) const
|
---|
| 547 | {
|
---|
| 548 | Vector3 newUp;
|
---|
| 549 |
|
---|
| 550 | if (up == Vector3::ZERO)
|
---|
| 551 | {
|
---|
| 552 | // Generate an up vector
|
---|
| 553 | newUp = this->perpendicular();
|
---|
| 554 | }
|
---|
| 555 | else
|
---|
| 556 | {
|
---|
| 557 | newUp = up;
|
---|
| 558 | }
|
---|
| 559 |
|
---|
| 560 | // Rotate up vector by random amount around this
|
---|
| 561 | Quaternion q;
|
---|
| 562 | q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this );
|
---|
| 563 | newUp = q * newUp;
|
---|
| 564 |
|
---|
| 565 | // Finally rotate this by given angle around randomised up
|
---|
| 566 | q.FromAngleAxis( angle, newUp );
|
---|
| 567 | return q * (*this);
|
---|
| 568 | }
|
---|
| 569 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
| 570 | inline Vector3 randomDeviant(
|
---|
| 571 | Real angle,
|
---|
| 572 | const Vector3& up = Vector3::ZERO ) const
|
---|
| 573 | {
|
---|
| 574 | return randomDeviant ( Radian(angle), up );
|
---|
| 575 | }
|
---|
| 576 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
| 577 |
|
---|
| 578 | /** Gets the shortest arc quaternion to rotate this vector to the destination
|
---|
| 579 | vector.
|
---|
| 580 | @remarks
|
---|
| 581 | If you call this with a dest vector that is close to the inverse
|
---|
| 582 | of this vector, we will rotate 180 degrees around the 'fallbackAxis'
|
---|
| 583 | (if specified, or a generated axis if not) since in this case
|
---|
| 584 | ANY axis of rotation is valid.
|
---|
| 585 | */
|
---|
| 586 | Quaternion getRotationTo(const Vector3& dest,
|
---|
| 587 | const Vector3& fallbackAxis = Vector3::ZERO) const
|
---|
| 588 | {
|
---|
| 589 | // Based on Stan Melax's article in Game Programming Gems
|
---|
| 590 | Quaternion q;
|
---|
| 591 | // Copy, since cannot modify local
|
---|
| 592 | Vector3 v0 = *this;
|
---|
| 593 | Vector3 v1 = dest;
|
---|
| 594 | v0.normalise();
|
---|
| 595 | v1.normalise();
|
---|
| 596 |
|
---|
| 597 | Vector3 c = v0.crossProduct(v1);
|
---|
| 598 |
|
---|
| 599 | Real d = v0.dotProduct(v1);
|
---|
| 600 | // If dot == 1, vectors are the same
|
---|
| 601 | if (d >= 1.0f)
|
---|
| 602 | {
|
---|
| 603 | return Quaternion::IDENTITY;
|
---|
| 604 | }
|
---|
| 605 | Real s = Math::Sqrt( (1+d)*2 );
|
---|
| 606 | if (s < 1e-6f)
|
---|
| 607 | {
|
---|
| 608 | if (fallbackAxis != Vector3::ZERO)
|
---|
| 609 | {
|
---|
| 610 | // rotate 180 degrees about the fallback axis
|
---|
| 611 | q.FromAngleAxis(Radian(Math::PI), fallbackAxis);
|
---|
| 612 | }
|
---|
| 613 | else
|
---|
| 614 | {
|
---|
| 615 | // Generate an axis
|
---|
| 616 | Vector3 axis = Vector3::UNIT_X.crossProduct(*this);
|
---|
| 617 | if (axis.isZeroLength()) // pick another if colinear
|
---|
| 618 | axis = Vector3::UNIT_Y.crossProduct(*this);
|
---|
| 619 | axis.normalise();
|
---|
| 620 | q.FromAngleAxis(Radian(Math::PI), axis);
|
---|
| 621 | }
|
---|
| 622 | }
|
---|
| 623 | else
|
---|
| 624 | {
|
---|
| 625 | Real invs = 1 / s;
|
---|
| 626 |
|
---|
| 627 | q.x = c.x * invs;
|
---|
| 628 | q.y = c.y * invs;
|
---|
| 629 | q.z = c.z * invs;
|
---|
| 630 | q.w = s * 0.5;
|
---|
| 631 | }
|
---|
| 632 | return q;
|
---|
| 633 | }
|
---|
| 634 |
|
---|
| 635 | /** Returns true if this vector is zero length. */
|
---|
| 636 | inline bool isZeroLength(void) const
|
---|
| 637 | {
|
---|
| 638 | Real sqlen = (x * x) + (y * y) + (z * z);
|
---|
| 639 | return (sqlen < (1e-06 * 1e-06));
|
---|
| 640 |
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | /** As normalise, except that this vector is unaffected and the
|
---|
| 644 | normalised vector is returned as a copy. */
|
---|
| 645 | inline Vector3 normalisedCopy(void) const
|
---|
| 646 | {
|
---|
| 647 | Vector3 ret = *this;
|
---|
| 648 | ret.normalise();
|
---|
| 649 | return ret;
|
---|
| 650 | }
|
---|
| 651 |
|
---|
| 652 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
| 653 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
| 654 | */
|
---|
| 655 | inline Vector3 reflect(const Vector3& normal) const
|
---|
| 656 | {
|
---|
| 657 | return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
| 658 | }
|
---|
| 659 |
|
---|
| 660 | /** Returns whether this vector is within a positional tolerance
|
---|
| 661 | of another vector.
|
---|
| 662 | @param rhs The vector to compare with
|
---|
| 663 | @param tolerance The amount that each element of the vector may vary by
|
---|
| 664 | and still be considered equal
|
---|
| 665 | */
|
---|
| 666 | inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const
|
---|
| 667 | {
|
---|
| 668 | return Math::RealEqual(x, rhs.x, tolerance) &&
|
---|
| 669 | Math::RealEqual(y, rhs.y, tolerance) &&
|
---|
| 670 | Math::RealEqual(z, rhs.z, tolerance);
|
---|
| 671 |
|
---|
| 672 | }
|
---|
| 673 | /** Returns whether this vector is within a directional tolerance
|
---|
| 674 | of another vector.
|
---|
| 675 | @param rhs The vector to compare with
|
---|
| 676 | @param tolerance The maximum angle by which the vectors may vary and
|
---|
| 677 | still be considered equal
|
---|
| 678 | */
|
---|
| 679 | inline bool directionEquals(const Vector3& rhs,
|
---|
| 680 | const Radian& tolerance) const
|
---|
| 681 | {
|
---|
| 682 | Real dot = dotProduct(rhs);
|
---|
| 683 | Radian angle = Math::ACos(dot);
|
---|
| 684 |
|
---|
| 685 | return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians();
|
---|
| 686 |
|
---|
| 687 | }
|
---|
| 688 |
|
---|
| 689 | // special points
|
---|
| 690 | static const Vector3 ZERO;
|
---|
| 691 | static const Vector3 UNIT_X;
|
---|
| 692 | static const Vector3 UNIT_Y;
|
---|
| 693 | static const Vector3 UNIT_Z;
|
---|
| 694 | static const Vector3 NEGATIVE_UNIT_X;
|
---|
| 695 | static const Vector3 NEGATIVE_UNIT_Y;
|
---|
| 696 | static const Vector3 NEGATIVE_UNIT_Z;
|
---|
| 697 | static const Vector3 UNIT_SCALE;
|
---|
| 698 |
|
---|
| 699 | /** Function for writing to a stream.
|
---|
| 700 | */
|
---|
| 701 | inline _OgreExport friend std::ostream& operator <<
|
---|
| 702 | ( std::ostream& o, const Vector3& v )
|
---|
| 703 | {
|
---|
| 704 | o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")";
|
---|
| 705 | return o;
|
---|
| 706 | }
|
---|
| 707 | };
|
---|
| 708 |
|
---|
| 709 | }
|
---|
| 710 | #endif
|
---|