1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #ifndef __Vector3_H__
|
---|
26 | #define __Vector3_H__
|
---|
27 |
|
---|
28 | #include "OgrePrerequisites.h"
|
---|
29 | #include "OgreMath.h"
|
---|
30 | #include "OgreQuaternion.h"
|
---|
31 |
|
---|
32 | namespace Ogre
|
---|
33 | {
|
---|
34 |
|
---|
35 | /** Standard 3-dimensional vector.
|
---|
36 | @remarks
|
---|
37 | A direction in 3D space represented as distances along the 3
|
---|
38 | orthoganal axes (x, y, z). Note that positions, directions and
|
---|
39 | scaling factors can be represented by a vector, depending on how
|
---|
40 | you interpret the values.
|
---|
41 | */
|
---|
42 | class _OgreExport Vector3
|
---|
43 | {
|
---|
44 | public:
|
---|
45 | union {
|
---|
46 | struct {
|
---|
47 | Real x, y, z;
|
---|
48 | };
|
---|
49 | Real val[3];
|
---|
50 | };
|
---|
51 |
|
---|
52 | public:
|
---|
53 | inline Vector3()
|
---|
54 | {
|
---|
55 | }
|
---|
56 |
|
---|
57 | inline Vector3( Real fX, Real fY, Real fZ )
|
---|
58 | : x( fX ), y( fY ), z( fZ )
|
---|
59 | {
|
---|
60 | }
|
---|
61 |
|
---|
62 | inline Vector3( Real afCoordinate[3] )
|
---|
63 | : x( afCoordinate[0] ),
|
---|
64 | y( afCoordinate[1] ),
|
---|
65 | z( afCoordinate[2] )
|
---|
66 | {
|
---|
67 | }
|
---|
68 |
|
---|
69 | inline Vector3( int afCoordinate[3] )
|
---|
70 | {
|
---|
71 | x = (Real)afCoordinate[0];
|
---|
72 | y = (Real)afCoordinate[1];
|
---|
73 | z = (Real)afCoordinate[2];
|
---|
74 | }
|
---|
75 |
|
---|
76 | inline Vector3( const Real* const r )
|
---|
77 | : x( r[0] ), y( r[1] ), z( r[2] )
|
---|
78 | {
|
---|
79 | }
|
---|
80 |
|
---|
81 | inline Vector3( const Vector3& rkVector )
|
---|
82 | : x( rkVector.x ), y( rkVector.y ), z( rkVector.z )
|
---|
83 | {
|
---|
84 | }
|
---|
85 |
|
---|
86 | inline Real operator [] ( size_t i ) const
|
---|
87 | {
|
---|
88 | assert( i < 3 );
|
---|
89 |
|
---|
90 | return *(&x+i);
|
---|
91 | }
|
---|
92 |
|
---|
93 | inline Real& operator [] ( size_t i )
|
---|
94 | {
|
---|
95 | assert( i < 3 );
|
---|
96 |
|
---|
97 | return *(&x+i);
|
---|
98 | }
|
---|
99 |
|
---|
100 | /** Assigns the value of the other vector.
|
---|
101 | @param
|
---|
102 | rkVector The other vector
|
---|
103 | */
|
---|
104 | inline Vector3& operator = ( const Vector3& rkVector )
|
---|
105 | {
|
---|
106 | x = rkVector.x;
|
---|
107 | y = rkVector.y;
|
---|
108 | z = rkVector.z;
|
---|
109 |
|
---|
110 | return *this;
|
---|
111 | }
|
---|
112 |
|
---|
113 | inline bool operator == ( const Vector3& rkVector ) const
|
---|
114 | {
|
---|
115 | return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
|
---|
116 | }
|
---|
117 |
|
---|
118 | inline bool operator != ( const Vector3& rkVector ) const
|
---|
119 | {
|
---|
120 | return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
|
---|
121 | }
|
---|
122 |
|
---|
123 | // arithmetic operations
|
---|
124 | inline Vector3 operator + ( const Vector3& rkVector ) const
|
---|
125 | {
|
---|
126 | Vector3 kSum;
|
---|
127 |
|
---|
128 | kSum.x = x + rkVector.x;
|
---|
129 | kSum.y = y + rkVector.y;
|
---|
130 | kSum.z = z + rkVector.z;
|
---|
131 |
|
---|
132 | return kSum;
|
---|
133 | }
|
---|
134 |
|
---|
135 | inline Vector3 operator - ( const Vector3& rkVector ) const
|
---|
136 | {
|
---|
137 | Vector3 kDiff;
|
---|
138 |
|
---|
139 | kDiff.x = x - rkVector.x;
|
---|
140 | kDiff.y = y - rkVector.y;
|
---|
141 | kDiff.z = z - rkVector.z;
|
---|
142 |
|
---|
143 | return kDiff;
|
---|
144 | }
|
---|
145 |
|
---|
146 | inline Vector3 operator * ( Real fScalar ) const
|
---|
147 | {
|
---|
148 | Vector3 kProd;
|
---|
149 |
|
---|
150 | kProd.x = fScalar*x;
|
---|
151 | kProd.y = fScalar*y;
|
---|
152 | kProd.z = fScalar*z;
|
---|
153 |
|
---|
154 | return kProd;
|
---|
155 | }
|
---|
156 |
|
---|
157 | inline Vector3 operator * ( const Vector3& rhs) const
|
---|
158 | {
|
---|
159 | Vector3 kProd;
|
---|
160 |
|
---|
161 | kProd.x = rhs.x * x;
|
---|
162 | kProd.y = rhs.y * y;
|
---|
163 | kProd.z = rhs.z * z;
|
---|
164 |
|
---|
165 | return kProd;
|
---|
166 | }
|
---|
167 |
|
---|
168 | inline Vector3 operator / ( Real fScalar ) const
|
---|
169 | {
|
---|
170 | assert( fScalar != 0.0 );
|
---|
171 |
|
---|
172 | Vector3 kDiv;
|
---|
173 |
|
---|
174 | Real fInv = 1.0 / fScalar;
|
---|
175 | kDiv.x = x * fInv;
|
---|
176 | kDiv.y = y * fInv;
|
---|
177 | kDiv.z = z * fInv;
|
---|
178 |
|
---|
179 | return kDiv;
|
---|
180 | }
|
---|
181 |
|
---|
182 | inline Vector3 operator / ( const Vector3& rhs) const
|
---|
183 | {
|
---|
184 | Vector3 kDiv;
|
---|
185 |
|
---|
186 | kDiv.x = x / rhs.x;
|
---|
187 | kDiv.y = y / rhs.y;
|
---|
188 | kDiv.z = z / rhs.z;
|
---|
189 |
|
---|
190 | return kDiv;
|
---|
191 | }
|
---|
192 |
|
---|
193 |
|
---|
194 | inline Vector3 operator - () const
|
---|
195 | {
|
---|
196 | Vector3 kNeg;
|
---|
197 |
|
---|
198 | kNeg.x = -x;
|
---|
199 | kNeg.y = -y;
|
---|
200 | kNeg.z = -z;
|
---|
201 |
|
---|
202 | return kNeg;
|
---|
203 | }
|
---|
204 |
|
---|
205 | inline friend Vector3 operator * ( Real fScalar, const Vector3& rkVector )
|
---|
206 | {
|
---|
207 | Vector3 kProd;
|
---|
208 |
|
---|
209 | kProd.x = fScalar * rkVector.x;
|
---|
210 | kProd.y = fScalar * rkVector.y;
|
---|
211 | kProd.z = fScalar * rkVector.z;
|
---|
212 |
|
---|
213 | return kProd;
|
---|
214 | }
|
---|
215 |
|
---|
216 | // arithmetic updates
|
---|
217 | inline Vector3& operator += ( const Vector3& rkVector )
|
---|
218 | {
|
---|
219 | x += rkVector.x;
|
---|
220 | y += rkVector.y;
|
---|
221 | z += rkVector.z;
|
---|
222 |
|
---|
223 | return *this;
|
---|
224 | }
|
---|
225 |
|
---|
226 | inline Vector3& operator -= ( const Vector3& rkVector )
|
---|
227 | {
|
---|
228 | x -= rkVector.x;
|
---|
229 | y -= rkVector.y;
|
---|
230 | z -= rkVector.z;
|
---|
231 |
|
---|
232 | return *this;
|
---|
233 | }
|
---|
234 |
|
---|
235 | inline Vector3& operator *= ( Real fScalar )
|
---|
236 | {
|
---|
237 | x *= fScalar;
|
---|
238 | y *= fScalar;
|
---|
239 | z *= fScalar;
|
---|
240 | return *this;
|
---|
241 | }
|
---|
242 |
|
---|
243 | inline Vector3& operator *= ( const Vector3& rkVector )
|
---|
244 | {
|
---|
245 | x *= rkVector.x;
|
---|
246 | y *= rkVector.y;
|
---|
247 | z *= rkVector.z;
|
---|
248 |
|
---|
249 | return *this;
|
---|
250 | }
|
---|
251 |
|
---|
252 | inline Vector3& operator /= ( Real fScalar )
|
---|
253 | {
|
---|
254 | assert( fScalar != 0.0 );
|
---|
255 |
|
---|
256 | Real fInv = 1.0 / fScalar;
|
---|
257 |
|
---|
258 | x *= fInv;
|
---|
259 | y *= fInv;
|
---|
260 | z *= fInv;
|
---|
261 |
|
---|
262 | return *this;
|
---|
263 | }
|
---|
264 |
|
---|
265 | inline Vector3& operator /= ( const Vector3& rkVector )
|
---|
266 | {
|
---|
267 | x /= rkVector.x;
|
---|
268 | y /= rkVector.y;
|
---|
269 | z /= rkVector.z;
|
---|
270 |
|
---|
271 | return *this;
|
---|
272 | }
|
---|
273 |
|
---|
274 |
|
---|
275 | /** Returns the length (magnitude) of the vector.
|
---|
276 | @warning
|
---|
277 | This operation requires a square root and is expensive in
|
---|
278 | terms of CPU operations. If you don't need to know the exact
|
---|
279 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
280 | instead.
|
---|
281 | */
|
---|
282 | inline Real length () const
|
---|
283 | {
|
---|
284 | return Math::Sqrt( x * x + y * y + z * z );
|
---|
285 | }
|
---|
286 |
|
---|
287 | /** Returns the square of the length(magnitude) of the vector.
|
---|
288 | @remarks
|
---|
289 | This method is for efficiency - calculating the actual
|
---|
290 | length of a vector requires a square root, which is expensive
|
---|
291 | in terms of the operations required. This method returns the
|
---|
292 | square of the length of the vector, i.e. the same as the
|
---|
293 | length but before the square root is taken. Use this if you
|
---|
294 | want to find the longest / shortest vector without incurring
|
---|
295 | the square root.
|
---|
296 | */
|
---|
297 | inline Real squaredLength () const
|
---|
298 | {
|
---|
299 | return x * x + y * y + z * z;
|
---|
300 | }
|
---|
301 |
|
---|
302 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
303 | @remarks
|
---|
304 | The dot product can be used to calculate the angle between 2
|
---|
305 | vectors. If both are unit vectors, the dot product is the
|
---|
306 | cosine of the angle; otherwise the dot product must be
|
---|
307 | divided by the product of the lengths of both vectors to get
|
---|
308 | the cosine of the angle. This result can further be used to
|
---|
309 | calculate the distance of a point from a plane.
|
---|
310 | @param
|
---|
311 | vec Vector with which to calculate the dot product (together
|
---|
312 | with this one).
|
---|
313 | @returns
|
---|
314 | A float representing the dot product value.
|
---|
315 | */
|
---|
316 | inline Real dotProduct(const Vector3& vec) const
|
---|
317 | {
|
---|
318 | return x * vec.x + y * vec.y + z * vec.z;
|
---|
319 | }
|
---|
320 |
|
---|
321 | /** Normalises the vector.
|
---|
322 | @remarks
|
---|
323 | This method normalises the vector such that it's
|
---|
324 | length / magnitude is 1. The result is called a unit vector.
|
---|
325 | @note
|
---|
326 | This function will not crash for zero-sized vectors, but there
|
---|
327 | will be no changes made to their components.
|
---|
328 | @returns The previous length of the vector.
|
---|
329 | */
|
---|
330 | inline Real normalise()
|
---|
331 | {
|
---|
332 | Real fLength = Math::Sqrt( x * x + y * y + z * z );
|
---|
333 |
|
---|
334 | // Will also work for zero-sized vectors, but will change nothing
|
---|
335 | if ( fLength > 1e-08 )
|
---|
336 | {
|
---|
337 | Real fInvLength = 1.0 / fLength;
|
---|
338 | x *= fInvLength;
|
---|
339 | y *= fInvLength;
|
---|
340 | z *= fInvLength;
|
---|
341 | }
|
---|
342 |
|
---|
343 | return fLength;
|
---|
344 | }
|
---|
345 |
|
---|
346 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
347 | lies perpendicular to them both.
|
---|
348 | @remarks
|
---|
349 | The cross-product is normally used to calculate the normal
|
---|
350 | vector of a plane, by calculating the cross-product of 2
|
---|
351 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
352 | of a triangle).
|
---|
353 | @param
|
---|
354 | vec Vector which, together with this one, will be used to
|
---|
355 | calculate the cross-product.
|
---|
356 | @returns
|
---|
357 | A vector which is the result of the cross-product. This
|
---|
358 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
359 | - call Vector3::normalise on the result if you wish this to
|
---|
360 | be done. As for which side the resultant vector will be on, the
|
---|
361 | returned vector will be on the side from which the arc from 'this'
|
---|
362 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
363 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
364 | @par
|
---|
365 | For a clearer explanation, look a the left and the bottom edges
|
---|
366 | of your monitor's screen. Assume that the first vector is the
|
---|
367 | left edge and the second vector is the bottom edge, both of
|
---|
368 | them starting from the lower-left corner of the screen. The
|
---|
369 | resulting vector is going to be perpendicular to both of them
|
---|
370 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
371 | (assuming you're using a CRT monitor, of course).
|
---|
372 | */
|
---|
373 | inline Vector3 crossProduct( const Vector3& rkVector ) const
|
---|
374 | {
|
---|
375 | Vector3 kCross;
|
---|
376 |
|
---|
377 | kCross.x = y * rkVector.z - z * rkVector.y;
|
---|
378 | kCross.y = z * rkVector.x - x * rkVector.z;
|
---|
379 | kCross.z = x * rkVector.y - y * rkVector.x;
|
---|
380 |
|
---|
381 | return kCross;
|
---|
382 | }
|
---|
383 |
|
---|
384 | /** Returns a vector at a point half way between this and the passed
|
---|
385 | in vector.
|
---|
386 | */
|
---|
387 | inline Vector3 midPoint( const Vector3& vec ) const
|
---|
388 | {
|
---|
389 | return Vector3(
|
---|
390 | ( x + vec.x ) * 0.5,
|
---|
391 | ( y + vec.y ) * 0.5,
|
---|
392 | ( z + vec.z ) * 0.5 );
|
---|
393 | }
|
---|
394 |
|
---|
395 | /** Returns true if the vector's scalar components are all greater
|
---|
396 | that the ones of the vector it is compared against.
|
---|
397 | */
|
---|
398 | inline bool operator < ( const Vector3& rhs ) const
|
---|
399 | {
|
---|
400 | if( x < rhs.x && y < rhs.y && z < rhs.z )
|
---|
401 | return true;
|
---|
402 | return false;
|
---|
403 | }
|
---|
404 |
|
---|
405 | /** Returns true if the vector's scalar components are all smaller
|
---|
406 | that the ones of the vector it is compared against.
|
---|
407 | */
|
---|
408 | inline bool operator > ( const Vector3& rhs ) const
|
---|
409 | {
|
---|
410 | if( x > rhs.x && y > rhs.y && z > rhs.z )
|
---|
411 | return true;
|
---|
412 | return false;
|
---|
413 | }
|
---|
414 |
|
---|
415 | /** Sets this vector's components to the minimum of its own and the
|
---|
416 | ones of the passed in vector.
|
---|
417 | @remarks
|
---|
418 | 'Minimum' in this case means the combination of the lowest
|
---|
419 | value of x, y and z from both vectors. Lowest is taken just
|
---|
420 | numerically, not magnitude, so -1 < 0.
|
---|
421 | */
|
---|
422 | inline void makeFloor( const Vector3& cmp )
|
---|
423 | {
|
---|
424 | if( cmp.x < x ) x = cmp.x;
|
---|
425 | if( cmp.y < y ) y = cmp.y;
|
---|
426 | if( cmp.z < z ) z = cmp.z;
|
---|
427 | }
|
---|
428 |
|
---|
429 | /** Sets this vector's components to the maximum of its own and the
|
---|
430 | ones of the passed in vector.
|
---|
431 | @remarks
|
---|
432 | 'Maximum' in this case means the combination of the highest
|
---|
433 | value of x, y and z from both vectors. Highest is taken just
|
---|
434 | numerically, not magnitude, so 1 > -3.
|
---|
435 | */
|
---|
436 | inline void makeCeil( const Vector3& cmp )
|
---|
437 | {
|
---|
438 | if( cmp.x > x ) x = cmp.x;
|
---|
439 | if( cmp.y > y ) y = cmp.y;
|
---|
440 | if( cmp.z > z ) z = cmp.z;
|
---|
441 | }
|
---|
442 |
|
---|
443 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
444 | @remarks
|
---|
445 | This method will return a vector which is perpendicular to this
|
---|
446 | vector. There are an infinite number of possibilities but this
|
---|
447 | method will guarantee to generate one of them. If you need more
|
---|
448 | control you should use the Quaternion class.
|
---|
449 | */
|
---|
450 | inline Vector3 perpendicular(void) const
|
---|
451 | {
|
---|
452 | static const Real fSquareZero = 1e-06 * 1e-06;
|
---|
453 |
|
---|
454 | Vector3 perp = this->crossProduct( Vector3::UNIT_X );
|
---|
455 |
|
---|
456 | // Check length
|
---|
457 | if( perp.squaredLength() < fSquareZero )
|
---|
458 | {
|
---|
459 | /* This vector is the Y axis multiplied by a scalar, so we have
|
---|
460 | to use another axis.
|
---|
461 | */
|
---|
462 | perp = this->crossProduct( Vector3::UNIT_Y );
|
---|
463 | }
|
---|
464 |
|
---|
465 | return perp;
|
---|
466 | }
|
---|
467 | /** Generates a new random vector which deviates from this vector by a
|
---|
468 | given angle in a random direction.
|
---|
469 | @remarks
|
---|
470 | This method assumes that the random number generator has already
|
---|
471 | been seeded appropriately.
|
---|
472 | @param
|
---|
473 | angle The angle at which to deviate
|
---|
474 | @param
|
---|
475 | up Any vector perpendicular to this one (which could generated
|
---|
476 | by cross-product of this vector and any other non-colinear
|
---|
477 | vector). If you choose not to provide this the function will
|
---|
478 | derive one on it's own, however if you provide one yourself the
|
---|
479 | function will be faster (this allows you to reuse up vectors if
|
---|
480 | you call this method more than once)
|
---|
481 | @returns
|
---|
482 | A random vector which deviates from this vector by angle. This
|
---|
483 | vector will not be normalised, normalise it if you wish
|
---|
484 | afterwards.
|
---|
485 | */
|
---|
486 | inline Vector3 randomDeviant(
|
---|
487 | const Radian& angle,
|
---|
488 | const Vector3& up = Vector3::ZERO ) const
|
---|
489 | {
|
---|
490 | Vector3 newUp;
|
---|
491 |
|
---|
492 | if (up == Vector3::ZERO)
|
---|
493 | {
|
---|
494 | // Generate an up vector
|
---|
495 | newUp = this->perpendicular();
|
---|
496 | }
|
---|
497 | else
|
---|
498 | {
|
---|
499 | newUp = up;
|
---|
500 | }
|
---|
501 |
|
---|
502 | // Rotate up vector by random amount around this
|
---|
503 | Quaternion q;
|
---|
504 | q.FromAngleAxis( Radian(Math::UnitRandom() * Math::TWO_PI), *this );
|
---|
505 | newUp = q * newUp;
|
---|
506 |
|
---|
507 | // Finally rotate this by given angle around randomised up
|
---|
508 | q.FromAngleAxis( angle, newUp );
|
---|
509 | return q * (*this);
|
---|
510 | }
|
---|
511 | #ifndef OGRE_FORCE_ANGLE_TYPES
|
---|
512 | inline Vector3 randomDeviant(
|
---|
513 | Real angle,
|
---|
514 | const Vector3& up = Vector3::ZERO ) const
|
---|
515 | {
|
---|
516 | return randomDeviant ( Radian(angle), up );
|
---|
517 | }
|
---|
518 | #endif//OGRE_FORCE_ANGLE_TYPES
|
---|
519 |
|
---|
520 | /** Gets the shortest arc quaternion to rotate this vector to the destination
|
---|
521 | vector.
|
---|
522 | @remarks
|
---|
523 | Don't call this if you think the dest vector can be close to the inverse
|
---|
524 | of this vector, since then ANY axis of rotation is ok.
|
---|
525 | */
|
---|
526 | Quaternion getRotationTo(const Vector3& dest) const
|
---|
527 | {
|
---|
528 | // Based on Stan Melax's article in Game Programming Gems
|
---|
529 | Quaternion q;
|
---|
530 | // Copy, since cannot modify local
|
---|
531 | Vector3 v0 = *this;
|
---|
532 | Vector3 v1 = dest;
|
---|
533 | v0.normalise();
|
---|
534 | v1.normalise();
|
---|
535 |
|
---|
536 | Vector3 c = v0.crossProduct(v1);
|
---|
537 |
|
---|
538 | Real d = v0.dotProduct(v1);
|
---|
539 | // If dot == 1, vectors are the same
|
---|
540 | if (d >= 1.0f)
|
---|
541 | {
|
---|
542 | return Quaternion::IDENTITY;
|
---|
543 | }
|
---|
544 | // NB if the crossProduct approaches zero, we get unstable because ANY axis will do
|
---|
545 | // when v0 == -v1
|
---|
546 | if (c.isZeroLength())
|
---|
547 | {
|
---|
548 | Vector3 axis = Vector3::UNIT_X.crossProduct(*this);
|
---|
549 | if (axis.isZeroLength()) // pick another if colinear
|
---|
550 | axis = Vector3::UNIT_Y.crossProduct(*this);
|
---|
551 | axis.normalise();
|
---|
552 | Quaternion ret;
|
---|
553 | ret.FromAngleAxis(Radian(Math::PI), axis);
|
---|
554 | return ret;
|
---|
555 | }
|
---|
556 | Real s = Math::Sqrt( (1+d)*2 );
|
---|
557 | assert (s != 0 && "Divide by zero!");
|
---|
558 | Real invs = 1 / s;
|
---|
559 |
|
---|
560 |
|
---|
561 | q.x = c.x * invs;
|
---|
562 | q.y = c.y * invs;
|
---|
563 | q.z = c.z * invs;
|
---|
564 | q.w = s * 0.5;
|
---|
565 | return q;
|
---|
566 | }
|
---|
567 |
|
---|
568 | /** Returns true if this vector is zero length. */
|
---|
569 | inline bool isZeroLength(void) const
|
---|
570 | {
|
---|
571 | Real sqlen = (x * x) + (y * y) + (z * z);
|
---|
572 | return (sqlen < (1e-06 * 1e-06));
|
---|
573 |
|
---|
574 | }
|
---|
575 |
|
---|
576 | /** As normalise, except that this vector is unaffected and the
|
---|
577 | normalised vector is returned as a copy. */
|
---|
578 | inline Vector3 normalisedCopy(void) const
|
---|
579 | {
|
---|
580 | Vector3 ret = *this;
|
---|
581 | ret.normalise();
|
---|
582 | return ret;
|
---|
583 | }
|
---|
584 |
|
---|
585 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
586 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
587 | */
|
---|
588 | inline Vector3 reflect(const Vector3& normal) const
|
---|
589 | {
|
---|
590 | return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
591 | }
|
---|
592 |
|
---|
593 | /** Returns whether this vector is within a positional tolerance
|
---|
594 | of another vector.
|
---|
595 | @param rhs The vector to compare with
|
---|
596 | @param tolerance The amount that each element of the vector may vary by
|
---|
597 | and still be considered equal
|
---|
598 | */
|
---|
599 | inline bool positionEquals(const Vector3& rhs, Real tolerance = 1e-03) const
|
---|
600 | {
|
---|
601 | return Math::RealEqual(x, rhs.x, tolerance) &&
|
---|
602 | Math::RealEqual(y, rhs.y, tolerance) &&
|
---|
603 | Math::RealEqual(z, rhs.z, tolerance);
|
---|
604 |
|
---|
605 | }
|
---|
606 | /** Returns whether this vector is within a directional tolerance
|
---|
607 | of another vector.
|
---|
608 | @param rhs The vector to compare with
|
---|
609 | @param tolerance The maximum angle by which the vectors may vary and
|
---|
610 | still be considered equal
|
---|
611 | */
|
---|
612 | inline bool directionEquals(const Vector3& rhs,
|
---|
613 | const Radian& tolerance) const
|
---|
614 | {
|
---|
615 | Real dot = dotProduct(rhs);
|
---|
616 | Radian angle = Math::ACos(dot);
|
---|
617 |
|
---|
618 | return Math::Abs(angle.valueRadians()) <= tolerance.valueRadians();
|
---|
619 |
|
---|
620 | }
|
---|
621 |
|
---|
622 | // special points
|
---|
623 | static const Vector3 ZERO;
|
---|
624 | static const Vector3 UNIT_X;
|
---|
625 | static const Vector3 UNIT_Y;
|
---|
626 | static const Vector3 UNIT_Z;
|
---|
627 | static const Vector3 NEGATIVE_UNIT_X;
|
---|
628 | static const Vector3 NEGATIVE_UNIT_Y;
|
---|
629 | static const Vector3 NEGATIVE_UNIT_Z;
|
---|
630 | static const Vector3 UNIT_SCALE;
|
---|
631 |
|
---|
632 | /** Function for writing to a stream.
|
---|
633 | */
|
---|
634 | inline _OgreExport friend std::ostream& operator <<
|
---|
635 | ( std::ostream& o, const Vector3& v )
|
---|
636 | {
|
---|
637 | o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")";
|
---|
638 | return o;
|
---|
639 | }
|
---|
640 | };
|
---|
641 |
|
---|
642 | }
|
---|
643 | #endif
|
---|