[692] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #include "OgreStableHeaders.h"
|
---|
| 26 |
|
---|
| 27 | #include "OgreMath.h"
|
---|
| 28 | #include "asm_math.h"
|
---|
| 29 | #include "OgreVector2.h"
|
---|
| 30 | #include "OgreVector3.h"
|
---|
| 31 | #include "OgreVector4.h"
|
---|
| 32 | #include "OgreRay.h"
|
---|
| 33 | #include "OgreSphere.h"
|
---|
| 34 | #include "OgreAxisAlignedBox.h"
|
---|
| 35 | #include "OgrePlane.h"
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | namespace Ogre
|
---|
| 39 | {
|
---|
| 40 |
|
---|
| 41 | const Real Math::POS_INFINITY = std::numeric_limits<Real>::infinity();
|
---|
| 42 | const Real Math::NEG_INFINITY = -std::numeric_limits<Real>::infinity();
|
---|
| 43 | const Real Math::PI = Real( 4.0 * atan( 1.0 ) );
|
---|
| 44 | const Real Math::TWO_PI = Real( 2.0 * PI );
|
---|
| 45 | const Real Math::HALF_PI = Real( 0.5 * PI );
|
---|
| 46 | const Real Math::fDeg2Rad = PI / Real(180.0);
|
---|
| 47 | const Real Math::fRad2Deg = Real(180.0) / PI;
|
---|
| 48 |
|
---|
| 49 | int Math::mTrigTableSize;
|
---|
| 50 | Math::AngleUnit Math::msAngleUnit;
|
---|
| 51 |
|
---|
| 52 | Real Math::mTrigTableFactor;
|
---|
| 53 | Real *Math::mSinTable = NULL;
|
---|
| 54 | Real *Math::mTanTable = NULL;
|
---|
| 55 |
|
---|
| 56 | //-----------------------------------------------------------------------
|
---|
| 57 | Math::Math( unsigned int trigTableSize )
|
---|
| 58 | {
|
---|
| 59 | msAngleUnit = AU_DEGREE;
|
---|
| 60 |
|
---|
| 61 | mTrigTableSize = trigTableSize;
|
---|
| 62 | mTrigTableFactor = mTrigTableSize / Math::TWO_PI;
|
---|
| 63 |
|
---|
| 64 | mSinTable = new Real[mTrigTableSize];
|
---|
| 65 | mTanTable = new Real[mTrigTableSize];
|
---|
| 66 |
|
---|
| 67 | buildTrigTables();
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | //-----------------------------------------------------------------------
|
---|
| 71 | Math::~Math()
|
---|
| 72 | {
|
---|
| 73 | delete [] mSinTable;
|
---|
| 74 | delete [] mTanTable;
|
---|
| 75 | }
|
---|
| 76 |
|
---|
| 77 | //-----------------------------------------------------------------------
|
---|
| 78 | void Math::buildTrigTables(void)
|
---|
| 79 | {
|
---|
| 80 | // Build trig lookup tables
|
---|
| 81 | // Could get away with building only PI sized Sin table but simpler this
|
---|
| 82 | // way. Who cares, it'll ony use an extra 8k of memory anyway and I like
|
---|
| 83 | // simplicity.
|
---|
| 84 | Real angle;
|
---|
| 85 | for (int i = 0; i < mTrigTableSize; ++i)
|
---|
| 86 | {
|
---|
| 87 | angle = Math::TWO_PI * i / mTrigTableSize;
|
---|
| 88 | mSinTable[i] = sin(angle);
|
---|
| 89 | mTanTable[i] = tan(angle);
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | //-----------------------------------------------------------------------
|
---|
| 93 | Real Math::SinTable (Real fValue)
|
---|
| 94 | {
|
---|
| 95 | // Convert range to index values, wrap if required
|
---|
| 96 | int idx;
|
---|
| 97 | if (fValue >= 0)
|
---|
| 98 | {
|
---|
| 99 | idx = int(fValue * mTrigTableFactor) % mTrigTableSize;
|
---|
| 100 | }
|
---|
| 101 | else
|
---|
| 102 | {
|
---|
| 103 | idx = mTrigTableSize - (int(-fValue * mTrigTableFactor) % mTrigTableSize) - 1;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | return mSinTable[idx];
|
---|
| 107 | }
|
---|
| 108 | //-----------------------------------------------------------------------
|
---|
| 109 | Real Math::TanTable (Real fValue)
|
---|
| 110 | {
|
---|
| 111 | // Convert range to index values, wrap if required
|
---|
| 112 | int idx = int(fValue *= mTrigTableFactor) % mTrigTableSize;
|
---|
| 113 | return mTanTable[idx];
|
---|
| 114 | }
|
---|
| 115 | //-----------------------------------------------------------------------
|
---|
| 116 | int Math::ISign (int iValue)
|
---|
| 117 | {
|
---|
| 118 | return ( iValue > 0 ? +1 : ( iValue < 0 ? -1 : 0 ) );
|
---|
| 119 | }
|
---|
| 120 | //-----------------------------------------------------------------------
|
---|
| 121 | Radian Math::ACos (Real fValue)
|
---|
| 122 | {
|
---|
| 123 | if ( -1.0 < fValue )
|
---|
| 124 | {
|
---|
| 125 | if ( fValue < 1.0 )
|
---|
| 126 | return Radian(acos(fValue));
|
---|
| 127 | else
|
---|
| 128 | return Radian(0.0);
|
---|
| 129 | }
|
---|
| 130 | else
|
---|
| 131 | {
|
---|
| 132 | return Radian(PI);
|
---|
| 133 | }
|
---|
| 134 | }
|
---|
| 135 | //-----------------------------------------------------------------------
|
---|
| 136 | Radian Math::ASin (Real fValue)
|
---|
| 137 | {
|
---|
| 138 | if ( -1.0 < fValue )
|
---|
| 139 | {
|
---|
| 140 | if ( fValue < 1.0 )
|
---|
| 141 | return Radian(asin(fValue));
|
---|
| 142 | else
|
---|
| 143 | return Radian(HALF_PI);
|
---|
| 144 | }
|
---|
| 145 | else
|
---|
| 146 | {
|
---|
| 147 | return Radian(-HALF_PI);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | //-----------------------------------------------------------------------
|
---|
| 151 | Real Math::Sign (Real fValue)
|
---|
| 152 | {
|
---|
| 153 | if ( fValue > 0.0 )
|
---|
| 154 | return 1.0;
|
---|
| 155 |
|
---|
| 156 | if ( fValue < 0.0 )
|
---|
| 157 | return -1.0;
|
---|
| 158 |
|
---|
| 159 | return 0.0;
|
---|
| 160 | }
|
---|
| 161 | //-----------------------------------------------------------------------
|
---|
| 162 | Real Math::InvSqrt(Real fValue)
|
---|
| 163 | {
|
---|
| 164 | return Real(asm_rsq(fValue));
|
---|
| 165 | }
|
---|
| 166 | //-----------------------------------------------------------------------
|
---|
| 167 | Real Math::UnitRandom ()
|
---|
| 168 | {
|
---|
| 169 | return asm_rand() / asm_rand_max();
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | //-----------------------------------------------------------------------
|
---|
| 173 | Real Math::RangeRandom (Real fLow, Real fHigh)
|
---|
| 174 | {
|
---|
| 175 | return (fHigh-fLow)*UnitRandom() + fLow;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | //-----------------------------------------------------------------------
|
---|
| 179 | Real Math::SymmetricRandom ()
|
---|
| 180 | {
|
---|
| 181 | return 2.0f * UnitRandom() - 1.0f;
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | //-----------------------------------------------------------------------
|
---|
| 185 | void Math::setAngleUnit(Math::AngleUnit unit)
|
---|
| 186 | {
|
---|
| 187 | msAngleUnit = unit;
|
---|
| 188 | }
|
---|
| 189 | //-----------------------------------------------------------------------
|
---|
| 190 | Math::AngleUnit Math::getAngleUnit(void)
|
---|
| 191 | {
|
---|
| 192 | return msAngleUnit;
|
---|
| 193 | }
|
---|
| 194 | //-----------------------------------------------------------------------
|
---|
| 195 | Real Math::AngleUnitsToRadians(Real angleunits)
|
---|
| 196 | {
|
---|
| 197 | if (msAngleUnit == AU_DEGREE)
|
---|
| 198 | return angleunits * fDeg2Rad;
|
---|
| 199 | else
|
---|
| 200 | return angleunits;
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | //-----------------------------------------------------------------------
|
---|
| 204 | Real Math::RadiansToAngleUnits(Real radians)
|
---|
| 205 | {
|
---|
| 206 | if (msAngleUnit == AU_DEGREE)
|
---|
| 207 | return radians * fRad2Deg;
|
---|
| 208 | else
|
---|
| 209 | return radians;
|
---|
| 210 | }
|
---|
| 211 |
|
---|
| 212 | //-----------------------------------------------------------------------
|
---|
| 213 | Real Math::AngleUnitsToDegrees(Real angleunits)
|
---|
| 214 | {
|
---|
| 215 | if (msAngleUnit == AU_RADIAN)
|
---|
| 216 | return angleunits * fRad2Deg;
|
---|
| 217 | else
|
---|
| 218 | return angleunits;
|
---|
| 219 | }
|
---|
| 220 |
|
---|
| 221 | //-----------------------------------------------------------------------
|
---|
| 222 | Real Math::DegreesToAngleUnits(Real degrees)
|
---|
| 223 | {
|
---|
| 224 | if (msAngleUnit == AU_RADIAN)
|
---|
| 225 | return degrees * fDeg2Rad;
|
---|
| 226 | else
|
---|
| 227 | return degrees;
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 | //-----------------------------------------------------------------------
|
---|
| 231 | bool Math::pointInTri2D(const Vector2& p, const Vector2& a,
|
---|
| 232 | const Vector2& b, const Vector2& c)
|
---|
| 233 | {
|
---|
| 234 | // Winding must be consistent from all edges for point to be inside
|
---|
| 235 | Vector2 v1, v2;
|
---|
| 236 | Real dot[3];
|
---|
| 237 | bool zeroDot[3];
|
---|
| 238 |
|
---|
| 239 | v1 = b - a;
|
---|
| 240 | v2 = p - a;
|
---|
| 241 |
|
---|
| 242 | // Note we don't care about normalisation here since sign is all we need
|
---|
| 243 | // It means we don't have to worry about magnitude of cross products either
|
---|
| 244 | dot[0] = v1.crossProduct(v2);
|
---|
| 245 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3);
|
---|
| 246 |
|
---|
| 247 |
|
---|
| 248 | v1 = c - b;
|
---|
| 249 | v2 = p - b;
|
---|
| 250 |
|
---|
| 251 | dot[1] = v1.crossProduct(v2);
|
---|
| 252 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3);
|
---|
| 253 |
|
---|
| 254 | // Compare signs (ignore colinear / coincident points)
|
---|
| 255 | if(!zeroDot[0] && !zeroDot[1]
|
---|
| 256 | && Math::Sign(dot[0]) != Math::Sign(dot[1]))
|
---|
| 257 | {
|
---|
| 258 | return false;
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 | v1 = a - c;
|
---|
| 262 | v2 = p - c;
|
---|
| 263 |
|
---|
| 264 | dot[2] = v1.crossProduct(v2);
|
---|
| 265 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3);
|
---|
| 266 | // Compare signs (ignore colinear / coincident points)
|
---|
| 267 | if((!zeroDot[0] && !zeroDot[2]
|
---|
| 268 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) ||
|
---|
| 269 | (!zeroDot[1] && !zeroDot[2]
|
---|
| 270 | && Math::Sign(dot[1]) != Math::Sign(dot[2])))
|
---|
| 271 | {
|
---|
| 272 | return false;
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 |
|
---|
| 276 | return true;
|
---|
| 277 | }
|
---|
| 278 | //-----------------------------------------------------------------------
|
---|
| 279 | bool Math::pointInTri3D(const Vector3& p, const Vector3& a,
|
---|
| 280 | const Vector3& b, const Vector3& c, const Vector3& normal)
|
---|
| 281 | {
|
---|
| 282 | // Winding must be consistent from all edges for point to be inside
|
---|
| 283 | Vector3 v1, v2;
|
---|
| 284 | Real dot[3];
|
---|
| 285 | bool zeroDot[3];
|
---|
| 286 |
|
---|
| 287 | v1 = b - a;
|
---|
| 288 | v2 = p - a;
|
---|
| 289 |
|
---|
| 290 | // Note we don't care about normalisation here since sign is all we need
|
---|
| 291 | // It means we don't have to worry about magnitude of cross products either
|
---|
| 292 | dot[0] = v1.crossProduct(v2).dotProduct(normal);
|
---|
| 293 | zeroDot[0] = Math::RealEqual(dot[0], 0.0f, 1e-3);
|
---|
| 294 |
|
---|
| 295 |
|
---|
| 296 | v1 = c - b;
|
---|
| 297 | v2 = p - b;
|
---|
| 298 |
|
---|
| 299 | dot[1] = v1.crossProduct(v2).dotProduct(normal);
|
---|
| 300 | zeroDot[1] = Math::RealEqual(dot[1], 0.0f, 1e-3);
|
---|
| 301 |
|
---|
| 302 | // Compare signs (ignore colinear / coincident points)
|
---|
| 303 | if(!zeroDot[0] && !zeroDot[1]
|
---|
| 304 | && Math::Sign(dot[0]) != Math::Sign(dot[1]))
|
---|
| 305 | {
|
---|
| 306 | return false;
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | v1 = a - c;
|
---|
| 310 | v2 = p - c;
|
---|
| 311 |
|
---|
| 312 | dot[2] = v1.crossProduct(v2).dotProduct(normal);
|
---|
| 313 | zeroDot[2] = Math::RealEqual(dot[2], 0.0f, 1e-3);
|
---|
| 314 | // Compare signs (ignore colinear / coincident points)
|
---|
| 315 | if((!zeroDot[0] && !zeroDot[2]
|
---|
| 316 | && Math::Sign(dot[0]) != Math::Sign(dot[2])) ||
|
---|
| 317 | (!zeroDot[1] && !zeroDot[2]
|
---|
| 318 | && Math::Sign(dot[1]) != Math::Sign(dot[2])))
|
---|
| 319 | {
|
---|
| 320 | return false;
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 |
|
---|
| 324 | return true;
|
---|
| 325 | }
|
---|
| 326 | //-----------------------------------------------------------------------
|
---|
| 327 | bool Math::RealEqual( Real a, Real b, Real tolerance )
|
---|
| 328 | {
|
---|
| 329 | if (fabs(b-a) <= tolerance)
|
---|
| 330 | return true;
|
---|
| 331 | else
|
---|
| 332 | return false;
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 | //-----------------------------------------------------------------------
|
---|
| 336 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Plane& plane)
|
---|
| 337 | {
|
---|
| 338 |
|
---|
| 339 | Real denom = plane.normal.dotProduct(ray.getDirection());
|
---|
| 340 | if (Math::Abs(denom) < std::numeric_limits<Real>::epsilon())
|
---|
| 341 | {
|
---|
| 342 | // Parallel
|
---|
| 343 | return std::pair<bool, Real>(false, 0);
|
---|
| 344 | }
|
---|
| 345 | else
|
---|
| 346 | {
|
---|
| 347 | Real nom = plane.normal.dotProduct(ray.getOrigin()) + plane.d;
|
---|
| 348 | Real t = -(nom/denom);
|
---|
| 349 | return std::pair<bool, Real>(t >= 0, t);
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | }
|
---|
| 353 | //-----------------------------------------------------------------------
|
---|
| 354 | std::pair<bool, Real> Math::intersects(const Ray& ray,
|
---|
| 355 | const std::vector<Plane>& planes, bool normalIsOutside)
|
---|
| 356 | {
|
---|
| 357 | std::vector<Plane>::const_iterator planeit, planeitend;
|
---|
| 358 | planeitend = planes.end();
|
---|
| 359 | bool allInside = true;
|
---|
| 360 | std::pair<bool, Real> ret;
|
---|
| 361 | ret.first = false;
|
---|
| 362 | ret.second = 0.0f;
|
---|
| 363 |
|
---|
| 364 | // derive side
|
---|
| 365 | // NB we don't pass directly since that would require Plane::Side in
|
---|
| 366 | // interface, which results in recursive includes since Math is so fundamental
|
---|
| 367 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE;
|
---|
| 368 |
|
---|
| 369 | for (planeit = planes.begin(); planeit != planeitend; ++planeit)
|
---|
| 370 | {
|
---|
| 371 | const Plane& plane = *planeit;
|
---|
| 372 | // is origin outside?
|
---|
| 373 | if (plane.getSide(ray.getOrigin()) == outside)
|
---|
| 374 | {
|
---|
| 375 | allInside = false;
|
---|
| 376 | // Test single plane
|
---|
| 377 | std::pair<bool, Real> planeRes =
|
---|
| 378 | ray.intersects(plane);
|
---|
| 379 | if (planeRes.first)
|
---|
| 380 | {
|
---|
| 381 | // Ok, we intersected
|
---|
| 382 | ret.first = true;
|
---|
| 383 | // Use the most distant result since convex volume
|
---|
| 384 | ret.second = std::max(ret.second, planeRes.second);
|
---|
| 385 | }
|
---|
| 386 | }
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | if (allInside)
|
---|
| 390 | {
|
---|
| 391 | // Intersecting at 0 distance since inside the volume!
|
---|
| 392 | ret.first = true;
|
---|
| 393 | ret.second = 0.0f;
|
---|
| 394 | }
|
---|
| 395 |
|
---|
| 396 | return ret;
|
---|
| 397 | }
|
---|
| 398 | //-----------------------------------------------------------------------
|
---|
| 399 | std::pair<bool, Real> Math::intersects(const Ray& ray,
|
---|
| 400 | const std::list<Plane>& planes, bool normalIsOutside)
|
---|
| 401 | {
|
---|
| 402 | std::list<Plane>::const_iterator planeit, planeitend;
|
---|
| 403 | planeitend = planes.end();
|
---|
| 404 | bool allInside = true;
|
---|
| 405 | std::pair<bool, Real> ret;
|
---|
| 406 | ret.first = false;
|
---|
| 407 | ret.second = 0.0f;
|
---|
| 408 |
|
---|
| 409 | // derive side
|
---|
| 410 | // NB we don't pass directly since that would require Plane::Side in
|
---|
| 411 | // interface, which results in recursive includes since Math is so fundamental
|
---|
| 412 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE;
|
---|
| 413 |
|
---|
| 414 | for (planeit = planes.begin(); planeit != planeitend; ++planeit)
|
---|
| 415 | {
|
---|
| 416 | const Plane& plane = *planeit;
|
---|
| 417 | // is origin outside?
|
---|
| 418 | if (plane.getSide(ray.getOrigin()) == outside)
|
---|
| 419 | {
|
---|
| 420 | allInside = false;
|
---|
| 421 | // Test single plane
|
---|
| 422 | std::pair<bool, Real> planeRes =
|
---|
| 423 | ray.intersects(plane);
|
---|
| 424 | if (planeRes.first)
|
---|
| 425 | {
|
---|
| 426 | // Ok, we intersected
|
---|
| 427 | ret.first = true;
|
---|
| 428 | // Use the most distant result since convex volume
|
---|
| 429 | ret.second = std::max(ret.second, planeRes.second);
|
---|
| 430 | }
|
---|
| 431 | }
|
---|
| 432 | }
|
---|
| 433 |
|
---|
| 434 | if (allInside)
|
---|
| 435 | {
|
---|
| 436 | // Intersecting at 0 distance since inside the volume!
|
---|
| 437 | ret.first = true;
|
---|
| 438 | ret.second = 0.0f;
|
---|
| 439 | }
|
---|
| 440 |
|
---|
| 441 | return ret;
|
---|
| 442 | }
|
---|
| 443 | //-----------------------------------------------------------------------
|
---|
| 444 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Sphere& sphere,
|
---|
| 445 | bool discardInside)
|
---|
| 446 | {
|
---|
| 447 | const Vector3& raydir = ray.getDirection();
|
---|
| 448 | // Adjust ray origin relative to sphere center
|
---|
| 449 | const Vector3& rayorig = ray.getOrigin() - sphere.getCenter();
|
---|
| 450 | Real radius = sphere.getRadius();
|
---|
| 451 |
|
---|
| 452 | // Check origin inside first
|
---|
| 453 | if (rayorig.squaredLength() <= radius*radius && discardInside)
|
---|
| 454 | {
|
---|
| 455 | return std::pair<bool, Real>(true, 0);
|
---|
| 456 | }
|
---|
| 457 |
|
---|
| 458 | // Mmm, quadratics
|
---|
| 459 | // Build coeffs which can be used with std quadratic solver
|
---|
| 460 | // ie t = (-b +/- sqrt(b*b + 4ac)) / 2a
|
---|
| 461 | Real a = raydir.dotProduct(raydir);
|
---|
| 462 | Real b = 2 * rayorig.dotProduct(raydir);
|
---|
| 463 | Real c = rayorig.dotProduct(rayorig) - radius*radius;
|
---|
| 464 |
|
---|
| 465 | // Calc determinant
|
---|
| 466 | Real d = (b*b) - (4 * a * c);
|
---|
| 467 | if (d < 0)
|
---|
| 468 | {
|
---|
| 469 | // No intersection
|
---|
| 470 | return std::pair<bool, Real>(false, 0);
|
---|
| 471 | }
|
---|
| 472 | else
|
---|
| 473 | {
|
---|
| 474 | // BTW, if d=0 there is one intersection, if d > 0 there are 2
|
---|
| 475 | // But we only want the closest one, so that's ok, just use the
|
---|
| 476 | // '-' version of the solver
|
---|
| 477 | Real t = ( -b - Math::Sqrt(d) ) / (2 * a);
|
---|
| 478 | if (t < 0)
|
---|
| 479 | t = ( -b + Math::Sqrt(d) ) / (2 * a);
|
---|
| 480 | return std::pair<bool, Real>(true, t);
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 |
|
---|
| 484 | }
|
---|
| 485 | //-----------------------------------------------------------------------
|
---|
| 486 | std::pair<bool, Real> Math::intersects(const Ray& ray, const AxisAlignedBox& box)
|
---|
| 487 | {
|
---|
| 488 | if (box.isNull()) return std::pair<bool, Real>(false, 0);
|
---|
| 489 |
|
---|
| 490 | Real lowt = 0.0f;
|
---|
| 491 | Real t;
|
---|
| 492 | bool hit = false;
|
---|
| 493 | Vector3 hitpoint;
|
---|
| 494 | const Vector3& min = box.getMinimum();
|
---|
| 495 | const Vector3& max = box.getMaximum();
|
---|
| 496 | const Vector3& rayorig = ray.getOrigin();
|
---|
| 497 | const Vector3& raydir = ray.getDirection();
|
---|
| 498 |
|
---|
| 499 | // Check origin inside first
|
---|
| 500 | if ( rayorig > min && rayorig < max )
|
---|
| 501 | {
|
---|
| 502 | return std::pair<bool, Real>(true, 0);
|
---|
| 503 | }
|
---|
| 504 |
|
---|
| 505 | // Check each face in turn, only check closest 3
|
---|
| 506 | // Min x
|
---|
| 507 | if (rayorig.x < min.x && raydir.x > 0)
|
---|
| 508 | {
|
---|
| 509 | t = (min.x - rayorig.x) / raydir.x;
|
---|
| 510 | if (t > 0)
|
---|
| 511 | {
|
---|
| 512 | // Substitute t back into ray and check bounds and dist
|
---|
| 513 | hitpoint = rayorig + raydir * t;
|
---|
| 514 | if (hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 515 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 516 | (!hit || t < lowt))
|
---|
| 517 | {
|
---|
| 518 | hit = true;
|
---|
| 519 | lowt = t;
|
---|
| 520 | }
|
---|
| 521 | }
|
---|
| 522 | }
|
---|
| 523 | // Max x
|
---|
| 524 | if (rayorig.x > max.x && raydir.x < 0)
|
---|
| 525 | {
|
---|
| 526 | t = (max.x - rayorig.x) / raydir.x;
|
---|
| 527 | if (t > 0)
|
---|
| 528 | {
|
---|
| 529 | // Substitute t back into ray and check bounds and dist
|
---|
| 530 | hitpoint = rayorig + raydir * t;
|
---|
| 531 | if (hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 532 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 533 | (!hit || t < lowt))
|
---|
| 534 | {
|
---|
| 535 | hit = true;
|
---|
| 536 | lowt = t;
|
---|
| 537 | }
|
---|
| 538 | }
|
---|
| 539 | }
|
---|
| 540 | // Min y
|
---|
| 541 | if (rayorig.y < min.y && raydir.y > 0)
|
---|
| 542 | {
|
---|
| 543 | t = (min.y - rayorig.y) / raydir.y;
|
---|
| 544 | if (t > 0)
|
---|
| 545 | {
|
---|
| 546 | // Substitute t back into ray and check bounds and dist
|
---|
| 547 | hitpoint = rayorig + raydir * t;
|
---|
| 548 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 549 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 550 | (!hit || t < lowt))
|
---|
| 551 | {
|
---|
| 552 | hit = true;
|
---|
| 553 | lowt = t;
|
---|
| 554 | }
|
---|
| 555 | }
|
---|
| 556 | }
|
---|
| 557 | // Max y
|
---|
| 558 | if (rayorig.y > max.y && raydir.y < 0)
|
---|
| 559 | {
|
---|
| 560 | t = (max.y - rayorig.y) / raydir.y;
|
---|
| 561 | if (t > 0)
|
---|
| 562 | {
|
---|
| 563 | // Substitute t back into ray and check bounds and dist
|
---|
| 564 | hitpoint = rayorig + raydir * t;
|
---|
| 565 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 566 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 567 | (!hit || t < lowt))
|
---|
| 568 | {
|
---|
| 569 | hit = true;
|
---|
| 570 | lowt = t;
|
---|
| 571 | }
|
---|
| 572 | }
|
---|
| 573 | }
|
---|
| 574 | // Min z
|
---|
| 575 | if (rayorig.z < min.z && raydir.z > 0)
|
---|
| 576 | {
|
---|
| 577 | t = (min.z - rayorig.z) / raydir.z;
|
---|
| 578 | if (t > 0)
|
---|
| 579 | {
|
---|
| 580 | // Substitute t back into ray and check bounds and dist
|
---|
| 581 | hitpoint = rayorig + raydir * t;
|
---|
| 582 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 583 | hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 584 | (!hit || t < lowt))
|
---|
| 585 | {
|
---|
| 586 | hit = true;
|
---|
| 587 | lowt = t;
|
---|
| 588 | }
|
---|
| 589 | }
|
---|
| 590 | }
|
---|
| 591 | // Max z
|
---|
| 592 | if (rayorig.z > max.z && raydir.z < 0)
|
---|
| 593 | {
|
---|
| 594 | t = (max.z - rayorig.z) / raydir.z;
|
---|
| 595 | if (t > 0)
|
---|
| 596 | {
|
---|
| 597 | // Substitute t back into ray and check bounds and dist
|
---|
| 598 | hitpoint = rayorig + raydir * t;
|
---|
| 599 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 600 | hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 601 | (!hit || t < lowt))
|
---|
| 602 | {
|
---|
| 603 | hit = true;
|
---|
| 604 | lowt = t;
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | }
|
---|
| 608 |
|
---|
| 609 | return std::pair<bool, Real>(hit, lowt);
|
---|
| 610 |
|
---|
| 611 | }
|
---|
| 612 | //-----------------------------------------------------------------------
|
---|
| 613 | bool Math::intersects(const Ray& ray, const AxisAlignedBox& box,
|
---|
| 614 | Real* d1, Real* d2)
|
---|
| 615 | {
|
---|
| 616 | if (box.isNull())
|
---|
| 617 | return false;
|
---|
| 618 |
|
---|
| 619 | const Vector3& min = box.getMinimum();
|
---|
| 620 | const Vector3& max = box.getMaximum();
|
---|
| 621 | const Vector3& rayorig = ray.getOrigin();
|
---|
| 622 | const Vector3& raydir = ray.getDirection();
|
---|
| 623 |
|
---|
| 624 | Vector3 absDir;
|
---|
| 625 | absDir[0] = Math::Abs(raydir[0]);
|
---|
| 626 | absDir[1] = Math::Abs(raydir[1]);
|
---|
| 627 | absDir[2] = Math::Abs(raydir[2]);
|
---|
| 628 |
|
---|
| 629 | // Sort the axis, ensure check minimise floating error axis first
|
---|
| 630 | int imax = 0, imid = 1, imin = 2;
|
---|
| 631 | if (absDir[0] < absDir[2])
|
---|
| 632 | {
|
---|
| 633 | imax = 2;
|
---|
| 634 | imin = 0;
|
---|
| 635 | }
|
---|
| 636 | if (absDir[1] < absDir[imin])
|
---|
| 637 | {
|
---|
| 638 | imid = imin;
|
---|
| 639 | imin = 1;
|
---|
| 640 | }
|
---|
| 641 | else if (absDir[1] > absDir[imax])
|
---|
| 642 | {
|
---|
| 643 | imid = imax;
|
---|
| 644 | imax = 1;
|
---|
| 645 | }
|
---|
| 646 |
|
---|
| 647 | Real start = 0, end = Math::POS_INFINITY;
|
---|
| 648 |
|
---|
| 649 | #define _CALC_AXIS(i) \
|
---|
| 650 | do { \
|
---|
| 651 | Real denom = 1 / raydir[i]; \
|
---|
| 652 | Real newstart = (min[i] - rayorig[i]) * denom; \
|
---|
| 653 | Real newend = (max[i] - rayorig[i]) * denom; \
|
---|
| 654 | if (newstart > newend) std::swap(newstart, newend); \
|
---|
| 655 | if (newstart > end || newend < start) return false; \
|
---|
| 656 | if (newstart > start) start = newstart; \
|
---|
| 657 | if (newend < end) end = newend; \
|
---|
| 658 | } while(0)
|
---|
| 659 |
|
---|
| 660 | // Check each axis in turn
|
---|
| 661 |
|
---|
| 662 | _CALC_AXIS(imax);
|
---|
| 663 |
|
---|
| 664 | if (absDir[imid] < std::numeric_limits<Real>::epsilon())
|
---|
| 665 | {
|
---|
| 666 | // Parallel with middle and minimise axis, check bounds only
|
---|
| 667 | if (rayorig[imid] < min[imid] || rayorig[imid] > max[imid] ||
|
---|
| 668 | rayorig[imin] < min[imin] || rayorig[imin] > max[imin])
|
---|
| 669 | return false;
|
---|
| 670 | }
|
---|
| 671 | else
|
---|
| 672 | {
|
---|
| 673 | _CALC_AXIS(imid);
|
---|
| 674 |
|
---|
| 675 | if (absDir[imin] < std::numeric_limits<Real>::epsilon())
|
---|
| 676 | {
|
---|
| 677 | // Parallel with minimise axis, check bounds only
|
---|
| 678 | if (rayorig[imin] < min[imin] || rayorig[imin] > max[imin])
|
---|
| 679 | return false;
|
---|
| 680 | }
|
---|
| 681 | else
|
---|
| 682 | {
|
---|
| 683 | _CALC_AXIS(imin);
|
---|
| 684 | }
|
---|
| 685 | }
|
---|
| 686 | #undef _CALC_AXIS
|
---|
| 687 |
|
---|
| 688 | if (d1) *d1 = start;
|
---|
| 689 | if (d2) *d2 = end;
|
---|
| 690 |
|
---|
| 691 | return true;
|
---|
| 692 | }
|
---|
| 693 | //-----------------------------------------------------------------------
|
---|
| 694 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Vector3& a,
|
---|
| 695 | const Vector3& b, const Vector3& c, const Vector3& normal,
|
---|
| 696 | bool positiveSide, bool negativeSide)
|
---|
| 697 | {
|
---|
| 698 | //
|
---|
| 699 | // Calculate intersection with plane.
|
---|
| 700 | //
|
---|
| 701 | Real t;
|
---|
| 702 | {
|
---|
| 703 | Real denom = normal.dotProduct(ray.getDirection());
|
---|
| 704 |
|
---|
| 705 | // Check intersect side
|
---|
| 706 | if (denom > + std::numeric_limits<Real>::epsilon())
|
---|
| 707 | {
|
---|
| 708 | if (!negativeSide)
|
---|
| 709 | return std::pair<bool, Real>(false, 0);
|
---|
| 710 | }
|
---|
| 711 | else if (denom < - std::numeric_limits<Real>::epsilon())
|
---|
| 712 | {
|
---|
| 713 | if (!positiveSide)
|
---|
| 714 | return std::pair<bool, Real>(false, 0);
|
---|
| 715 | }
|
---|
| 716 | else
|
---|
| 717 | {
|
---|
| 718 | // Parallel or triangle area is close to zero when
|
---|
| 719 | // the plane normal not normalised.
|
---|
| 720 | return std::pair<bool, Real>(false, 0);
|
---|
| 721 | }
|
---|
| 722 |
|
---|
| 723 | t = normal.dotProduct(a - ray.getOrigin()) / denom;
|
---|
| 724 |
|
---|
| 725 | if (t < 0)
|
---|
| 726 | {
|
---|
| 727 | // Intersection is behind origin
|
---|
| 728 | return std::pair<bool, Real>(false, 0);
|
---|
| 729 | }
|
---|
| 730 | }
|
---|
| 731 |
|
---|
| 732 | //
|
---|
| 733 | // Calculate the largest area projection plane in X, Y or Z.
|
---|
| 734 | //
|
---|
| 735 | size_t i0, i1;
|
---|
| 736 | {
|
---|
| 737 | Real n0 = Math::Abs(normal[0]);
|
---|
| 738 | Real n1 = Math::Abs(normal[1]);
|
---|
| 739 | Real n2 = Math::Abs(normal[2]);
|
---|
| 740 |
|
---|
| 741 | i0 = 1; i1 = 2;
|
---|
| 742 | if (n1 > n2)
|
---|
| 743 | {
|
---|
| 744 | if (n1 > n0) i0 = 0;
|
---|
| 745 | }
|
---|
| 746 | else
|
---|
| 747 | {
|
---|
| 748 | if (n2 > n0) i1 = 0;
|
---|
| 749 | }
|
---|
| 750 | }
|
---|
| 751 |
|
---|
| 752 | //
|
---|
| 753 | // Check the intersection point is inside the triangle.
|
---|
| 754 | //
|
---|
| 755 | {
|
---|
| 756 | Real u1 = b[i0] - a[i0];
|
---|
| 757 | Real v1 = b[i1] - a[i1];
|
---|
| 758 | Real u2 = c[i0] - a[i0];
|
---|
| 759 | Real v2 = c[i1] - a[i1];
|
---|
| 760 | Real u0 = t * ray.getDirection()[i0] + ray.getOrigin()[i0] - a[i0];
|
---|
| 761 | Real v0 = t * ray.getDirection()[i1] + ray.getOrigin()[i1] - a[i1];
|
---|
| 762 |
|
---|
| 763 | Real alpha = u0 * v2 - u2 * v0;
|
---|
| 764 | Real beta = u1 * v0 - u0 * v1;
|
---|
| 765 | Real area = u1 * v2 - u2 * v1;
|
---|
| 766 |
|
---|
| 767 | // epsilon to avoid float precision error
|
---|
| 768 | const Real EPSILON = 1e-3f;
|
---|
| 769 |
|
---|
| 770 | Real tolerance = - EPSILON * area;
|
---|
| 771 |
|
---|
| 772 | if (area > 0)
|
---|
| 773 | {
|
---|
| 774 | if (alpha < tolerance || beta < tolerance || alpha+beta > area-tolerance)
|
---|
| 775 | return std::pair<bool, Real>(false, 0);
|
---|
| 776 | }
|
---|
| 777 | else
|
---|
| 778 | {
|
---|
| 779 | if (alpha > tolerance || beta > tolerance || alpha+beta < area-tolerance)
|
---|
| 780 | return std::pair<bool, Real>(false, 0);
|
---|
| 781 | }
|
---|
| 782 | }
|
---|
| 783 |
|
---|
| 784 | return std::pair<bool, Real>(true, t);
|
---|
| 785 | }
|
---|
| 786 | //-----------------------------------------------------------------------
|
---|
| 787 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Vector3& a,
|
---|
| 788 | const Vector3& b, const Vector3& c,
|
---|
| 789 | bool positiveSide, bool negativeSide)
|
---|
| 790 | {
|
---|
| 791 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(a, b, c);
|
---|
| 792 | return intersects(ray, a, b, c, normal, positiveSide, negativeSide);
|
---|
| 793 | }
|
---|
| 794 | //-----------------------------------------------------------------------
|
---|
| 795 | bool Math::intersects(const Sphere& sphere, const AxisAlignedBox& box)
|
---|
| 796 | {
|
---|
| 797 | if (box.isNull()) return false;
|
---|
| 798 |
|
---|
| 799 | // Use splitting planes
|
---|
| 800 | const Vector3& center = sphere.getCenter();
|
---|
| 801 | Real radius = sphere.getRadius();
|
---|
| 802 | const Vector3& min = box.getMinimum();
|
---|
| 803 | const Vector3& max = box.getMaximum();
|
---|
| 804 |
|
---|
| 805 | // just test facing planes, early fail if sphere is totally outside
|
---|
| 806 | if (center.x < min.x &&
|
---|
| 807 | min.x - center.x > radius)
|
---|
| 808 | {
|
---|
| 809 | return false;
|
---|
| 810 | }
|
---|
| 811 | if (center.x > max.x &&
|
---|
| 812 | center.x - max.x > radius)
|
---|
| 813 | {
|
---|
| 814 | return false;
|
---|
| 815 | }
|
---|
| 816 |
|
---|
| 817 | if (center.y < min.y &&
|
---|
| 818 | min.y - center.y > radius)
|
---|
| 819 | {
|
---|
| 820 | return false;
|
---|
| 821 | }
|
---|
| 822 | if (center.y > max.y &&
|
---|
| 823 | center.y - max.y > radius)
|
---|
| 824 | {
|
---|
| 825 | return false;
|
---|
| 826 | }
|
---|
| 827 |
|
---|
| 828 | if (center.z < min.z &&
|
---|
| 829 | min.z - center.z > radius)
|
---|
| 830 | {
|
---|
| 831 | return false;
|
---|
| 832 | }
|
---|
| 833 | if (center.z > max.z &&
|
---|
| 834 | center.z - max.z > radius)
|
---|
| 835 | {
|
---|
| 836 | return false;
|
---|
| 837 | }
|
---|
| 838 |
|
---|
| 839 | // Must intersect
|
---|
| 840 | return true;
|
---|
| 841 |
|
---|
| 842 | }
|
---|
| 843 | //-----------------------------------------------------------------------
|
---|
| 844 | bool Math::intersects(const Plane& plane, const AxisAlignedBox& box)
|
---|
| 845 | {
|
---|
| 846 | if (box.isNull()) return false;
|
---|
| 847 |
|
---|
| 848 | // Get corners of the box
|
---|
| 849 | const Vector3* pCorners = box.getAllCorners();
|
---|
| 850 |
|
---|
| 851 |
|
---|
| 852 | // Test which side of the plane the corners are
|
---|
| 853 | // Intersection occurs when at least one corner is on the
|
---|
| 854 | // opposite side to another
|
---|
| 855 | Plane::Side lastSide = plane.getSide(pCorners[0]);
|
---|
| 856 | for (int corner = 1; corner < 8; ++corner)
|
---|
| 857 | {
|
---|
| 858 | if (plane.getSide(pCorners[corner]) != lastSide)
|
---|
| 859 | {
|
---|
| 860 | return true;
|
---|
| 861 | }
|
---|
| 862 | }
|
---|
| 863 |
|
---|
| 864 | return false;
|
---|
| 865 | }
|
---|
| 866 | //-----------------------------------------------------------------------
|
---|
| 867 | bool Math::intersects(const Sphere& sphere, const Plane& plane)
|
---|
| 868 | {
|
---|
| 869 | return (
|
---|
| 870 | Math::Abs(plane.normal.dotProduct(sphere.getCenter()))
|
---|
| 871 | <= sphere.getRadius() );
|
---|
| 872 | }
|
---|
| 873 | //-----------------------------------------------------------------------
|
---|
| 874 | Vector3 Math::calculateTangentSpaceVector(
|
---|
| 875 | const Vector3& position1, const Vector3& position2, const Vector3& position3,
|
---|
| 876 | Real u1, Real v1, Real u2, Real v2, Real u3, Real v3)
|
---|
| 877 | {
|
---|
| 878 | //side0 is the vector along one side of the triangle of vertices passed in,
|
---|
| 879 | //and side1 is the vector along another side. Taking the cross product of these returns the normal.
|
---|
| 880 | Vector3 side0 = position1 - position2;
|
---|
| 881 | Vector3 side1 = position3 - position1;
|
---|
| 882 | //Calculate face normal
|
---|
| 883 | Vector3 normal = side1.crossProduct(side0);
|
---|
| 884 | normal.normalise();
|
---|
| 885 | //Now we use a formula to calculate the tangent.
|
---|
| 886 | Real deltaV0 = v1 - v2;
|
---|
| 887 | Real deltaV1 = v3 - v1;
|
---|
| 888 | Vector3 tangent = deltaV1 * side0 - deltaV0 * side1;
|
---|
| 889 | tangent.normalise();
|
---|
| 890 | //Calculate binormal
|
---|
| 891 | Real deltaU0 = u1 - u2;
|
---|
| 892 | Real deltaU1 = u3 - u1;
|
---|
| 893 | Vector3 binormal = deltaU1 * side0 - deltaU0 * side1;
|
---|
| 894 | binormal.normalise();
|
---|
| 895 | //Now, we take the cross product of the tangents to get a vector which
|
---|
| 896 | //should point in the same direction as our normal calculated above.
|
---|
| 897 | //If it points in the opposite direction (the dot product between the normals is less than zero),
|
---|
| 898 | //then we need to reverse the s and t tangents.
|
---|
| 899 | //This is because the triangle has been mirrored when going from tangent space to object space.
|
---|
| 900 | //reverse tangents if necessary
|
---|
| 901 | Vector3 tangentCross = tangent.crossProduct(binormal);
|
---|
| 902 | if (tangentCross.dotProduct(normal) < 0.0f)
|
---|
| 903 | {
|
---|
| 904 | tangent = -tangent;
|
---|
| 905 | binormal = -binormal;
|
---|
| 906 | }
|
---|
| 907 |
|
---|
| 908 | return tangent;
|
---|
| 909 |
|
---|
| 910 | }
|
---|
| 911 | //-----------------------------------------------------------------------
|
---|
| 912 | Matrix4 Math::buildReflectionMatrix(const Plane& p)
|
---|
| 913 | {
|
---|
| 914 | return Matrix4(
|
---|
| 915 | -2 * p.normal.x * p.normal.x + 1, -2 * p.normal.x * p.normal.y, -2 * p.normal.x * p.normal.z, -2 * p.normal.x * p.d,
|
---|
| 916 | -2 * p.normal.y * p.normal.x, -2 * p.normal.y * p.normal.y + 1, -2 * p.normal.y * p.normal.z, -2 * p.normal.y * p.d,
|
---|
| 917 | -2 * p.normal.z * p.normal.x, -2 * p.normal.z * p.normal.y, -2 * p.normal.z * p.normal.z + 1, -2 * p.normal.z * p.d,
|
---|
| 918 | 0, 0, 0, 1);
|
---|
| 919 | }
|
---|
| 920 | //-----------------------------------------------------------------------
|
---|
| 921 | Vector4 Math::calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 922 | {
|
---|
| 923 | Vector3 normal = calculateBasicFaceNormal(v1, v2, v3);
|
---|
| 924 | // Now set up the w (distance of tri from origin
|
---|
| 925 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1)));
|
---|
| 926 | }
|
---|
| 927 | //-----------------------------------------------------------------------
|
---|
| 928 | Vector3 Math::calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 929 | {
|
---|
| 930 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1);
|
---|
| 931 | normal.normalise();
|
---|
| 932 | return normal;
|
---|
| 933 | }
|
---|
| 934 | //-----------------------------------------------------------------------
|
---|
| 935 | Vector4 Math::calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 936 | {
|
---|
| 937 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(v1, v2, v3);
|
---|
| 938 | // Now set up the w (distance of tri from origin)
|
---|
| 939 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1)));
|
---|
| 940 | }
|
---|
| 941 | //-----------------------------------------------------------------------
|
---|
| 942 | Vector3 Math::calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 943 | {
|
---|
| 944 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1);
|
---|
| 945 | return normal;
|
---|
| 946 | }
|
---|
| 947 | }
|
---|