[657] | 1 | /*
|
---|
| 2 | -----------------------------------------------------------------------------
|
---|
| 3 | This source file is part of OGRE
|
---|
| 4 | (Object-oriented Graphics Rendering Engine)
|
---|
| 5 | For the latest info, see http://www.ogre3d.org/
|
---|
| 6 |
|
---|
| 7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
| 8 | Also see acknowledgements in Readme.html
|
---|
| 9 |
|
---|
| 10 | This program is free software; you can redistribute it and/or modify it under
|
---|
| 11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
| 12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
| 13 | version.
|
---|
| 14 |
|
---|
| 15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
| 16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
| 17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
| 18 |
|
---|
| 19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
| 20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
| 21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
| 22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
| 23 | -----------------------------------------------------------------------------
|
---|
| 24 | */
|
---|
| 25 | #include "OgreStableHeaders.h"
|
---|
| 26 |
|
---|
| 27 | #include "OgreMath.h"
|
---|
| 28 | #include "asm_math.h"
|
---|
| 29 | #include "OgreVector3.h"
|
---|
| 30 | #include "OgreVector4.h"
|
---|
| 31 | #include "OgreRay.h"
|
---|
| 32 | #include "OgreSphere.h"
|
---|
| 33 | #include "OgreAxisAlignedBox.h"
|
---|
| 34 | #include "OgrePlane.h"
|
---|
| 35 |
|
---|
| 36 |
|
---|
| 37 | namespace Ogre
|
---|
| 38 | {
|
---|
| 39 |
|
---|
| 40 | const Real Math::POS_INFINITY = std::numeric_limits<Real>::infinity();
|
---|
| 41 | const Real Math::NEG_INFINITY = -std::numeric_limits<Real>::infinity();
|
---|
| 42 | const Real Math::PI = Real( 4.0 * atan( 1.0 ) );
|
---|
| 43 | const Real Math::TWO_PI = Real( 2.0 * PI );
|
---|
| 44 | const Real Math::HALF_PI = Real( 0.5 * PI );
|
---|
| 45 | const Real Math::fDeg2Rad = PI / Real(180.0);
|
---|
| 46 | const Real Math::fRad2Deg = Real(180.0) / PI;
|
---|
| 47 |
|
---|
| 48 | int Math::mTrigTableSize;
|
---|
| 49 | Math::AngleUnit Math::msAngleUnit;
|
---|
| 50 |
|
---|
| 51 | Real Math::mTrigTableFactor;
|
---|
| 52 | Real *Math::mSinTable = NULL;
|
---|
| 53 | Real *Math::mTanTable = NULL;
|
---|
| 54 |
|
---|
| 55 | //-----------------------------------------------------------------------
|
---|
| 56 | Math::Math( unsigned int trigTableSize )
|
---|
| 57 | {
|
---|
| 58 | msAngleUnit = AU_DEGREE;
|
---|
| 59 |
|
---|
| 60 | mTrigTableSize = trigTableSize;
|
---|
| 61 | mTrigTableFactor = mTrigTableSize / Math::TWO_PI;
|
---|
| 62 |
|
---|
| 63 | mSinTable = new Real[mTrigTableSize];
|
---|
| 64 | mTanTable = new Real[mTrigTableSize];
|
---|
| 65 |
|
---|
| 66 | buildTrigTables();
|
---|
| 67 | }
|
---|
| 68 |
|
---|
| 69 | //-----------------------------------------------------------------------
|
---|
| 70 | Math::~Math()
|
---|
| 71 | {
|
---|
| 72 | delete [] mSinTable;
|
---|
| 73 | delete [] mTanTable;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | //-----------------------------------------------------------------------
|
---|
| 77 | void Math::buildTrigTables(void)
|
---|
| 78 | {
|
---|
| 79 | // Build trig lookup tables
|
---|
| 80 | // Could get away with building only PI sized Sin table but simpler this
|
---|
| 81 | // way. Who cares, it'll ony use an extra 8k of memory anyway and I like
|
---|
| 82 | // simplicity.
|
---|
| 83 | Real angle;
|
---|
| 84 | for (int i = 0; i < mTrigTableSize; ++i)
|
---|
| 85 | {
|
---|
| 86 | angle = Math::TWO_PI * i / mTrigTableSize;
|
---|
| 87 | mSinTable[i] = sin(angle);
|
---|
| 88 | mTanTable[i] = tan(angle);
|
---|
| 89 | }
|
---|
| 90 | }
|
---|
| 91 | //-----------------------------------------------------------------------
|
---|
| 92 | Real Math::SinTable (Real fValue)
|
---|
| 93 | {
|
---|
| 94 | // Convert range to index values, wrap if required
|
---|
| 95 | int idx;
|
---|
| 96 | if (fValue >= 0)
|
---|
| 97 | {
|
---|
| 98 | idx = int(fValue * mTrigTableFactor) % mTrigTableSize;
|
---|
| 99 | }
|
---|
| 100 | else
|
---|
| 101 | {
|
---|
| 102 | idx = mTrigTableSize - (int(-fValue * mTrigTableFactor) % mTrigTableSize) - 1;
|
---|
| 103 | }
|
---|
| 104 |
|
---|
| 105 | return mSinTable[idx];
|
---|
| 106 | }
|
---|
| 107 | //-----------------------------------------------------------------------
|
---|
| 108 | Real Math::TanTable (Real fValue)
|
---|
| 109 | {
|
---|
| 110 | // Convert range to index values, wrap if required
|
---|
| 111 | int idx = int(fValue *= mTrigTableFactor) % mTrigTableSize;
|
---|
| 112 | return mTanTable[idx];
|
---|
| 113 | }
|
---|
| 114 | //-----------------------------------------------------------------------
|
---|
| 115 | int Math::ISign (int iValue)
|
---|
| 116 | {
|
---|
| 117 | return ( iValue > 0 ? +1 : ( iValue < 0 ? -1 : 0 ) );
|
---|
| 118 | }
|
---|
| 119 | //-----------------------------------------------------------------------
|
---|
| 120 | Radian Math::ACos (Real fValue)
|
---|
| 121 | {
|
---|
| 122 | if ( -1.0 < fValue )
|
---|
| 123 | {
|
---|
| 124 | if ( fValue < 1.0 )
|
---|
| 125 | return Radian(acos(fValue));
|
---|
| 126 | else
|
---|
| 127 | return Radian(0.0);
|
---|
| 128 | }
|
---|
| 129 | else
|
---|
| 130 | {
|
---|
| 131 | return Radian(PI);
|
---|
| 132 | }
|
---|
| 133 | }
|
---|
| 134 | //-----------------------------------------------------------------------
|
---|
| 135 | Radian Math::ASin (Real fValue)
|
---|
| 136 | {
|
---|
| 137 | if ( -1.0 < fValue )
|
---|
| 138 | {
|
---|
| 139 | if ( fValue < 1.0 )
|
---|
| 140 | return Radian(asin(fValue));
|
---|
| 141 | else
|
---|
| 142 | return Radian(HALF_PI);
|
---|
| 143 | }
|
---|
| 144 | else
|
---|
| 145 | {
|
---|
| 146 | return Radian(-HALF_PI);
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 | //-----------------------------------------------------------------------
|
---|
| 150 | Real Math::Sign (Real fValue)
|
---|
| 151 | {
|
---|
| 152 | if ( fValue > 0.0 )
|
---|
| 153 | return 1.0;
|
---|
| 154 |
|
---|
| 155 | if ( fValue < 0.0 )
|
---|
| 156 | return -1.0;
|
---|
| 157 |
|
---|
| 158 | return 0.0;
|
---|
| 159 | }
|
---|
| 160 | //-----------------------------------------------------------------------
|
---|
| 161 | Real Math::InvSqrt(Real fValue)
|
---|
| 162 | {
|
---|
| 163 | return Real(asm_rsq(fValue));
|
---|
| 164 | }
|
---|
| 165 | //-----------------------------------------------------------------------
|
---|
| 166 | Real Math::UnitRandom ()
|
---|
| 167 | {
|
---|
| 168 | return asm_rand() / asm_rand_max();
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | //-----------------------------------------------------------------------
|
---|
| 172 | Real Math::RangeRandom (Real fLow, Real fHigh)
|
---|
| 173 | {
|
---|
| 174 | return (fHigh-fLow)*UnitRandom() + fLow;
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | //-----------------------------------------------------------------------
|
---|
| 178 | Real Math::SymmetricRandom ()
|
---|
| 179 | {
|
---|
| 180 | return 2.0f * UnitRandom() - 1.0f;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | //-----------------------------------------------------------------------
|
---|
| 184 | void Math::setAngleUnit(Math::AngleUnit unit)
|
---|
| 185 | {
|
---|
| 186 | msAngleUnit = unit;
|
---|
| 187 | }
|
---|
| 188 | //-----------------------------------------------------------------------
|
---|
| 189 | Math::AngleUnit Math::getAngleUnit(void)
|
---|
| 190 | {
|
---|
| 191 | return msAngleUnit;
|
---|
| 192 | }
|
---|
| 193 | //-----------------------------------------------------------------------
|
---|
| 194 | Real Math::AngleUnitsToRadians(Real angleunits)
|
---|
| 195 | {
|
---|
| 196 | if (msAngleUnit == AU_DEGREE)
|
---|
| 197 | return angleunits * fDeg2Rad;
|
---|
| 198 | else
|
---|
| 199 | return angleunits;
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | //-----------------------------------------------------------------------
|
---|
| 203 | Real Math::RadiansToAngleUnits(Real radians)
|
---|
| 204 | {
|
---|
| 205 | if (msAngleUnit == AU_DEGREE)
|
---|
| 206 | return radians * fRad2Deg;
|
---|
| 207 | else
|
---|
| 208 | return radians;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | //-----------------------------------------------------------------------
|
---|
| 212 | Real Math::AngleUnitsToDegrees(Real angleunits)
|
---|
| 213 | {
|
---|
| 214 | if (msAngleUnit == AU_RADIAN)
|
---|
| 215 | return angleunits * fRad2Deg;
|
---|
| 216 | else
|
---|
| 217 | return angleunits;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | //-----------------------------------------------------------------------
|
---|
| 221 | Real Math::DegreesToAngleUnits(Real degrees)
|
---|
| 222 | {
|
---|
| 223 | if (msAngleUnit == AU_RADIAN)
|
---|
| 224 | return degrees * fDeg2Rad;
|
---|
| 225 | else
|
---|
| 226 | return degrees;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | //-----------------------------------------------------------------------
|
---|
| 230 | bool Math::pointInTri2D( Real px, Real py, Real ax, Real ay, Real bx, Real by, Real cx, Real cy )
|
---|
| 231 | {
|
---|
| 232 | Real v1x, v2x, v1y, v2y;
|
---|
| 233 | bool bClockwise;
|
---|
| 234 |
|
---|
| 235 | v1x = bx - ax;
|
---|
| 236 | v1y = by - ay;
|
---|
| 237 |
|
---|
| 238 | v2x = px - bx;
|
---|
| 239 | v2y = py - by;
|
---|
| 240 |
|
---|
| 241 | // For the sake of readability
|
---|
| 242 | #define Clockwise ( v1x * v2y - v1y * v2x >= 0.0 )
|
---|
| 243 |
|
---|
| 244 | bClockwise = Clockwise;
|
---|
| 245 |
|
---|
| 246 | v1x = cx - bx;
|
---|
| 247 | v1y = cy - by;
|
---|
| 248 |
|
---|
| 249 | v2x = px - cx;
|
---|
| 250 | v2y = py - cy;
|
---|
| 251 |
|
---|
| 252 | if( Clockwise != bClockwise )
|
---|
| 253 | return false;
|
---|
| 254 |
|
---|
| 255 | v1x = ax - cx;
|
---|
| 256 | v1y = ay - cy;
|
---|
| 257 |
|
---|
| 258 | v2x = px - ax;
|
---|
| 259 | v2y = py - ay;
|
---|
| 260 |
|
---|
| 261 | if( Clockwise != bClockwise )
|
---|
| 262 | return false;
|
---|
| 263 |
|
---|
| 264 | return true;
|
---|
| 265 |
|
---|
| 266 | // Clean up the #defines
|
---|
| 267 | #undef Clockwise
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | //-----------------------------------------------------------------------
|
---|
| 271 | bool Math::RealEqual( Real a, Real b, Real tolerance )
|
---|
| 272 | {
|
---|
| 273 | if (fabs(b-a) <= tolerance)
|
---|
| 274 | return true;
|
---|
| 275 | else
|
---|
| 276 | return false;
|
---|
| 277 | }
|
---|
| 278 |
|
---|
| 279 | //-----------------------------------------------------------------------
|
---|
| 280 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Plane& plane)
|
---|
| 281 | {
|
---|
| 282 |
|
---|
| 283 | Real denom = plane.normal.dotProduct(ray.getDirection());
|
---|
| 284 | if (Math::Abs(denom) < std::numeric_limits<Real>::epsilon())
|
---|
| 285 | {
|
---|
| 286 | // Parallel
|
---|
| 287 | return std::pair<bool, Real>(false, 0);
|
---|
| 288 | }
|
---|
| 289 | else
|
---|
| 290 | {
|
---|
| 291 | Real nom = plane.normal.dotProduct(ray.getOrigin()) + plane.d;
|
---|
| 292 | Real t = -(nom/denom);
|
---|
| 293 | return std::pair<bool, Real>(t >= 0, t);
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | }
|
---|
| 297 | //-----------------------------------------------------------------------
|
---|
| 298 | std::pair<bool, Real> Math::intersects(const Ray& ray,
|
---|
| 299 | const std::vector<Plane>& planes, bool normalIsOutside)
|
---|
| 300 | {
|
---|
| 301 | std::vector<Plane>::const_iterator planeit, planeitend;
|
---|
| 302 | planeitend = planes.end();
|
---|
| 303 | bool allInside = true;
|
---|
| 304 | std::pair<bool, Real> ret;
|
---|
| 305 | ret.first = false;
|
---|
| 306 | ret.second = 0.0f;
|
---|
| 307 |
|
---|
| 308 | // derive side
|
---|
| 309 | // NB we don't pass directly since that would require Plane::Side in
|
---|
| 310 | // interface, which results in recursive includes since Math is so fundamental
|
---|
| 311 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE;
|
---|
| 312 |
|
---|
| 313 | for (planeit = planes.begin(); planeit != planeitend; ++planeit)
|
---|
| 314 | {
|
---|
| 315 | const Plane& plane = *planeit;
|
---|
| 316 | // is origin outside?
|
---|
| 317 | if (plane.getSide(ray.getOrigin()) == outside)
|
---|
| 318 | {
|
---|
| 319 | allInside = false;
|
---|
| 320 | // Test single plane
|
---|
| 321 | std::pair<bool, Real> planeRes =
|
---|
| 322 | ray.intersects(plane);
|
---|
| 323 | if (planeRes.first)
|
---|
| 324 | {
|
---|
| 325 | // Ok, we intersected
|
---|
| 326 | ret.first = true;
|
---|
| 327 | // Use the most distant result since convex volume
|
---|
| 328 | ret.second = std::max(ret.second, planeRes.second);
|
---|
| 329 | }
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 |
|
---|
| 333 | if (allInside)
|
---|
| 334 | {
|
---|
| 335 | // Intersecting at 0 distance since inside the volume!
|
---|
| 336 | ret.first = true;
|
---|
| 337 | ret.second = 0.0f;
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 | return ret;
|
---|
| 341 | }
|
---|
| 342 | //-----------------------------------------------------------------------
|
---|
| 343 | std::pair<bool, Real> Math::intersects(const Ray& ray,
|
---|
| 344 | const std::list<Plane>& planes, bool normalIsOutside)
|
---|
| 345 | {
|
---|
| 346 | std::list<Plane>::const_iterator planeit, planeitend;
|
---|
| 347 | planeitend = planes.end();
|
---|
| 348 | bool allInside = true;
|
---|
| 349 | std::pair<bool, Real> ret;
|
---|
| 350 | ret.first = false;
|
---|
| 351 | ret.second = 0.0f;
|
---|
| 352 |
|
---|
| 353 | // derive side
|
---|
| 354 | // NB we don't pass directly since that would require Plane::Side in
|
---|
| 355 | // interface, which results in recursive includes since Math is so fundamental
|
---|
| 356 | Plane::Side outside = normalIsOutside ? Plane::POSITIVE_SIDE : Plane::NEGATIVE_SIDE;
|
---|
| 357 |
|
---|
| 358 | for (planeit = planes.begin(); planeit != planeitend; ++planeit)
|
---|
| 359 | {
|
---|
| 360 | const Plane& plane = *planeit;
|
---|
| 361 | // is origin outside?
|
---|
| 362 | if (plane.getSide(ray.getOrigin()) == outside)
|
---|
| 363 | {
|
---|
| 364 | allInside = false;
|
---|
| 365 | // Test single plane
|
---|
| 366 | std::pair<bool, Real> planeRes =
|
---|
| 367 | ray.intersects(plane);
|
---|
| 368 | if (planeRes.first)
|
---|
| 369 | {
|
---|
| 370 | // Ok, we intersected
|
---|
| 371 | ret.first = true;
|
---|
| 372 | // Use the most distant result since convex volume
|
---|
| 373 | ret.second = std::max(ret.second, planeRes.second);
|
---|
| 374 | }
|
---|
| 375 | }
|
---|
| 376 | }
|
---|
| 377 |
|
---|
| 378 | if (allInside)
|
---|
| 379 | {
|
---|
| 380 | // Intersecting at 0 distance since inside the volume!
|
---|
| 381 | ret.first = true;
|
---|
| 382 | ret.second = 0.0f;
|
---|
| 383 | }
|
---|
| 384 |
|
---|
| 385 | return ret;
|
---|
| 386 | }
|
---|
| 387 | //-----------------------------------------------------------------------
|
---|
| 388 | std::pair<bool, Real> Math::intersects(const Ray& ray, const Sphere& sphere,
|
---|
| 389 | bool discardInside)
|
---|
| 390 | {
|
---|
| 391 | const Vector3& raydir = ray.getDirection();
|
---|
| 392 | // Adjust ray origin relative to sphere center
|
---|
| 393 | const Vector3& rayorig = ray.getOrigin() - sphere.getCenter();
|
---|
| 394 | Real radius = sphere.getRadius();
|
---|
| 395 |
|
---|
| 396 | // Check origin inside first
|
---|
| 397 | if (rayorig.squaredLength() <= radius*radius && discardInside)
|
---|
| 398 | {
|
---|
| 399 | return std::pair<bool, Real>(true, 0);
|
---|
| 400 | }
|
---|
| 401 |
|
---|
| 402 | // Mmm, quadratics
|
---|
| 403 | // Build coeffs which can be used with std quadratic solver
|
---|
| 404 | // ie t = (-b +/- sqrt(b*b + 4ac)) / 2a
|
---|
| 405 | Real a = raydir.dotProduct(raydir);
|
---|
| 406 | Real b = 2 * rayorig.dotProduct(raydir);
|
---|
| 407 | Real c = rayorig.dotProduct(rayorig) - radius*radius;
|
---|
| 408 |
|
---|
| 409 | // Calc determinant
|
---|
| 410 | Real d = (b*b) - (4 * a * c);
|
---|
| 411 | if (d < 0)
|
---|
| 412 | {
|
---|
| 413 | // No intersection
|
---|
| 414 | return std::pair<bool, Real>(false, 0);
|
---|
| 415 | }
|
---|
| 416 | else
|
---|
| 417 | {
|
---|
| 418 | // BTW, if d=0 there is one intersection, if d > 0 there are 2
|
---|
| 419 | // But we only want the closest one, so that's ok, just use the
|
---|
| 420 | // '-' version of the solver
|
---|
| 421 | Real t = ( -b - Math::Sqrt(d) ) / (2 * a);
|
---|
| 422 | if (t < 0)
|
---|
| 423 | t = ( -b + Math::Sqrt(d) ) / (2 * a);
|
---|
| 424 | return std::pair<bool, Real>(true, t);
|
---|
| 425 | }
|
---|
| 426 |
|
---|
| 427 |
|
---|
| 428 | }
|
---|
| 429 | //-----------------------------------------------------------------------
|
---|
| 430 | std::pair<bool, Real> Math::intersects(const Ray& ray, const AxisAlignedBox& box)
|
---|
| 431 | {
|
---|
| 432 | if (box.isNull()) return std::pair<bool, Real>(false, 0);
|
---|
| 433 |
|
---|
| 434 | Real lowt = 0.0f;
|
---|
| 435 | Real t;
|
---|
| 436 | bool hit = false;
|
---|
| 437 | Vector3 hitpoint;
|
---|
| 438 | const Vector3& min = box.getMinimum();
|
---|
| 439 | const Vector3& max = box.getMaximum();
|
---|
| 440 | const Vector3& rayorig = ray.getOrigin();
|
---|
| 441 | const Vector3& raydir = ray.getDirection();
|
---|
| 442 |
|
---|
| 443 | // Check origin inside first
|
---|
| 444 | if ( rayorig > min && rayorig < max )
|
---|
| 445 | {
|
---|
| 446 | return std::pair<bool, Real>(true, 0);
|
---|
| 447 | }
|
---|
| 448 |
|
---|
| 449 | // Check each face in turn, only check closest 3
|
---|
| 450 | // Min x
|
---|
| 451 | if (rayorig.x < min.x && raydir.x > 0)
|
---|
| 452 | {
|
---|
| 453 | t = (min.x - rayorig.x) / raydir.x;
|
---|
| 454 | if (t > 0)
|
---|
| 455 | {
|
---|
| 456 | // Substitute t back into ray and check bounds and dist
|
---|
| 457 | hitpoint = rayorig + raydir * t;
|
---|
| 458 | if (hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 459 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 460 | (!hit || t < lowt))
|
---|
| 461 | {
|
---|
| 462 | hit = true;
|
---|
| 463 | lowt = t;
|
---|
| 464 | }
|
---|
| 465 | }
|
---|
| 466 | }
|
---|
| 467 | // Max x
|
---|
| 468 | if (rayorig.x > max.x && raydir.x < 0)
|
---|
| 469 | {
|
---|
| 470 | t = (max.x - rayorig.x) / raydir.x;
|
---|
| 471 | if (t > 0)
|
---|
| 472 | {
|
---|
| 473 | // Substitute t back into ray and check bounds and dist
|
---|
| 474 | hitpoint = rayorig + raydir * t;
|
---|
| 475 | if (hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 476 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 477 | (!hit || t < lowt))
|
---|
| 478 | {
|
---|
| 479 | hit = true;
|
---|
| 480 | lowt = t;
|
---|
| 481 | }
|
---|
| 482 | }
|
---|
| 483 | }
|
---|
| 484 | // Min y
|
---|
| 485 | if (rayorig.y < min.y && raydir.y > 0)
|
---|
| 486 | {
|
---|
| 487 | t = (min.y - rayorig.y) / raydir.y;
|
---|
| 488 | if (t > 0)
|
---|
| 489 | {
|
---|
| 490 | // Substitute t back into ray and check bounds and dist
|
---|
| 491 | hitpoint = rayorig + raydir * t;
|
---|
| 492 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 493 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 494 | (!hit || t < lowt))
|
---|
| 495 | {
|
---|
| 496 | hit = true;
|
---|
| 497 | lowt = t;
|
---|
| 498 | }
|
---|
| 499 | }
|
---|
| 500 | }
|
---|
| 501 | // Max y
|
---|
| 502 | if (rayorig.y > max.y && raydir.y < 0)
|
---|
| 503 | {
|
---|
| 504 | t = (max.y - rayorig.y) / raydir.y;
|
---|
| 505 | if (t > 0)
|
---|
| 506 | {
|
---|
| 507 | // Substitute t back into ray and check bounds and dist
|
---|
| 508 | hitpoint = rayorig + raydir * t;
|
---|
| 509 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 510 | hitpoint.z >= min.z && hitpoint.z <= max.z &&
|
---|
| 511 | (!hit || t < lowt))
|
---|
| 512 | {
|
---|
| 513 | hit = true;
|
---|
| 514 | lowt = t;
|
---|
| 515 | }
|
---|
| 516 | }
|
---|
| 517 | }
|
---|
| 518 | // Min z
|
---|
| 519 | if (rayorig.z < min.z && raydir.z > 0)
|
---|
| 520 | {
|
---|
| 521 | t = (min.z - rayorig.z) / raydir.z;
|
---|
| 522 | if (t > 0)
|
---|
| 523 | {
|
---|
| 524 | // Substitute t back into ray and check bounds and dist
|
---|
| 525 | hitpoint = rayorig + raydir * t;
|
---|
| 526 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 527 | hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 528 | (!hit || t < lowt))
|
---|
| 529 | {
|
---|
| 530 | hit = true;
|
---|
| 531 | lowt = t;
|
---|
| 532 | }
|
---|
| 533 | }
|
---|
| 534 | }
|
---|
| 535 | // Max z
|
---|
| 536 | if (rayorig.z > max.z && raydir.z < 0)
|
---|
| 537 | {
|
---|
| 538 | t = (max.z - rayorig.z) / raydir.z;
|
---|
| 539 | if (t > 0)
|
---|
| 540 | {
|
---|
| 541 | // Substitute t back into ray and check bounds and dist
|
---|
| 542 | hitpoint = rayorig + raydir * t;
|
---|
| 543 | if (hitpoint.x >= min.x && hitpoint.x <= max.x &&
|
---|
| 544 | hitpoint.y >= min.y && hitpoint.y <= max.y &&
|
---|
| 545 | (!hit || t < lowt))
|
---|
| 546 | {
|
---|
| 547 | hit = true;
|
---|
| 548 | lowt = t;
|
---|
| 549 | }
|
---|
| 550 | }
|
---|
| 551 | }
|
---|
| 552 |
|
---|
| 553 | return std::pair<bool, Real>(hit, lowt);
|
---|
| 554 |
|
---|
| 555 | }
|
---|
| 556 | //-----------------------------------------------------------------------
|
---|
| 557 | bool Math::intersects(const Sphere& sphere, const AxisAlignedBox& box)
|
---|
| 558 | {
|
---|
| 559 | if (box.isNull()) return false;
|
---|
| 560 |
|
---|
| 561 | // Use splitting planes
|
---|
| 562 | const Vector3& center = sphere.getCenter();
|
---|
| 563 | Real radius = sphere.getRadius();
|
---|
| 564 | const Vector3& min = box.getMinimum();
|
---|
| 565 | const Vector3& max = box.getMaximum();
|
---|
| 566 |
|
---|
| 567 | // just test facing planes, early fail if sphere is totally outside
|
---|
| 568 | if (center.x < min.x &&
|
---|
| 569 | min.x - center.x > radius)
|
---|
| 570 | {
|
---|
| 571 | return false;
|
---|
| 572 | }
|
---|
| 573 | if (center.x > max.x &&
|
---|
| 574 | center.x - max.x > radius)
|
---|
| 575 | {
|
---|
| 576 | return false;
|
---|
| 577 | }
|
---|
| 578 |
|
---|
| 579 | if (center.y < min.y &&
|
---|
| 580 | min.y - center.y > radius)
|
---|
| 581 | {
|
---|
| 582 | return false;
|
---|
| 583 | }
|
---|
| 584 | if (center.y > max.y &&
|
---|
| 585 | center.y - max.y > radius)
|
---|
| 586 | {
|
---|
| 587 | return false;
|
---|
| 588 | }
|
---|
| 589 |
|
---|
| 590 | if (center.z < min.z &&
|
---|
| 591 | min.z - center.z > radius)
|
---|
| 592 | {
|
---|
| 593 | return false;
|
---|
| 594 | }
|
---|
| 595 | if (center.z > max.z &&
|
---|
| 596 | center.z - max.z > radius)
|
---|
| 597 | {
|
---|
| 598 | return false;
|
---|
| 599 | }
|
---|
| 600 |
|
---|
| 601 | // Must intersect
|
---|
| 602 | return true;
|
---|
| 603 |
|
---|
| 604 | }
|
---|
| 605 | //-----------------------------------------------------------------------
|
---|
| 606 | bool Math::intersects(const Plane& plane, const AxisAlignedBox& box)
|
---|
| 607 | {
|
---|
| 608 | if (box.isNull()) return false;
|
---|
| 609 |
|
---|
| 610 | // Get corners of the box
|
---|
| 611 | const Vector3* pCorners = box.getAllCorners();
|
---|
| 612 |
|
---|
| 613 |
|
---|
| 614 | // Test which side of the plane the corners are
|
---|
| 615 | // Intersection occurs when at least one corner is on the
|
---|
| 616 | // opposite side to another
|
---|
| 617 | Plane::Side lastSide = plane.getSide(pCorners[0]);
|
---|
| 618 | for (int corner = 1; corner < 8; ++corner)
|
---|
| 619 | {
|
---|
| 620 | if (plane.getSide(pCorners[corner]) != lastSide)
|
---|
| 621 | {
|
---|
| 622 | return true;
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | return false;
|
---|
| 627 | }
|
---|
| 628 | //-----------------------------------------------------------------------
|
---|
| 629 | bool Math::intersects(const Sphere& sphere, const Plane& plane)
|
---|
| 630 | {
|
---|
| 631 | return (
|
---|
| 632 | Math::Abs(plane.normal.dotProduct(sphere.getCenter()))
|
---|
| 633 | <= sphere.getRadius() );
|
---|
| 634 | }
|
---|
| 635 | //-----------------------------------------------------------------------
|
---|
| 636 | Vector3 Math::calculateTangentSpaceVector(
|
---|
| 637 | const Vector3& position1, const Vector3& position2, const Vector3& position3,
|
---|
| 638 | Real u1, Real v1, Real u2, Real v2, Real u3, Real v3)
|
---|
| 639 | {
|
---|
| 640 | //side0 is the vector along one side of the triangle of vertices passed in,
|
---|
| 641 | //and side1 is the vector along another side. Taking the cross product of these returns the normal.
|
---|
| 642 | Vector3 side0 = position1 - position2;
|
---|
| 643 | Vector3 side1 = position3 - position1;
|
---|
| 644 | //Calculate face normal
|
---|
| 645 | Vector3 normal = side1.crossProduct(side0);
|
---|
| 646 | normal.normalise();
|
---|
| 647 | //Now we use a formula to calculate the tangent.
|
---|
| 648 | Real deltaV0 = v1 - v2;
|
---|
| 649 | Real deltaV1 = v3 - v1;
|
---|
| 650 | Vector3 tangent = deltaV1 * side0 - deltaV0 * side1;
|
---|
| 651 | tangent.normalise();
|
---|
| 652 | //Calculate binormal
|
---|
| 653 | Real deltaU0 = u1 - u2;
|
---|
| 654 | Real deltaU1 = u3 - u1;
|
---|
| 655 | Vector3 binormal = deltaU1 * side0 - deltaU0 * side1;
|
---|
| 656 | binormal.normalise();
|
---|
| 657 | //Now, we take the cross product of the tangents to get a vector which
|
---|
| 658 | //should point in the same direction as our normal calculated above.
|
---|
| 659 | //If it points in the opposite direction (the dot product between the normals is less than zero),
|
---|
| 660 | //then we need to reverse the s and t tangents.
|
---|
| 661 | //This is because the triangle has been mirrored when going from tangent space to object space.
|
---|
| 662 | //reverse tangents if necessary
|
---|
| 663 | Vector3 tangentCross = tangent.crossProduct(binormal);
|
---|
| 664 | if (tangentCross.dotProduct(normal) < 0.0f)
|
---|
| 665 | {
|
---|
| 666 | tangent = -tangent;
|
---|
| 667 | binormal = -binormal;
|
---|
| 668 | }
|
---|
| 669 |
|
---|
| 670 | return tangent;
|
---|
| 671 |
|
---|
| 672 | }
|
---|
| 673 | //-----------------------------------------------------------------------
|
---|
| 674 | Matrix4 Math::buildReflectionMatrix(const Plane& p)
|
---|
| 675 | {
|
---|
| 676 | return Matrix4(
|
---|
| 677 | -2 * p.normal.x * p.normal.x + 1, -2 * p.normal.x * p.normal.y, -2 * p.normal.x * p.normal.z, -2 * p.normal.x * p.d,
|
---|
| 678 | -2 * p.normal.y * p.normal.x, -2 * p.normal.y * p.normal.y + 1, -2 * p.normal.y * p.normal.z, -2 * p.normal.y * p.d,
|
---|
| 679 | -2 * p.normal.z * p.normal.x, -2 * p.normal.z * p.normal.y, -2 * p.normal.z * p.normal.z + 1, -2 * p.normal.z * p.d,
|
---|
| 680 | 0, 0, 0, 1);
|
---|
| 681 | }
|
---|
| 682 | //-----------------------------------------------------------------------
|
---|
| 683 | Vector4 Math::calculateFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 684 | {
|
---|
| 685 | Vector3 normal = calculateBasicFaceNormal(v1, v2, v3);
|
---|
| 686 | // Now set up the w (distance of tri from origin
|
---|
| 687 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1)));
|
---|
| 688 | }
|
---|
| 689 | //-----------------------------------------------------------------------
|
---|
| 690 | Vector3 Math::calculateBasicFaceNormal(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 691 | {
|
---|
| 692 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1);
|
---|
| 693 | normal.normalise();
|
---|
| 694 | return normal;
|
---|
| 695 | }
|
---|
| 696 | //-----------------------------------------------------------------------
|
---|
| 697 | Vector4 Math::calculateFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 698 | {
|
---|
| 699 | Vector3 normal = calculateBasicFaceNormalWithoutNormalize(v1, v2, v3);
|
---|
| 700 | // Now set up the w (distance of tri from origin)
|
---|
| 701 | return Vector4(normal.x, normal.y, normal.z, -(normal.dotProduct(v1)));
|
---|
| 702 | }
|
---|
| 703 | //-----------------------------------------------------------------------
|
---|
| 704 | Vector3 Math::calculateBasicFaceNormalWithoutNormalize(const Vector3& v1, const Vector3& v2, const Vector3& v3)
|
---|
| 705 | {
|
---|
| 706 | Vector3 normal = (v2 - v1).crossProduct(v3 - v1);
|
---|
| 707 | return normal;
|
---|
| 708 | }
|
---|
| 709 | }
|
---|