1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #include "OgreStableHeaders.h"
|
---|
26 | #include "OgreMatrix3.h"
|
---|
27 |
|
---|
28 | #include "OgreMath.h"
|
---|
29 |
|
---|
30 | // Adapted from Matrix math by Wild Magic http://www.magic-software.com
|
---|
31 |
|
---|
32 | namespace Ogre
|
---|
33 | {
|
---|
34 | const Real Matrix3::EPSILON = 1e-06;
|
---|
35 | const Matrix3 Matrix3::ZERO(0,0,0,0,0,0,0,0,0);
|
---|
36 | const Matrix3 Matrix3::IDENTITY(1,0,0,0,1,0,0,0,1);
|
---|
37 | const Real Matrix3::ms_fSvdEpsilon = 1e-04;
|
---|
38 | const unsigned int Matrix3::ms_iSvdMaxIterations = 32;
|
---|
39 |
|
---|
40 | //-----------------------------------------------------------------------
|
---|
41 | Vector3 Matrix3::GetColumn (size_t iCol) const
|
---|
42 | {
|
---|
43 | assert( 0 <= iCol && iCol < 3 );
|
---|
44 | return Vector3(m[0][iCol],m[1][iCol],
|
---|
45 | m[2][iCol]);
|
---|
46 | }
|
---|
47 | //-----------------------------------------------------------------------
|
---|
48 | void Matrix3::SetColumn(size_t iCol, const Vector3& vec)
|
---|
49 | {
|
---|
50 | assert( 0 <= iCol && iCol < 3 );
|
---|
51 | m[0][iCol] = vec.x;
|
---|
52 | m[1][iCol] = vec.y;
|
---|
53 | m[2][iCol] = vec.z;
|
---|
54 |
|
---|
55 | }
|
---|
56 | //-----------------------------------------------------------------------
|
---|
57 | void Matrix3::FromAxes(const Vector3& xAxis, const Vector3& yAxis, const Vector3& zAxis)
|
---|
58 | {
|
---|
59 | SetColumn(0,xAxis);
|
---|
60 | SetColumn(1,yAxis);
|
---|
61 | SetColumn(2,zAxis);
|
---|
62 |
|
---|
63 | }
|
---|
64 |
|
---|
65 | //-----------------------------------------------------------------------
|
---|
66 | bool Matrix3::operator== (const Matrix3& rkMatrix) const
|
---|
67 | {
|
---|
68 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
69 | {
|
---|
70 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
71 | {
|
---|
72 | if ( m[iRow][iCol] != rkMatrix.m[iRow][iCol] )
|
---|
73 | return false;
|
---|
74 | }
|
---|
75 | }
|
---|
76 |
|
---|
77 | return true;
|
---|
78 | }
|
---|
79 | //-----------------------------------------------------------------------
|
---|
80 | Matrix3 Matrix3::operator+ (const Matrix3& rkMatrix) const
|
---|
81 | {
|
---|
82 | Matrix3 kSum;
|
---|
83 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
84 | {
|
---|
85 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
86 | {
|
---|
87 | kSum.m[iRow][iCol] = m[iRow][iCol] +
|
---|
88 | rkMatrix.m[iRow][iCol];
|
---|
89 | }
|
---|
90 | }
|
---|
91 | return kSum;
|
---|
92 | }
|
---|
93 | //-----------------------------------------------------------------------
|
---|
94 | Matrix3 Matrix3::operator- (const Matrix3& rkMatrix) const
|
---|
95 | {
|
---|
96 | Matrix3 kDiff;
|
---|
97 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
98 | {
|
---|
99 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
100 | {
|
---|
101 | kDiff.m[iRow][iCol] = m[iRow][iCol] -
|
---|
102 | rkMatrix.m[iRow][iCol];
|
---|
103 | }
|
---|
104 | }
|
---|
105 | return kDiff;
|
---|
106 | }
|
---|
107 | //-----------------------------------------------------------------------
|
---|
108 | Matrix3 Matrix3::operator* (const Matrix3& rkMatrix) const
|
---|
109 | {
|
---|
110 | Matrix3 kProd;
|
---|
111 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
112 | {
|
---|
113 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
114 | {
|
---|
115 | kProd.m[iRow][iCol] =
|
---|
116 | m[iRow][0]*rkMatrix.m[0][iCol] +
|
---|
117 | m[iRow][1]*rkMatrix.m[1][iCol] +
|
---|
118 | m[iRow][2]*rkMatrix.m[2][iCol];
|
---|
119 | }
|
---|
120 | }
|
---|
121 | return kProd;
|
---|
122 | }
|
---|
123 | //-----------------------------------------------------------------------
|
---|
124 | Vector3 Matrix3::operator* (const Vector3& rkPoint) const
|
---|
125 | {
|
---|
126 | Vector3 kProd;
|
---|
127 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
128 | {
|
---|
129 | kProd[iRow] =
|
---|
130 | m[iRow][0]*rkPoint[0] +
|
---|
131 | m[iRow][1]*rkPoint[1] +
|
---|
132 | m[iRow][2]*rkPoint[2];
|
---|
133 | }
|
---|
134 | return kProd;
|
---|
135 | }
|
---|
136 | //-----------------------------------------------------------------------
|
---|
137 | Vector3 operator* (const Vector3& rkPoint, const Matrix3& rkMatrix)
|
---|
138 | {
|
---|
139 | Vector3 kProd;
|
---|
140 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
141 | {
|
---|
142 | kProd[iRow] =
|
---|
143 | rkPoint[0]*rkMatrix.m[0][iRow] +
|
---|
144 | rkPoint[1]*rkMatrix.m[1][iRow] +
|
---|
145 | rkPoint[2]*rkMatrix.m[2][iRow];
|
---|
146 | }
|
---|
147 | return kProd;
|
---|
148 | }
|
---|
149 | //-----------------------------------------------------------------------
|
---|
150 | Matrix3 Matrix3::operator- () const
|
---|
151 | {
|
---|
152 | Matrix3 kNeg;
|
---|
153 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
154 | {
|
---|
155 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
156 | kNeg[iRow][iCol] = -m[iRow][iCol];
|
---|
157 | }
|
---|
158 | return kNeg;
|
---|
159 | }
|
---|
160 | //-----------------------------------------------------------------------
|
---|
161 | Matrix3 Matrix3::operator* (Real fScalar) const
|
---|
162 | {
|
---|
163 | Matrix3 kProd;
|
---|
164 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
165 | {
|
---|
166 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
167 | kProd[iRow][iCol] = fScalar*m[iRow][iCol];
|
---|
168 | }
|
---|
169 | return kProd;
|
---|
170 | }
|
---|
171 | //-----------------------------------------------------------------------
|
---|
172 | Matrix3 operator* (Real fScalar, const Matrix3& rkMatrix)
|
---|
173 | {
|
---|
174 | Matrix3 kProd;
|
---|
175 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
176 | {
|
---|
177 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
178 | kProd[iRow][iCol] = fScalar*rkMatrix.m[iRow][iCol];
|
---|
179 | }
|
---|
180 | return kProd;
|
---|
181 | }
|
---|
182 | //-----------------------------------------------------------------------
|
---|
183 | Matrix3 Matrix3::Transpose () const
|
---|
184 | {
|
---|
185 | Matrix3 kTranspose;
|
---|
186 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
187 | {
|
---|
188 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
189 | kTranspose[iRow][iCol] = m[iCol][iRow];
|
---|
190 | }
|
---|
191 | return kTranspose;
|
---|
192 | }
|
---|
193 | //-----------------------------------------------------------------------
|
---|
194 | bool Matrix3::Inverse (Matrix3& rkInverse, Real fTolerance) const
|
---|
195 | {
|
---|
196 | // Invert a 3x3 using cofactors. This is about 8 times faster than
|
---|
197 | // the Numerical Recipes code which uses Gaussian elimination.
|
---|
198 |
|
---|
199 | rkInverse[0][0] = m[1][1]*m[2][2] -
|
---|
200 | m[1][2]*m[2][1];
|
---|
201 | rkInverse[0][1] = m[0][2]*m[2][1] -
|
---|
202 | m[0][1]*m[2][2];
|
---|
203 | rkInverse[0][2] = m[0][1]*m[1][2] -
|
---|
204 | m[0][2]*m[1][1];
|
---|
205 | rkInverse[1][0] = m[1][2]*m[2][0] -
|
---|
206 | m[1][0]*m[2][2];
|
---|
207 | rkInverse[1][1] = m[0][0]*m[2][2] -
|
---|
208 | m[0][2]*m[2][0];
|
---|
209 | rkInverse[1][2] = m[0][2]*m[1][0] -
|
---|
210 | m[0][0]*m[1][2];
|
---|
211 | rkInverse[2][0] = m[1][0]*m[2][1] -
|
---|
212 | m[1][1]*m[2][0];
|
---|
213 | rkInverse[2][1] = m[0][1]*m[2][0] -
|
---|
214 | m[0][0]*m[2][1];
|
---|
215 | rkInverse[2][2] = m[0][0]*m[1][1] -
|
---|
216 | m[0][1]*m[1][0];
|
---|
217 |
|
---|
218 | Real fDet =
|
---|
219 | m[0][0]*rkInverse[0][0] +
|
---|
220 | m[0][1]*rkInverse[1][0]+
|
---|
221 | m[0][2]*rkInverse[2][0];
|
---|
222 |
|
---|
223 | if ( Math::Abs(fDet) <= fTolerance )
|
---|
224 | return false;
|
---|
225 |
|
---|
226 | Real fInvDet = 1.0/fDet;
|
---|
227 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
228 | {
|
---|
229 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
230 | rkInverse[iRow][iCol] *= fInvDet;
|
---|
231 | }
|
---|
232 |
|
---|
233 | return true;
|
---|
234 | }
|
---|
235 | //-----------------------------------------------------------------------
|
---|
236 | Matrix3 Matrix3::Inverse (Real fTolerance) const
|
---|
237 | {
|
---|
238 | Matrix3 kInverse = Matrix3::ZERO;
|
---|
239 | Inverse(kInverse,fTolerance);
|
---|
240 | return kInverse;
|
---|
241 | }
|
---|
242 | //-----------------------------------------------------------------------
|
---|
243 | Real Matrix3::Determinant () const
|
---|
244 | {
|
---|
245 | Real fCofactor00 = m[1][1]*m[2][2] -
|
---|
246 | m[1][2]*m[2][1];
|
---|
247 | Real fCofactor10 = m[1][2]*m[2][0] -
|
---|
248 | m[1][0]*m[2][2];
|
---|
249 | Real fCofactor20 = m[1][0]*m[2][1] -
|
---|
250 | m[1][1]*m[2][0];
|
---|
251 |
|
---|
252 | Real fDet =
|
---|
253 | m[0][0]*fCofactor00 +
|
---|
254 | m[0][1]*fCofactor10 +
|
---|
255 | m[0][2]*fCofactor20;
|
---|
256 |
|
---|
257 | return fDet;
|
---|
258 | }
|
---|
259 | //-----------------------------------------------------------------------
|
---|
260 | void Matrix3::Bidiagonalize (Matrix3& kA, Matrix3& kL,
|
---|
261 | Matrix3& kR)
|
---|
262 | {
|
---|
263 | Real afV[3], afW[3];
|
---|
264 | Real fLength, fSign, fT1, fInvT1, fT2;
|
---|
265 | bool bIdentity;
|
---|
266 |
|
---|
267 | // map first column to (*,0,0)
|
---|
268 | fLength = Math::Sqrt(kA[0][0]*kA[0][0] + kA[1][0]*kA[1][0] +
|
---|
269 | kA[2][0]*kA[2][0]);
|
---|
270 | if ( fLength > 0.0 )
|
---|
271 | {
|
---|
272 | fSign = (kA[0][0] > 0.0 ? 1.0 : -1.0);
|
---|
273 | fT1 = kA[0][0] + fSign*fLength;
|
---|
274 | fInvT1 = 1.0/fT1;
|
---|
275 | afV[1] = kA[1][0]*fInvT1;
|
---|
276 | afV[2] = kA[2][0]*fInvT1;
|
---|
277 |
|
---|
278 | fT2 = -2.0/(1.0+afV[1]*afV[1]+afV[2]*afV[2]);
|
---|
279 | afW[0] = fT2*(kA[0][0]+kA[1][0]*afV[1]+kA[2][0]*afV[2]);
|
---|
280 | afW[1] = fT2*(kA[0][1]+kA[1][1]*afV[1]+kA[2][1]*afV[2]);
|
---|
281 | afW[2] = fT2*(kA[0][2]+kA[1][2]*afV[1]+kA[2][2]*afV[2]);
|
---|
282 | kA[0][0] += afW[0];
|
---|
283 | kA[0][1] += afW[1];
|
---|
284 | kA[0][2] += afW[2];
|
---|
285 | kA[1][1] += afV[1]*afW[1];
|
---|
286 | kA[1][2] += afV[1]*afW[2];
|
---|
287 | kA[2][1] += afV[2]*afW[1];
|
---|
288 | kA[2][2] += afV[2]*afW[2];
|
---|
289 |
|
---|
290 | kL[0][0] = 1.0+fT2;
|
---|
291 | kL[0][1] = kL[1][0] = fT2*afV[1];
|
---|
292 | kL[0][2] = kL[2][0] = fT2*afV[2];
|
---|
293 | kL[1][1] = 1.0+fT2*afV[1]*afV[1];
|
---|
294 | kL[1][2] = kL[2][1] = fT2*afV[1]*afV[2];
|
---|
295 | kL[2][2] = 1.0+fT2*afV[2]*afV[2];
|
---|
296 | bIdentity = false;
|
---|
297 | }
|
---|
298 | else
|
---|
299 | {
|
---|
300 | kL = Matrix3::IDENTITY;
|
---|
301 | bIdentity = true;
|
---|
302 | }
|
---|
303 |
|
---|
304 | // map first row to (*,*,0)
|
---|
305 | fLength = Math::Sqrt(kA[0][1]*kA[0][1]+kA[0][2]*kA[0][2]);
|
---|
306 | if ( fLength > 0.0 )
|
---|
307 | {
|
---|
308 | fSign = (kA[0][1] > 0.0 ? 1.0 : -1.0);
|
---|
309 | fT1 = kA[0][1] + fSign*fLength;
|
---|
310 | afV[2] = kA[0][2]/fT1;
|
---|
311 |
|
---|
312 | fT2 = -2.0/(1.0+afV[2]*afV[2]);
|
---|
313 | afW[0] = fT2*(kA[0][1]+kA[0][2]*afV[2]);
|
---|
314 | afW[1] = fT2*(kA[1][1]+kA[1][2]*afV[2]);
|
---|
315 | afW[2] = fT2*(kA[2][1]+kA[2][2]*afV[2]);
|
---|
316 | kA[0][1] += afW[0];
|
---|
317 | kA[1][1] += afW[1];
|
---|
318 | kA[1][2] += afW[1]*afV[2];
|
---|
319 | kA[2][1] += afW[2];
|
---|
320 | kA[2][2] += afW[2]*afV[2];
|
---|
321 |
|
---|
322 | kR[0][0] = 1.0;
|
---|
323 | kR[0][1] = kR[1][0] = 0.0;
|
---|
324 | kR[0][2] = kR[2][0] = 0.0;
|
---|
325 | kR[1][1] = 1.0+fT2;
|
---|
326 | kR[1][2] = kR[2][1] = fT2*afV[2];
|
---|
327 | kR[2][2] = 1.0+fT2*afV[2]*afV[2];
|
---|
328 | }
|
---|
329 | else
|
---|
330 | {
|
---|
331 | kR = Matrix3::IDENTITY;
|
---|
332 | }
|
---|
333 |
|
---|
334 | // map second column to (*,*,0)
|
---|
335 | fLength = Math::Sqrt(kA[1][1]*kA[1][1]+kA[2][1]*kA[2][1]);
|
---|
336 | if ( fLength > 0.0 )
|
---|
337 | {
|
---|
338 | fSign = (kA[1][1] > 0.0 ? 1.0 : -1.0);
|
---|
339 | fT1 = kA[1][1] + fSign*fLength;
|
---|
340 | afV[2] = kA[2][1]/fT1;
|
---|
341 |
|
---|
342 | fT2 = -2.0/(1.0+afV[2]*afV[2]);
|
---|
343 | afW[1] = fT2*(kA[1][1]+kA[2][1]*afV[2]);
|
---|
344 | afW[2] = fT2*(kA[1][2]+kA[2][2]*afV[2]);
|
---|
345 | kA[1][1] += afW[1];
|
---|
346 | kA[1][2] += afW[2];
|
---|
347 | kA[2][2] += afV[2]*afW[2];
|
---|
348 |
|
---|
349 | Real fA = 1.0+fT2;
|
---|
350 | Real fB = fT2*afV[2];
|
---|
351 | Real fC = 1.0+fB*afV[2];
|
---|
352 |
|
---|
353 | if ( bIdentity )
|
---|
354 | {
|
---|
355 | kL[0][0] = 1.0;
|
---|
356 | kL[0][1] = kL[1][0] = 0.0;
|
---|
357 | kL[0][2] = kL[2][0] = 0.0;
|
---|
358 | kL[1][1] = fA;
|
---|
359 | kL[1][2] = kL[2][1] = fB;
|
---|
360 | kL[2][2] = fC;
|
---|
361 | }
|
---|
362 | else
|
---|
363 | {
|
---|
364 | for (int iRow = 0; iRow < 3; iRow++)
|
---|
365 | {
|
---|
366 | Real fTmp0 = kL[iRow][1];
|
---|
367 | Real fTmp1 = kL[iRow][2];
|
---|
368 | kL[iRow][1] = fA*fTmp0+fB*fTmp1;
|
---|
369 | kL[iRow][2] = fB*fTmp0+fC*fTmp1;
|
---|
370 | }
|
---|
371 | }
|
---|
372 | }
|
---|
373 | }
|
---|
374 | //-----------------------------------------------------------------------
|
---|
375 | void Matrix3::GolubKahanStep (Matrix3& kA, Matrix3& kL,
|
---|
376 | Matrix3& kR)
|
---|
377 | {
|
---|
378 | Real fT11 = kA[0][1]*kA[0][1]+kA[1][1]*kA[1][1];
|
---|
379 | Real fT22 = kA[1][2]*kA[1][2]+kA[2][2]*kA[2][2];
|
---|
380 | Real fT12 = kA[1][1]*kA[1][2];
|
---|
381 | Real fTrace = fT11+fT22;
|
---|
382 | Real fDiff = fT11-fT22;
|
---|
383 | Real fDiscr = Math::Sqrt(fDiff*fDiff+4.0*fT12*fT12);
|
---|
384 | Real fRoot1 = 0.5*(fTrace+fDiscr);
|
---|
385 | Real fRoot2 = 0.5*(fTrace-fDiscr);
|
---|
386 |
|
---|
387 | // adjust right
|
---|
388 | Real fY = kA[0][0] - (Math::Abs(fRoot1-fT22) <=
|
---|
389 | Math::Abs(fRoot2-fT22) ? fRoot1 : fRoot2);
|
---|
390 | Real fZ = kA[0][1];
|
---|
391 | Real fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
|
---|
392 | Real fSin = fZ*fInvLength;
|
---|
393 | Real fCos = -fY*fInvLength;
|
---|
394 |
|
---|
395 | Real fTmp0 = kA[0][0];
|
---|
396 | Real fTmp1 = kA[0][1];
|
---|
397 | kA[0][0] = fCos*fTmp0-fSin*fTmp1;
|
---|
398 | kA[0][1] = fSin*fTmp0+fCos*fTmp1;
|
---|
399 | kA[1][0] = -fSin*kA[1][1];
|
---|
400 | kA[1][1] *= fCos;
|
---|
401 |
|
---|
402 | size_t iRow;
|
---|
403 | for (iRow = 0; iRow < 3; iRow++)
|
---|
404 | {
|
---|
405 | fTmp0 = kR[0][iRow];
|
---|
406 | fTmp1 = kR[1][iRow];
|
---|
407 | kR[0][iRow] = fCos*fTmp0-fSin*fTmp1;
|
---|
408 | kR[1][iRow] = fSin*fTmp0+fCos*fTmp1;
|
---|
409 | }
|
---|
410 |
|
---|
411 | // adjust left
|
---|
412 | fY = kA[0][0];
|
---|
413 | fZ = kA[1][0];
|
---|
414 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
|
---|
415 | fSin = fZ*fInvLength;
|
---|
416 | fCos = -fY*fInvLength;
|
---|
417 |
|
---|
418 | kA[0][0] = fCos*kA[0][0]-fSin*kA[1][0];
|
---|
419 | fTmp0 = kA[0][1];
|
---|
420 | fTmp1 = kA[1][1];
|
---|
421 | kA[0][1] = fCos*fTmp0-fSin*fTmp1;
|
---|
422 | kA[1][1] = fSin*fTmp0+fCos*fTmp1;
|
---|
423 | kA[0][2] = -fSin*kA[1][2];
|
---|
424 | kA[1][2] *= fCos;
|
---|
425 |
|
---|
426 | size_t iCol;
|
---|
427 | for (iCol = 0; iCol < 3; iCol++)
|
---|
428 | {
|
---|
429 | fTmp0 = kL[iCol][0];
|
---|
430 | fTmp1 = kL[iCol][1];
|
---|
431 | kL[iCol][0] = fCos*fTmp0-fSin*fTmp1;
|
---|
432 | kL[iCol][1] = fSin*fTmp0+fCos*fTmp1;
|
---|
433 | }
|
---|
434 |
|
---|
435 | // adjust right
|
---|
436 | fY = kA[0][1];
|
---|
437 | fZ = kA[0][2];
|
---|
438 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
|
---|
439 | fSin = fZ*fInvLength;
|
---|
440 | fCos = -fY*fInvLength;
|
---|
441 |
|
---|
442 | kA[0][1] = fCos*kA[0][1]-fSin*kA[0][2];
|
---|
443 | fTmp0 = kA[1][1];
|
---|
444 | fTmp1 = kA[1][2];
|
---|
445 | kA[1][1] = fCos*fTmp0-fSin*fTmp1;
|
---|
446 | kA[1][2] = fSin*fTmp0+fCos*fTmp1;
|
---|
447 | kA[2][1] = -fSin*kA[2][2];
|
---|
448 | kA[2][2] *= fCos;
|
---|
449 |
|
---|
450 | for (iRow = 0; iRow < 3; iRow++)
|
---|
451 | {
|
---|
452 | fTmp0 = kR[1][iRow];
|
---|
453 | fTmp1 = kR[2][iRow];
|
---|
454 | kR[1][iRow] = fCos*fTmp0-fSin*fTmp1;
|
---|
455 | kR[2][iRow] = fSin*fTmp0+fCos*fTmp1;
|
---|
456 | }
|
---|
457 |
|
---|
458 | // adjust left
|
---|
459 | fY = kA[1][1];
|
---|
460 | fZ = kA[2][1];
|
---|
461 | fInvLength = Math::InvSqrt(fY*fY+fZ*fZ);
|
---|
462 | fSin = fZ*fInvLength;
|
---|
463 | fCos = -fY*fInvLength;
|
---|
464 |
|
---|
465 | kA[1][1] = fCos*kA[1][1]-fSin*kA[2][1];
|
---|
466 | fTmp0 = kA[1][2];
|
---|
467 | fTmp1 = kA[2][2];
|
---|
468 | kA[1][2] = fCos*fTmp0-fSin*fTmp1;
|
---|
469 | kA[2][2] = fSin*fTmp0+fCos*fTmp1;
|
---|
470 |
|
---|
471 | for (iCol = 0; iCol < 3; iCol++)
|
---|
472 | {
|
---|
473 | fTmp0 = kL[iCol][1];
|
---|
474 | fTmp1 = kL[iCol][2];
|
---|
475 | kL[iCol][1] = fCos*fTmp0-fSin*fTmp1;
|
---|
476 | kL[iCol][2] = fSin*fTmp0+fCos*fTmp1;
|
---|
477 | }
|
---|
478 | }
|
---|
479 | //-----------------------------------------------------------------------
|
---|
480 | void Matrix3::SingularValueDecomposition (Matrix3& kL, Vector3& kS,
|
---|
481 | Matrix3& kR) const
|
---|
482 | {
|
---|
483 | // temas: currently unused
|
---|
484 | //const int iMax = 16;
|
---|
485 | size_t iRow, iCol;
|
---|
486 |
|
---|
487 | Matrix3 kA = *this;
|
---|
488 | Bidiagonalize(kA,kL,kR);
|
---|
489 |
|
---|
490 | for (unsigned int i = 0; i < ms_iSvdMaxIterations; i++)
|
---|
491 | {
|
---|
492 | Real fTmp, fTmp0, fTmp1;
|
---|
493 | Real fSin0, fCos0, fTan0;
|
---|
494 | Real fSin1, fCos1, fTan1;
|
---|
495 |
|
---|
496 | bool bTest1 = (Math::Abs(kA[0][1]) <=
|
---|
497 | ms_fSvdEpsilon*(Math::Abs(kA[0][0])+Math::Abs(kA[1][1])));
|
---|
498 | bool bTest2 = (Math::Abs(kA[1][2]) <=
|
---|
499 | ms_fSvdEpsilon*(Math::Abs(kA[1][1])+Math::Abs(kA[2][2])));
|
---|
500 | if ( bTest1 )
|
---|
501 | {
|
---|
502 | if ( bTest2 )
|
---|
503 | {
|
---|
504 | kS[0] = kA[0][0];
|
---|
505 | kS[1] = kA[1][1];
|
---|
506 | kS[2] = kA[2][2];
|
---|
507 | break;
|
---|
508 | }
|
---|
509 | else
|
---|
510 | {
|
---|
511 | // 2x2 closed form factorization
|
---|
512 | fTmp = (kA[1][1]*kA[1][1] - kA[2][2]*kA[2][2] +
|
---|
513 | kA[1][2]*kA[1][2])/(kA[1][2]*kA[2][2]);
|
---|
514 | fTan0 = 0.5*(fTmp+Math::Sqrt(fTmp*fTmp + 4.0));
|
---|
515 | fCos0 = Math::InvSqrt(1.0+fTan0*fTan0);
|
---|
516 | fSin0 = fTan0*fCos0;
|
---|
517 |
|
---|
518 | for (iCol = 0; iCol < 3; iCol++)
|
---|
519 | {
|
---|
520 | fTmp0 = kL[iCol][1];
|
---|
521 | fTmp1 = kL[iCol][2];
|
---|
522 | kL[iCol][1] = fCos0*fTmp0-fSin0*fTmp1;
|
---|
523 | kL[iCol][2] = fSin0*fTmp0+fCos0*fTmp1;
|
---|
524 | }
|
---|
525 |
|
---|
526 | fTan1 = (kA[1][2]-kA[2][2]*fTan0)/kA[1][1];
|
---|
527 | fCos1 = Math::InvSqrt(1.0+fTan1*fTan1);
|
---|
528 | fSin1 = -fTan1*fCos1;
|
---|
529 |
|
---|
530 | for (iRow = 0; iRow < 3; iRow++)
|
---|
531 | {
|
---|
532 | fTmp0 = kR[1][iRow];
|
---|
533 | fTmp1 = kR[2][iRow];
|
---|
534 | kR[1][iRow] = fCos1*fTmp0-fSin1*fTmp1;
|
---|
535 | kR[2][iRow] = fSin1*fTmp0+fCos1*fTmp1;
|
---|
536 | }
|
---|
537 |
|
---|
538 | kS[0] = kA[0][0];
|
---|
539 | kS[1] = fCos0*fCos1*kA[1][1] -
|
---|
540 | fSin1*(fCos0*kA[1][2]-fSin0*kA[2][2]);
|
---|
541 | kS[2] = fSin0*fSin1*kA[1][1] +
|
---|
542 | fCos1*(fSin0*kA[1][2]+fCos0*kA[2][2]);
|
---|
543 | break;
|
---|
544 | }
|
---|
545 | }
|
---|
546 | else
|
---|
547 | {
|
---|
548 | if ( bTest2 )
|
---|
549 | {
|
---|
550 | // 2x2 closed form factorization
|
---|
551 | fTmp = (kA[0][0]*kA[0][0] + kA[1][1]*kA[1][1] -
|
---|
552 | kA[0][1]*kA[0][1])/(kA[0][1]*kA[1][1]);
|
---|
553 | fTan0 = 0.5*(-fTmp+Math::Sqrt(fTmp*fTmp + 4.0));
|
---|
554 | fCos0 = Math::InvSqrt(1.0+fTan0*fTan0);
|
---|
555 | fSin0 = fTan0*fCos0;
|
---|
556 |
|
---|
557 | for (iCol = 0; iCol < 3; iCol++)
|
---|
558 | {
|
---|
559 | fTmp0 = kL[iCol][0];
|
---|
560 | fTmp1 = kL[iCol][1];
|
---|
561 | kL[iCol][0] = fCos0*fTmp0-fSin0*fTmp1;
|
---|
562 | kL[iCol][1] = fSin0*fTmp0+fCos0*fTmp1;
|
---|
563 | }
|
---|
564 |
|
---|
565 | fTan1 = (kA[0][1]-kA[1][1]*fTan0)/kA[0][0];
|
---|
566 | fCos1 = Math::InvSqrt(1.0+fTan1*fTan1);
|
---|
567 | fSin1 = -fTan1*fCos1;
|
---|
568 |
|
---|
569 | for (iRow = 0; iRow < 3; iRow++)
|
---|
570 | {
|
---|
571 | fTmp0 = kR[0][iRow];
|
---|
572 | fTmp1 = kR[1][iRow];
|
---|
573 | kR[0][iRow] = fCos1*fTmp0-fSin1*fTmp1;
|
---|
574 | kR[1][iRow] = fSin1*fTmp0+fCos1*fTmp1;
|
---|
575 | }
|
---|
576 |
|
---|
577 | kS[0] = fCos0*fCos1*kA[0][0] -
|
---|
578 | fSin1*(fCos0*kA[0][1]-fSin0*kA[1][1]);
|
---|
579 | kS[1] = fSin0*fSin1*kA[0][0] +
|
---|
580 | fCos1*(fSin0*kA[0][1]+fCos0*kA[1][1]);
|
---|
581 | kS[2] = kA[2][2];
|
---|
582 | break;
|
---|
583 | }
|
---|
584 | else
|
---|
585 | {
|
---|
586 | GolubKahanStep(kA,kL,kR);
|
---|
587 | }
|
---|
588 | }
|
---|
589 | }
|
---|
590 |
|
---|
591 | // positize diagonal
|
---|
592 | for (iRow = 0; iRow < 3; iRow++)
|
---|
593 | {
|
---|
594 | if ( kS[iRow] < 0.0 )
|
---|
595 | {
|
---|
596 | kS[iRow] = -kS[iRow];
|
---|
597 | for (iCol = 0; iCol < 3; iCol++)
|
---|
598 | kR[iRow][iCol] = -kR[iRow][iCol];
|
---|
599 | }
|
---|
600 | }
|
---|
601 | }
|
---|
602 | //-----------------------------------------------------------------------
|
---|
603 | void Matrix3::SingularValueComposition (const Matrix3& kL,
|
---|
604 | const Vector3& kS, const Matrix3& kR)
|
---|
605 | {
|
---|
606 | size_t iRow, iCol;
|
---|
607 | Matrix3 kTmp;
|
---|
608 |
|
---|
609 | // product S*R
|
---|
610 | for (iRow = 0; iRow < 3; iRow++)
|
---|
611 | {
|
---|
612 | for (iCol = 0; iCol < 3; iCol++)
|
---|
613 | kTmp[iRow][iCol] = kS[iRow]*kR[iRow][iCol];
|
---|
614 | }
|
---|
615 |
|
---|
616 | // product L*S*R
|
---|
617 | for (iRow = 0; iRow < 3; iRow++)
|
---|
618 | {
|
---|
619 | for (iCol = 0; iCol < 3; iCol++)
|
---|
620 | {
|
---|
621 | m[iRow][iCol] = 0.0;
|
---|
622 | for (int iMid = 0; iMid < 3; iMid++)
|
---|
623 | m[iRow][iCol] += kL[iRow][iMid]*kTmp[iMid][iCol];
|
---|
624 | }
|
---|
625 | }
|
---|
626 | }
|
---|
627 | //-----------------------------------------------------------------------
|
---|
628 | void Matrix3::Orthonormalize ()
|
---|
629 | {
|
---|
630 | // Algorithm uses Gram-Schmidt orthogonalization. If 'this' matrix is
|
---|
631 | // M = [m0|m1|m2], then orthonormal output matrix is Q = [q0|q1|q2],
|
---|
632 | //
|
---|
633 | // q0 = m0/|m0|
|
---|
634 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
|
---|
635 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
|
---|
636 | //
|
---|
637 | // where |V| indicates length of vector V and A*B indicates dot
|
---|
638 | // product of vectors A and B.
|
---|
639 |
|
---|
640 | // compute q0
|
---|
641 | Real fInvLength = Math::InvSqrt(m[0][0]*m[0][0]
|
---|
642 | + m[1][0]*m[1][0] +
|
---|
643 | m[2][0]*m[2][0]);
|
---|
644 |
|
---|
645 | m[0][0] *= fInvLength;
|
---|
646 | m[1][0] *= fInvLength;
|
---|
647 | m[2][0] *= fInvLength;
|
---|
648 |
|
---|
649 | // compute q1
|
---|
650 | Real fDot0 =
|
---|
651 | m[0][0]*m[0][1] +
|
---|
652 | m[1][0]*m[1][1] +
|
---|
653 | m[2][0]*m[2][1];
|
---|
654 |
|
---|
655 | m[0][1] -= fDot0*m[0][0];
|
---|
656 | m[1][1] -= fDot0*m[1][0];
|
---|
657 | m[2][1] -= fDot0*m[2][0];
|
---|
658 |
|
---|
659 | fInvLength = Math::InvSqrt(m[0][1]*m[0][1] +
|
---|
660 | m[1][1]*m[1][1] +
|
---|
661 | m[2][1]*m[2][1]);
|
---|
662 |
|
---|
663 | m[0][1] *= fInvLength;
|
---|
664 | m[1][1] *= fInvLength;
|
---|
665 | m[2][1] *= fInvLength;
|
---|
666 |
|
---|
667 | // compute q2
|
---|
668 | Real fDot1 =
|
---|
669 | m[0][1]*m[0][2] +
|
---|
670 | m[1][1]*m[1][2] +
|
---|
671 | m[2][1]*m[2][2];
|
---|
672 |
|
---|
673 | fDot0 =
|
---|
674 | m[0][0]*m[0][2] +
|
---|
675 | m[1][0]*m[1][2] +
|
---|
676 | m[2][0]*m[2][2];
|
---|
677 |
|
---|
678 | m[0][2] -= fDot0*m[0][0] + fDot1*m[0][1];
|
---|
679 | m[1][2] -= fDot0*m[1][0] + fDot1*m[1][1];
|
---|
680 | m[2][2] -= fDot0*m[2][0] + fDot1*m[2][1];
|
---|
681 |
|
---|
682 | fInvLength = Math::InvSqrt(m[0][2]*m[0][2] +
|
---|
683 | m[1][2]*m[1][2] +
|
---|
684 | m[2][2]*m[2][2]);
|
---|
685 |
|
---|
686 | m[0][2] *= fInvLength;
|
---|
687 | m[1][2] *= fInvLength;
|
---|
688 | m[2][2] *= fInvLength;
|
---|
689 | }
|
---|
690 | //-----------------------------------------------------------------------
|
---|
691 | void Matrix3::QDUDecomposition (Matrix3& kQ,
|
---|
692 | Vector3& kD, Vector3& kU) const
|
---|
693 | {
|
---|
694 | // Factor M = QR = QDU where Q is orthogonal, D is diagonal,
|
---|
695 | // and U is upper triangular with ones on its diagonal. Algorithm uses
|
---|
696 | // Gram-Schmidt orthogonalization (the QR algorithm).
|
---|
697 | //
|
---|
698 | // If M = [ m0 | m1 | m2 ] and Q = [ q0 | q1 | q2 ], then
|
---|
699 | //
|
---|
700 | // q0 = m0/|m0|
|
---|
701 | // q1 = (m1-(q0*m1)q0)/|m1-(q0*m1)q0|
|
---|
702 | // q2 = (m2-(q0*m2)q0-(q1*m2)q1)/|m2-(q0*m2)q0-(q1*m2)q1|
|
---|
703 | //
|
---|
704 | // where |V| indicates length of vector V and A*B indicates dot
|
---|
705 | // product of vectors A and B. The matrix R has entries
|
---|
706 | //
|
---|
707 | // r00 = q0*m0 r01 = q0*m1 r02 = q0*m2
|
---|
708 | // r10 = 0 r11 = q1*m1 r12 = q1*m2
|
---|
709 | // r20 = 0 r21 = 0 r22 = q2*m2
|
---|
710 | //
|
---|
711 | // so D = diag(r00,r11,r22) and U has entries u01 = r01/r00,
|
---|
712 | // u02 = r02/r00, and u12 = r12/r11.
|
---|
713 |
|
---|
714 | // Q = rotation
|
---|
715 | // D = scaling
|
---|
716 | // U = shear
|
---|
717 |
|
---|
718 | // D stores the three diagonal entries r00, r11, r22
|
---|
719 | // U stores the entries U[0] = u01, U[1] = u02, U[2] = u12
|
---|
720 |
|
---|
721 | // build orthogonal matrix Q
|
---|
722 | Real fInvLength = Math::InvSqrt(m[0][0]*m[0][0]
|
---|
723 | + m[1][0]*m[1][0] +
|
---|
724 | m[2][0]*m[2][0]);
|
---|
725 | kQ[0][0] = m[0][0]*fInvLength;
|
---|
726 | kQ[1][0] = m[1][0]*fInvLength;
|
---|
727 | kQ[2][0] = m[2][0]*fInvLength;
|
---|
728 |
|
---|
729 | Real fDot = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] +
|
---|
730 | kQ[2][0]*m[2][1];
|
---|
731 | kQ[0][1] = m[0][1]-fDot*kQ[0][0];
|
---|
732 | kQ[1][1] = m[1][1]-fDot*kQ[1][0];
|
---|
733 | kQ[2][1] = m[2][1]-fDot*kQ[2][0];
|
---|
734 | fInvLength = Math::InvSqrt(kQ[0][1]*kQ[0][1] + kQ[1][1]*kQ[1][1] +
|
---|
735 | kQ[2][1]*kQ[2][1]);
|
---|
736 | kQ[0][1] *= fInvLength;
|
---|
737 | kQ[1][1] *= fInvLength;
|
---|
738 | kQ[2][1] *= fInvLength;
|
---|
739 |
|
---|
740 | fDot = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] +
|
---|
741 | kQ[2][0]*m[2][2];
|
---|
742 | kQ[0][2] = m[0][2]-fDot*kQ[0][0];
|
---|
743 | kQ[1][2] = m[1][2]-fDot*kQ[1][0];
|
---|
744 | kQ[2][2] = m[2][2]-fDot*kQ[2][0];
|
---|
745 | fDot = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] +
|
---|
746 | kQ[2][1]*m[2][2];
|
---|
747 | kQ[0][2] -= fDot*kQ[0][1];
|
---|
748 | kQ[1][2] -= fDot*kQ[1][1];
|
---|
749 | kQ[2][2] -= fDot*kQ[2][1];
|
---|
750 | fInvLength = Math::InvSqrt(kQ[0][2]*kQ[0][2] + kQ[1][2]*kQ[1][2] +
|
---|
751 | kQ[2][2]*kQ[2][2]);
|
---|
752 | kQ[0][2] *= fInvLength;
|
---|
753 | kQ[1][2] *= fInvLength;
|
---|
754 | kQ[2][2] *= fInvLength;
|
---|
755 |
|
---|
756 | // guarantee that orthogonal matrix has determinant 1 (no reflections)
|
---|
757 | Real fDet = kQ[0][0]*kQ[1][1]*kQ[2][2] + kQ[0][1]*kQ[1][2]*kQ[2][0] +
|
---|
758 | kQ[0][2]*kQ[1][0]*kQ[2][1] - kQ[0][2]*kQ[1][1]*kQ[2][0] -
|
---|
759 | kQ[0][1]*kQ[1][0]*kQ[2][2] - kQ[0][0]*kQ[1][2]*kQ[2][1];
|
---|
760 |
|
---|
761 | if ( fDet < 0.0 )
|
---|
762 | {
|
---|
763 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
764 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
765 | kQ[iRow][iCol] = -kQ[iRow][iCol];
|
---|
766 | }
|
---|
767 |
|
---|
768 | // build "right" matrix R
|
---|
769 | Matrix3 kR;
|
---|
770 | kR[0][0] = kQ[0][0]*m[0][0] + kQ[1][0]*m[1][0] +
|
---|
771 | kQ[2][0]*m[2][0];
|
---|
772 | kR[0][1] = kQ[0][0]*m[0][1] + kQ[1][0]*m[1][1] +
|
---|
773 | kQ[2][0]*m[2][1];
|
---|
774 | kR[1][1] = kQ[0][1]*m[0][1] + kQ[1][1]*m[1][1] +
|
---|
775 | kQ[2][1]*m[2][1];
|
---|
776 | kR[0][2] = kQ[0][0]*m[0][2] + kQ[1][0]*m[1][2] +
|
---|
777 | kQ[2][0]*m[2][2];
|
---|
778 | kR[1][2] = kQ[0][1]*m[0][2] + kQ[1][1]*m[1][2] +
|
---|
779 | kQ[2][1]*m[2][2];
|
---|
780 | kR[2][2] = kQ[0][2]*m[0][2] + kQ[1][2]*m[1][2] +
|
---|
781 | kQ[2][2]*m[2][2];
|
---|
782 |
|
---|
783 | // the scaling component
|
---|
784 | kD[0] = kR[0][0];
|
---|
785 | kD[1] = kR[1][1];
|
---|
786 | kD[2] = kR[2][2];
|
---|
787 |
|
---|
788 | // the shear component
|
---|
789 | Real fInvD0 = 1.0/kD[0];
|
---|
790 | kU[0] = kR[0][1]*fInvD0;
|
---|
791 | kU[1] = kR[0][2]*fInvD0;
|
---|
792 | kU[2] = kR[1][2]/kD[1];
|
---|
793 | }
|
---|
794 | //-----------------------------------------------------------------------
|
---|
795 | Real Matrix3::MaxCubicRoot (Real afCoeff[3])
|
---|
796 | {
|
---|
797 | // Spectral norm is for A^T*A, so characteristic polynomial
|
---|
798 | // P(x) = c[0]+c[1]*x+c[2]*x^2+x^3 has three positive real roots.
|
---|
799 | // This yields the assertions c[0] < 0 and c[2]*c[2] >= 3*c[1].
|
---|
800 |
|
---|
801 | // quick out for uniform scale (triple root)
|
---|
802 | const Real fOneThird = 1.0/3.0;
|
---|
803 | const Real fEpsilon = 1e-06;
|
---|
804 | Real fDiscr = afCoeff[2]*afCoeff[2] - 3.0*afCoeff[1];
|
---|
805 | if ( fDiscr <= fEpsilon )
|
---|
806 | return -fOneThird*afCoeff[2];
|
---|
807 |
|
---|
808 | // Compute an upper bound on roots of P(x). This assumes that A^T*A
|
---|
809 | // has been scaled by its largest entry.
|
---|
810 | Real fX = 1.0;
|
---|
811 | Real fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX));
|
---|
812 | if ( fPoly < 0.0 )
|
---|
813 | {
|
---|
814 | // uses a matrix norm to find an upper bound on maximum root
|
---|
815 | fX = Math::Abs(afCoeff[0]);
|
---|
816 | Real fTmp = 1.0+Math::Abs(afCoeff[1]);
|
---|
817 | if ( fTmp > fX )
|
---|
818 | fX = fTmp;
|
---|
819 | fTmp = 1.0+Math::Abs(afCoeff[2]);
|
---|
820 | if ( fTmp > fX )
|
---|
821 | fX = fTmp;
|
---|
822 | }
|
---|
823 |
|
---|
824 | // Newton's method to find root
|
---|
825 | Real fTwoC2 = 2.0*afCoeff[2];
|
---|
826 | for (int i = 0; i < 16; i++)
|
---|
827 | {
|
---|
828 | fPoly = afCoeff[0]+fX*(afCoeff[1]+fX*(afCoeff[2]+fX));
|
---|
829 | if ( Math::Abs(fPoly) <= fEpsilon )
|
---|
830 | return fX;
|
---|
831 |
|
---|
832 | Real fDeriv = afCoeff[1]+fX*(fTwoC2+3.0*fX);
|
---|
833 | fX -= fPoly/fDeriv;
|
---|
834 | }
|
---|
835 |
|
---|
836 | return fX;
|
---|
837 | }
|
---|
838 | //-----------------------------------------------------------------------
|
---|
839 | Real Matrix3::SpectralNorm () const
|
---|
840 | {
|
---|
841 | Matrix3 kP;
|
---|
842 | size_t iRow, iCol;
|
---|
843 | Real fPmax = 0.0;
|
---|
844 | for (iRow = 0; iRow < 3; iRow++)
|
---|
845 | {
|
---|
846 | for (iCol = 0; iCol < 3; iCol++)
|
---|
847 | {
|
---|
848 | kP[iRow][iCol] = 0.0;
|
---|
849 | for (int iMid = 0; iMid < 3; iMid++)
|
---|
850 | {
|
---|
851 | kP[iRow][iCol] +=
|
---|
852 | m[iMid][iRow]*m[iMid][iCol];
|
---|
853 | }
|
---|
854 | if ( kP[iRow][iCol] > fPmax )
|
---|
855 | fPmax = kP[iRow][iCol];
|
---|
856 | }
|
---|
857 | }
|
---|
858 |
|
---|
859 | Real fInvPmax = 1.0/fPmax;
|
---|
860 | for (iRow = 0; iRow < 3; iRow++)
|
---|
861 | {
|
---|
862 | for (iCol = 0; iCol < 3; iCol++)
|
---|
863 | kP[iRow][iCol] *= fInvPmax;
|
---|
864 | }
|
---|
865 |
|
---|
866 | Real afCoeff[3];
|
---|
867 | afCoeff[0] = -(kP[0][0]*(kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1]) +
|
---|
868 | kP[0][1]*(kP[2][0]*kP[1][2]-kP[1][0]*kP[2][2]) +
|
---|
869 | kP[0][2]*(kP[1][0]*kP[2][1]-kP[2][0]*kP[1][1]));
|
---|
870 | afCoeff[1] = kP[0][0]*kP[1][1]-kP[0][1]*kP[1][0] +
|
---|
871 | kP[0][0]*kP[2][2]-kP[0][2]*kP[2][0] +
|
---|
872 | kP[1][1]*kP[2][2]-kP[1][2]*kP[2][1];
|
---|
873 | afCoeff[2] = -(kP[0][0]+kP[1][1]+kP[2][2]);
|
---|
874 |
|
---|
875 | Real fRoot = MaxCubicRoot(afCoeff);
|
---|
876 | Real fNorm = Math::Sqrt(fPmax*fRoot);
|
---|
877 | return fNorm;
|
---|
878 | }
|
---|
879 | //-----------------------------------------------------------------------
|
---|
880 | void Matrix3::ToAxisAngle (Vector3& rkAxis, Radian& rfRadians) const
|
---|
881 | {
|
---|
882 | // Let (x,y,z) be the unit-length axis and let A be an angle of rotation.
|
---|
883 | // The rotation matrix is R = I + sin(A)*P + (1-cos(A))*P^2 where
|
---|
884 | // I is the identity and
|
---|
885 | //
|
---|
886 | // +- -+
|
---|
887 | // P = | 0 -z +y |
|
---|
888 | // | +z 0 -x |
|
---|
889 | // | -y +x 0 |
|
---|
890 | // +- -+
|
---|
891 | //
|
---|
892 | // If A > 0, R represents a counterclockwise rotation about the axis in
|
---|
893 | // the sense of looking from the tip of the axis vector towards the
|
---|
894 | // origin. Some algebra will show that
|
---|
895 | //
|
---|
896 | // cos(A) = (trace(R)-1)/2 and R - R^t = 2*sin(A)*P
|
---|
897 | //
|
---|
898 | // In the event that A = pi, R-R^t = 0 which prevents us from extracting
|
---|
899 | // the axis through P. Instead note that R = I+2*P^2 when A = pi, so
|
---|
900 | // P^2 = (R-I)/2. The diagonal entries of P^2 are x^2-1, y^2-1, and
|
---|
901 | // z^2-1. We can solve these for axis (x,y,z). Because the angle is pi,
|
---|
902 | // it does not matter which sign you choose on the square roots.
|
---|
903 |
|
---|
904 | Real fTrace = m[0][0] + m[1][1] + m[2][2];
|
---|
905 | Real fCos = 0.5*(fTrace-1.0);
|
---|
906 | rfRadians = Math::ACos(fCos); // in [0,PI]
|
---|
907 |
|
---|
908 | if ( rfRadians > Radian(0.0) )
|
---|
909 | {
|
---|
910 | if ( rfRadians < Radian(Math::PI) )
|
---|
911 | {
|
---|
912 | rkAxis.x = m[2][1]-m[1][2];
|
---|
913 | rkAxis.y = m[0][2]-m[2][0];
|
---|
914 | rkAxis.z = m[1][0]-m[0][1];
|
---|
915 | rkAxis.normalise();
|
---|
916 | }
|
---|
917 | else
|
---|
918 | {
|
---|
919 | // angle is PI
|
---|
920 | float fHalfInverse;
|
---|
921 | if ( m[0][0] >= m[1][1] )
|
---|
922 | {
|
---|
923 | // r00 >= r11
|
---|
924 | if ( m[0][0] >= m[2][2] )
|
---|
925 | {
|
---|
926 | // r00 is maximum diagonal term
|
---|
927 | rkAxis.x = 0.5*Math::Sqrt(m[0][0] -
|
---|
928 | m[1][1] - m[2][2] + 1.0);
|
---|
929 | fHalfInverse = 0.5/rkAxis.x;
|
---|
930 | rkAxis.y = fHalfInverse*m[0][1];
|
---|
931 | rkAxis.z = fHalfInverse*m[0][2];
|
---|
932 | }
|
---|
933 | else
|
---|
934 | {
|
---|
935 | // r22 is maximum diagonal term
|
---|
936 | rkAxis.z = 0.5*Math::Sqrt(m[2][2] -
|
---|
937 | m[0][0] - m[1][1] + 1.0);
|
---|
938 | fHalfInverse = 0.5/rkAxis.z;
|
---|
939 | rkAxis.x = fHalfInverse*m[0][2];
|
---|
940 | rkAxis.y = fHalfInverse*m[1][2];
|
---|
941 | }
|
---|
942 | }
|
---|
943 | else
|
---|
944 | {
|
---|
945 | // r11 > r00
|
---|
946 | if ( m[1][1] >= m[2][2] )
|
---|
947 | {
|
---|
948 | // r11 is maximum diagonal term
|
---|
949 | rkAxis.y = 0.5*Math::Sqrt(m[1][1] -
|
---|
950 | m[0][0] - m[2][2] + 1.0);
|
---|
951 | fHalfInverse = 0.5/rkAxis.y;
|
---|
952 | rkAxis.x = fHalfInverse*m[0][1];
|
---|
953 | rkAxis.z = fHalfInverse*m[1][2];
|
---|
954 | }
|
---|
955 | else
|
---|
956 | {
|
---|
957 | // r22 is maximum diagonal term
|
---|
958 | rkAxis.z = 0.5*Math::Sqrt(m[2][2] -
|
---|
959 | m[0][0] - m[1][1] + 1.0);
|
---|
960 | fHalfInverse = 0.5/rkAxis.z;
|
---|
961 | rkAxis.x = fHalfInverse*m[0][2];
|
---|
962 | rkAxis.y = fHalfInverse*m[1][2];
|
---|
963 | }
|
---|
964 | }
|
---|
965 | }
|
---|
966 | }
|
---|
967 | else
|
---|
968 | {
|
---|
969 | // The angle is 0 and the matrix is the identity. Any axis will
|
---|
970 | // work, so just use the x-axis.
|
---|
971 | rkAxis.x = 1.0;
|
---|
972 | rkAxis.y = 0.0;
|
---|
973 | rkAxis.z = 0.0;
|
---|
974 | }
|
---|
975 | }
|
---|
976 | //-----------------------------------------------------------------------
|
---|
977 | void Matrix3::FromAxisAngle (const Vector3& rkAxis, const Radian& fRadians)
|
---|
978 | {
|
---|
979 | Real fCos = Math::Cos(fRadians);
|
---|
980 | Real fSin = Math::Sin(fRadians);
|
---|
981 | Real fOneMinusCos = 1.0-fCos;
|
---|
982 | Real fX2 = rkAxis.x*rkAxis.x;
|
---|
983 | Real fY2 = rkAxis.y*rkAxis.y;
|
---|
984 | Real fZ2 = rkAxis.z*rkAxis.z;
|
---|
985 | Real fXYM = rkAxis.x*rkAxis.y*fOneMinusCos;
|
---|
986 | Real fXZM = rkAxis.x*rkAxis.z*fOneMinusCos;
|
---|
987 | Real fYZM = rkAxis.y*rkAxis.z*fOneMinusCos;
|
---|
988 | Real fXSin = rkAxis.x*fSin;
|
---|
989 | Real fYSin = rkAxis.y*fSin;
|
---|
990 | Real fZSin = rkAxis.z*fSin;
|
---|
991 |
|
---|
992 | m[0][0] = fX2*fOneMinusCos+fCos;
|
---|
993 | m[0][1] = fXYM-fZSin;
|
---|
994 | m[0][2] = fXZM+fYSin;
|
---|
995 | m[1][0] = fXYM+fZSin;
|
---|
996 | m[1][1] = fY2*fOneMinusCos+fCos;
|
---|
997 | m[1][2] = fYZM-fXSin;
|
---|
998 | m[2][0] = fXZM-fYSin;
|
---|
999 | m[2][1] = fYZM+fXSin;
|
---|
1000 | m[2][2] = fZ2*fOneMinusCos+fCos;
|
---|
1001 | }
|
---|
1002 | //-----------------------------------------------------------------------
|
---|
1003 | bool Matrix3::ToEulerAnglesXYZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1004 | Radian& rfRAngle) const
|
---|
1005 | {
|
---|
1006 | // rot = cy*cz -cy*sz sy
|
---|
1007 | // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
|
---|
1008 | // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
|
---|
1009 |
|
---|
1010 | rfPAngle = Radian(Math::ASin(m[0][2]));
|
---|
1011 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1012 | {
|
---|
1013 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1014 | {
|
---|
1015 | rfYAngle = Math::ATan2(-m[1][2],m[2][2]);
|
---|
1016 | rfRAngle = Math::ATan2(-m[0][1],m[0][0]);
|
---|
1017 | return true;
|
---|
1018 | }
|
---|
1019 | else
|
---|
1020 | {
|
---|
1021 | // WARNING. Not a unique solution.
|
---|
1022 | Radian fRmY = Math::ATan2(m[1][0],m[1][1]);
|
---|
1023 | rfRAngle = Radian(0.0); // any angle works
|
---|
1024 | rfYAngle = rfRAngle - fRmY;
|
---|
1025 | return false;
|
---|
1026 | }
|
---|
1027 | }
|
---|
1028 | else
|
---|
1029 | {
|
---|
1030 | // WARNING. Not a unique solution.
|
---|
1031 | Radian fRpY = Math::ATan2(m[1][0],m[1][1]);
|
---|
1032 | rfRAngle = Radian(0.0); // any angle works
|
---|
1033 | rfYAngle = fRpY - rfRAngle;
|
---|
1034 | return false;
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 | //-----------------------------------------------------------------------
|
---|
1038 | bool Matrix3::ToEulerAnglesXZY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1039 | Radian& rfRAngle) const
|
---|
1040 | {
|
---|
1041 | // rot = cy*cz -sz cz*sy
|
---|
1042 | // sx*sy+cx*cy*sz cx*cz -cy*sx+cx*sy*sz
|
---|
1043 | // -cx*sy+cy*sx*sz cz*sx cx*cy+sx*sy*sz
|
---|
1044 |
|
---|
1045 | rfPAngle = Math::ASin(-m[0][1]);
|
---|
1046 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1047 | {
|
---|
1048 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1049 | {
|
---|
1050 | rfYAngle = Math::ATan2(m[2][1],m[1][1]);
|
---|
1051 | rfRAngle = Math::ATan2(m[0][2],m[0][0]);
|
---|
1052 | return true;
|
---|
1053 | }
|
---|
1054 | else
|
---|
1055 | {
|
---|
1056 | // WARNING. Not a unique solution.
|
---|
1057 | Radian fRmY = Math::ATan2(-m[2][0],m[2][2]);
|
---|
1058 | rfRAngle = Radian(0.0); // any angle works
|
---|
1059 | rfYAngle = rfRAngle - fRmY;
|
---|
1060 | return false;
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 | else
|
---|
1064 | {
|
---|
1065 | // WARNING. Not a unique solution.
|
---|
1066 | Radian fRpY = Math::ATan2(-m[2][0],m[2][2]);
|
---|
1067 | rfRAngle = Radian(0.0); // any angle works
|
---|
1068 | rfYAngle = fRpY - rfRAngle;
|
---|
1069 | return false;
|
---|
1070 | }
|
---|
1071 | }
|
---|
1072 | //-----------------------------------------------------------------------
|
---|
1073 | bool Matrix3::ToEulerAnglesYXZ (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1074 | Radian& rfRAngle) const
|
---|
1075 | {
|
---|
1076 | // rot = cy*cz+sx*sy*sz cz*sx*sy-cy*sz cx*sy
|
---|
1077 | // cx*sz cx*cz -sx
|
---|
1078 | // -cz*sy+cy*sx*sz cy*cz*sx+sy*sz cx*cy
|
---|
1079 |
|
---|
1080 | rfPAngle = Math::ASin(-m[1][2]);
|
---|
1081 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1082 | {
|
---|
1083 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1084 | {
|
---|
1085 | rfYAngle = Math::ATan2(m[0][2],m[2][2]);
|
---|
1086 | rfRAngle = Math::ATan2(m[1][0],m[1][1]);
|
---|
1087 | return true;
|
---|
1088 | }
|
---|
1089 | else
|
---|
1090 | {
|
---|
1091 | // WARNING. Not a unique solution.
|
---|
1092 | Radian fRmY = Math::ATan2(-m[0][1],m[0][0]);
|
---|
1093 | rfRAngle = Radian(0.0); // any angle works
|
---|
1094 | rfYAngle = rfRAngle - fRmY;
|
---|
1095 | return false;
|
---|
1096 | }
|
---|
1097 | }
|
---|
1098 | else
|
---|
1099 | {
|
---|
1100 | // WARNING. Not a unique solution.
|
---|
1101 | Radian fRpY = Math::ATan2(-m[0][1],m[0][0]);
|
---|
1102 | rfRAngle = Radian(0.0); // any angle works
|
---|
1103 | rfYAngle = fRpY - rfRAngle;
|
---|
1104 | return false;
|
---|
1105 | }
|
---|
1106 | }
|
---|
1107 | //-----------------------------------------------------------------------
|
---|
1108 | bool Matrix3::ToEulerAnglesYZX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1109 | Radian& rfRAngle) const
|
---|
1110 | {
|
---|
1111 | // rot = cy*cz sx*sy-cx*cy*sz cx*sy+cy*sx*sz
|
---|
1112 | // sz cx*cz -cz*sx
|
---|
1113 | // -cz*sy cy*sx+cx*sy*sz cx*cy-sx*sy*sz
|
---|
1114 |
|
---|
1115 | rfPAngle = Math::ASin(m[1][0]);
|
---|
1116 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1117 | {
|
---|
1118 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1119 | {
|
---|
1120 | rfYAngle = Math::ATan2(-m[2][0],m[0][0]);
|
---|
1121 | rfRAngle = Math::ATan2(-m[1][2],m[1][1]);
|
---|
1122 | return true;
|
---|
1123 | }
|
---|
1124 | else
|
---|
1125 | {
|
---|
1126 | // WARNING. Not a unique solution.
|
---|
1127 | Radian fRmY = Math::ATan2(m[2][1],m[2][2]);
|
---|
1128 | rfRAngle = Radian(0.0); // any angle works
|
---|
1129 | rfYAngle = rfRAngle - fRmY;
|
---|
1130 | return false;
|
---|
1131 | }
|
---|
1132 | }
|
---|
1133 | else
|
---|
1134 | {
|
---|
1135 | // WARNING. Not a unique solution.
|
---|
1136 | Radian fRpY = Math::ATan2(m[2][1],m[2][2]);
|
---|
1137 | rfRAngle = Radian(0.0); // any angle works
|
---|
1138 | rfYAngle = fRpY - rfRAngle;
|
---|
1139 | return false;
|
---|
1140 | }
|
---|
1141 | }
|
---|
1142 | //-----------------------------------------------------------------------
|
---|
1143 | bool Matrix3::ToEulerAnglesZXY (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1144 | Radian& rfRAngle) const
|
---|
1145 | {
|
---|
1146 | // rot = cy*cz-sx*sy*sz -cx*sz cz*sy+cy*sx*sz
|
---|
1147 | // cz*sx*sy+cy*sz cx*cz -cy*cz*sx+sy*sz
|
---|
1148 | // -cx*sy sx cx*cy
|
---|
1149 |
|
---|
1150 | rfPAngle = Math::ASin(m[2][1]);
|
---|
1151 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1152 | {
|
---|
1153 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1154 | {
|
---|
1155 | rfYAngle = Math::ATan2(-m[0][1],m[1][1]);
|
---|
1156 | rfRAngle = Math::ATan2(-m[2][0],m[2][2]);
|
---|
1157 | return true;
|
---|
1158 | }
|
---|
1159 | else
|
---|
1160 | {
|
---|
1161 | // WARNING. Not a unique solution.
|
---|
1162 | Radian fRmY = Math::ATan2(m[0][2],m[0][0]);
|
---|
1163 | rfRAngle = Radian(0.0); // any angle works
|
---|
1164 | rfYAngle = rfRAngle - fRmY;
|
---|
1165 | return false;
|
---|
1166 | }
|
---|
1167 | }
|
---|
1168 | else
|
---|
1169 | {
|
---|
1170 | // WARNING. Not a unique solution.
|
---|
1171 | Radian fRpY = Math::ATan2(m[0][2],m[0][0]);
|
---|
1172 | rfRAngle = Radian(0.0); // any angle works
|
---|
1173 | rfYAngle = fRpY - rfRAngle;
|
---|
1174 | return false;
|
---|
1175 | }
|
---|
1176 | }
|
---|
1177 | //-----------------------------------------------------------------------
|
---|
1178 | bool Matrix3::ToEulerAnglesZYX (Radian& rfYAngle, Radian& rfPAngle,
|
---|
1179 | Radian& rfRAngle) const
|
---|
1180 | {
|
---|
1181 | // rot = cy*cz cz*sx*sy-cx*sz cx*cz*sy+sx*sz
|
---|
1182 | // cy*sz cx*cz+sx*sy*sz -cz*sx+cx*sy*sz
|
---|
1183 | // -sy cy*sx cx*cy
|
---|
1184 |
|
---|
1185 | rfPAngle = Math::ASin(-m[2][0]);
|
---|
1186 | if ( rfPAngle < Radian(Math::HALF_PI) )
|
---|
1187 | {
|
---|
1188 | if ( rfPAngle > Radian(-Math::HALF_PI) )
|
---|
1189 | {
|
---|
1190 | rfYAngle = Math::ATan2(m[1][0],m[0][0]);
|
---|
1191 | rfRAngle = Math::ATan2(m[2][1],m[2][2]);
|
---|
1192 | return true;
|
---|
1193 | }
|
---|
1194 | else
|
---|
1195 | {
|
---|
1196 | // WARNING. Not a unique solution.
|
---|
1197 | Radian fRmY = Math::ATan2(-m[0][1],m[0][2]);
|
---|
1198 | rfRAngle = Radian(0.0); // any angle works
|
---|
1199 | rfYAngle = rfRAngle - fRmY;
|
---|
1200 | return false;
|
---|
1201 | }
|
---|
1202 | }
|
---|
1203 | else
|
---|
1204 | {
|
---|
1205 | // WARNING. Not a unique solution.
|
---|
1206 | Radian fRpY = Math::ATan2(-m[0][1],m[0][2]);
|
---|
1207 | rfRAngle = Radian(0.0); // any angle works
|
---|
1208 | rfYAngle = fRpY - rfRAngle;
|
---|
1209 | return false;
|
---|
1210 | }
|
---|
1211 | }
|
---|
1212 | //-----------------------------------------------------------------------
|
---|
1213 | void Matrix3::FromEulerAnglesXYZ (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1214 | const Radian& fRAngle)
|
---|
1215 | {
|
---|
1216 | Real fCos, fSin;
|
---|
1217 |
|
---|
1218 | fCos = Math::Cos(fYAngle);
|
---|
1219 | fSin = Math::Sin(fYAngle);
|
---|
1220 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1221 |
|
---|
1222 | fCos = Math::Cos(fPAngle);
|
---|
1223 | fSin = Math::Sin(fPAngle);
|
---|
1224 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1225 |
|
---|
1226 | fCos = Math::Cos(fRAngle);
|
---|
1227 | fSin = Math::Sin(fRAngle);
|
---|
1228 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1229 |
|
---|
1230 | *this = kXMat*(kYMat*kZMat);
|
---|
1231 | }
|
---|
1232 | //-----------------------------------------------------------------------
|
---|
1233 | void Matrix3::FromEulerAnglesXZY (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1234 | const Radian& fRAngle)
|
---|
1235 | {
|
---|
1236 | Real fCos, fSin;
|
---|
1237 |
|
---|
1238 | fCos = Math::Cos(fYAngle);
|
---|
1239 | fSin = Math::Sin(fYAngle);
|
---|
1240 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1241 |
|
---|
1242 | fCos = Math::Cos(fPAngle);
|
---|
1243 | fSin = Math::Sin(fPAngle);
|
---|
1244 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1245 |
|
---|
1246 | fCos = Math::Cos(fRAngle);
|
---|
1247 | fSin = Math::Sin(fRAngle);
|
---|
1248 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1249 |
|
---|
1250 | *this = kXMat*(kZMat*kYMat);
|
---|
1251 | }
|
---|
1252 | //-----------------------------------------------------------------------
|
---|
1253 | void Matrix3::FromEulerAnglesYXZ (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1254 | const Radian& fRAngle)
|
---|
1255 | {
|
---|
1256 | Real fCos, fSin;
|
---|
1257 |
|
---|
1258 | fCos = Math::Cos(fYAngle);
|
---|
1259 | fSin = Math::Sin(fYAngle);
|
---|
1260 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1261 |
|
---|
1262 | fCos = Math::Cos(fPAngle);
|
---|
1263 | fSin = Math::Sin(fPAngle);
|
---|
1264 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1265 |
|
---|
1266 | fCos = Math::Cos(fRAngle);
|
---|
1267 | fSin = Math::Sin(fRAngle);
|
---|
1268 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1269 |
|
---|
1270 | *this = kYMat*(kXMat*kZMat);
|
---|
1271 | }
|
---|
1272 | //-----------------------------------------------------------------------
|
---|
1273 | void Matrix3::FromEulerAnglesYZX (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1274 | const Radian& fRAngle)
|
---|
1275 | {
|
---|
1276 | Real fCos, fSin;
|
---|
1277 |
|
---|
1278 | fCos = Math::Cos(fYAngle);
|
---|
1279 | fSin = Math::Sin(fYAngle);
|
---|
1280 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1281 |
|
---|
1282 | fCos = Math::Cos(fPAngle);
|
---|
1283 | fSin = Math::Sin(fPAngle);
|
---|
1284 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1285 |
|
---|
1286 | fCos = Math::Cos(fRAngle);
|
---|
1287 | fSin = Math::Sin(fRAngle);
|
---|
1288 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1289 |
|
---|
1290 | *this = kYMat*(kZMat*kXMat);
|
---|
1291 | }
|
---|
1292 | //-----------------------------------------------------------------------
|
---|
1293 | void Matrix3::FromEulerAnglesZXY (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1294 | const Radian& fRAngle)
|
---|
1295 | {
|
---|
1296 | Real fCos, fSin;
|
---|
1297 |
|
---|
1298 | fCos = Math::Cos(fYAngle);
|
---|
1299 | fSin = Math::Sin(fYAngle);
|
---|
1300 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1301 |
|
---|
1302 | fCos = Math::Cos(fPAngle);
|
---|
1303 | fSin = Math::Sin(fPAngle);
|
---|
1304 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1305 |
|
---|
1306 | fCos = Math::Cos(fRAngle);
|
---|
1307 | fSin = Math::Sin(fRAngle);
|
---|
1308 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1309 |
|
---|
1310 | *this = kZMat*(kXMat*kYMat);
|
---|
1311 | }
|
---|
1312 | //-----------------------------------------------------------------------
|
---|
1313 | void Matrix3::FromEulerAnglesZYX (const Radian& fYAngle, const Radian& fPAngle,
|
---|
1314 | const Radian& fRAngle)
|
---|
1315 | {
|
---|
1316 | Real fCos, fSin;
|
---|
1317 |
|
---|
1318 | fCos = Math::Cos(fYAngle);
|
---|
1319 | fSin = Math::Sin(fYAngle);
|
---|
1320 | Matrix3 kZMat(fCos,-fSin,0.0,fSin,fCos,0.0,0.0,0.0,1.0);
|
---|
1321 |
|
---|
1322 | fCos = Math::Cos(fPAngle);
|
---|
1323 | fSin = Math::Sin(fPAngle);
|
---|
1324 | Matrix3 kYMat(fCos,0.0,fSin,0.0,1.0,0.0,-fSin,0.0,fCos);
|
---|
1325 |
|
---|
1326 | fCos = Math::Cos(fRAngle);
|
---|
1327 | fSin = Math::Sin(fRAngle);
|
---|
1328 | Matrix3 kXMat(1.0,0.0,0.0,0.0,fCos,-fSin,0.0,fSin,fCos);
|
---|
1329 |
|
---|
1330 | *this = kZMat*(kYMat*kXMat);
|
---|
1331 | }
|
---|
1332 | //-----------------------------------------------------------------------
|
---|
1333 | void Matrix3::Tridiagonal (Real afDiag[3], Real afSubDiag[3])
|
---|
1334 | {
|
---|
1335 | // Householder reduction T = Q^t M Q
|
---|
1336 | // Input:
|
---|
1337 | // mat, symmetric 3x3 matrix M
|
---|
1338 | // Output:
|
---|
1339 | // mat, orthogonal matrix Q
|
---|
1340 | // diag, diagonal entries of T
|
---|
1341 | // subd, subdiagonal entries of T (T is symmetric)
|
---|
1342 |
|
---|
1343 | Real fA = m[0][0];
|
---|
1344 | Real fB = m[0][1];
|
---|
1345 | Real fC = m[0][2];
|
---|
1346 | Real fD = m[1][1];
|
---|
1347 | Real fE = m[1][2];
|
---|
1348 | Real fF = m[2][2];
|
---|
1349 |
|
---|
1350 | afDiag[0] = fA;
|
---|
1351 | afSubDiag[2] = 0.0;
|
---|
1352 | if ( Math::Abs(fC) >= EPSILON )
|
---|
1353 | {
|
---|
1354 | Real fLength = Math::Sqrt(fB*fB+fC*fC);
|
---|
1355 | Real fInvLength = 1.0/fLength;
|
---|
1356 | fB *= fInvLength;
|
---|
1357 | fC *= fInvLength;
|
---|
1358 | Real fQ = 2.0*fB*fE+fC*(fF-fD);
|
---|
1359 | afDiag[1] = fD+fC*fQ;
|
---|
1360 | afDiag[2] = fF-fC*fQ;
|
---|
1361 | afSubDiag[0] = fLength;
|
---|
1362 | afSubDiag[1] = fE-fB*fQ;
|
---|
1363 | m[0][0] = 1.0;
|
---|
1364 | m[0][1] = 0.0;
|
---|
1365 | m[0][2] = 0.0;
|
---|
1366 | m[1][0] = 0.0;
|
---|
1367 | m[1][1] = fB;
|
---|
1368 | m[1][2] = fC;
|
---|
1369 | m[2][0] = 0.0;
|
---|
1370 | m[2][1] = fC;
|
---|
1371 | m[2][2] = -fB;
|
---|
1372 | }
|
---|
1373 | else
|
---|
1374 | {
|
---|
1375 | afDiag[1] = fD;
|
---|
1376 | afDiag[2] = fF;
|
---|
1377 | afSubDiag[0] = fB;
|
---|
1378 | afSubDiag[1] = fE;
|
---|
1379 | m[0][0] = 1.0;
|
---|
1380 | m[0][1] = 0.0;
|
---|
1381 | m[0][2] = 0.0;
|
---|
1382 | m[1][0] = 0.0;
|
---|
1383 | m[1][1] = 1.0;
|
---|
1384 | m[1][2] = 0.0;
|
---|
1385 | m[2][0] = 0.0;
|
---|
1386 | m[2][1] = 0.0;
|
---|
1387 | m[2][2] = 1.0;
|
---|
1388 | }
|
---|
1389 | }
|
---|
1390 | //-----------------------------------------------------------------------
|
---|
1391 | bool Matrix3::QLAlgorithm (Real afDiag[3], Real afSubDiag[3])
|
---|
1392 | {
|
---|
1393 | // QL iteration with implicit shifting to reduce matrix from tridiagonal
|
---|
1394 | // to diagonal
|
---|
1395 |
|
---|
1396 | for (int i0 = 0; i0 < 3; i0++)
|
---|
1397 | {
|
---|
1398 | const unsigned int iMaxIter = 32;
|
---|
1399 | unsigned int iIter;
|
---|
1400 | for (iIter = 0; iIter < iMaxIter; iIter++)
|
---|
1401 | {
|
---|
1402 | int i1;
|
---|
1403 | for (i1 = i0; i1 <= 1; i1++)
|
---|
1404 | {
|
---|
1405 | Real fSum = Math::Abs(afDiag[i1]) +
|
---|
1406 | Math::Abs(afDiag[i1+1]);
|
---|
1407 | if ( Math::Abs(afSubDiag[i1]) + fSum == fSum )
|
---|
1408 | break;
|
---|
1409 | }
|
---|
1410 | if ( i1 == i0 )
|
---|
1411 | break;
|
---|
1412 |
|
---|
1413 | Real fTmp0 = (afDiag[i0+1]-afDiag[i0])/(2.0*afSubDiag[i0]);
|
---|
1414 | Real fTmp1 = Math::Sqrt(fTmp0*fTmp0+1.0);
|
---|
1415 | if ( fTmp0 < 0.0 )
|
---|
1416 | fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0-fTmp1);
|
---|
1417 | else
|
---|
1418 | fTmp0 = afDiag[i1]-afDiag[i0]+afSubDiag[i0]/(fTmp0+fTmp1);
|
---|
1419 | Real fSin = 1.0;
|
---|
1420 | Real fCos = 1.0;
|
---|
1421 | Real fTmp2 = 0.0;
|
---|
1422 | for (int i2 = i1-1; i2 >= i0; i2--)
|
---|
1423 | {
|
---|
1424 | Real fTmp3 = fSin*afSubDiag[i2];
|
---|
1425 | Real fTmp4 = fCos*afSubDiag[i2];
|
---|
1426 | if ( Math::Abs(fTmp3) >= Math::Abs(fTmp0) )
|
---|
1427 | {
|
---|
1428 | fCos = fTmp0/fTmp3;
|
---|
1429 | fTmp1 = Math::Sqrt(fCos*fCos+1.0);
|
---|
1430 | afSubDiag[i2+1] = fTmp3*fTmp1;
|
---|
1431 | fSin = 1.0/fTmp1;
|
---|
1432 | fCos *= fSin;
|
---|
1433 | }
|
---|
1434 | else
|
---|
1435 | {
|
---|
1436 | fSin = fTmp3/fTmp0;
|
---|
1437 | fTmp1 = Math::Sqrt(fSin*fSin+1.0);
|
---|
1438 | afSubDiag[i2+1] = fTmp0*fTmp1;
|
---|
1439 | fCos = 1.0/fTmp1;
|
---|
1440 | fSin *= fCos;
|
---|
1441 | }
|
---|
1442 | fTmp0 = afDiag[i2+1]-fTmp2;
|
---|
1443 | fTmp1 = (afDiag[i2]-fTmp0)*fSin+2.0*fTmp4*fCos;
|
---|
1444 | fTmp2 = fSin*fTmp1;
|
---|
1445 | afDiag[i2+1] = fTmp0+fTmp2;
|
---|
1446 | fTmp0 = fCos*fTmp1-fTmp4;
|
---|
1447 |
|
---|
1448 | for (int iRow = 0; iRow < 3; iRow++)
|
---|
1449 | {
|
---|
1450 | fTmp3 = m[iRow][i2+1];
|
---|
1451 | m[iRow][i2+1] = fSin*m[iRow][i2] +
|
---|
1452 | fCos*fTmp3;
|
---|
1453 | m[iRow][i2] = fCos*m[iRow][i2] -
|
---|
1454 | fSin*fTmp3;
|
---|
1455 | }
|
---|
1456 | }
|
---|
1457 | afDiag[i0] -= fTmp2;
|
---|
1458 | afSubDiag[i0] = fTmp0;
|
---|
1459 | afSubDiag[i1] = 0.0;
|
---|
1460 | }
|
---|
1461 |
|
---|
1462 | if ( iIter == iMaxIter )
|
---|
1463 | {
|
---|
1464 | // should not get here under normal circumstances
|
---|
1465 | return false;
|
---|
1466 | }
|
---|
1467 | }
|
---|
1468 |
|
---|
1469 | return true;
|
---|
1470 | }
|
---|
1471 | //-----------------------------------------------------------------------
|
---|
1472 | void Matrix3::EigenSolveSymmetric (Real afEigenvalue[3],
|
---|
1473 | Vector3 akEigenvector[3]) const
|
---|
1474 | {
|
---|
1475 | Matrix3 kMatrix = *this;
|
---|
1476 | Real afSubDiag[3];
|
---|
1477 | kMatrix.Tridiagonal(afEigenvalue,afSubDiag);
|
---|
1478 | kMatrix.QLAlgorithm(afEigenvalue,afSubDiag);
|
---|
1479 |
|
---|
1480 | for (size_t i = 0; i < 3; i++)
|
---|
1481 | {
|
---|
1482 | akEigenvector[i][0] = kMatrix[0][i];
|
---|
1483 | akEigenvector[i][1] = kMatrix[1][i];
|
---|
1484 | akEigenvector[i][2] = kMatrix[2][i];
|
---|
1485 | }
|
---|
1486 |
|
---|
1487 | // make eigenvectors form a right--handed system
|
---|
1488 | Vector3 kCross = akEigenvector[1].crossProduct(akEigenvector[2]);
|
---|
1489 | Real fDet = akEigenvector[0].dotProduct(kCross);
|
---|
1490 | if ( fDet < 0.0 )
|
---|
1491 | {
|
---|
1492 | akEigenvector[2][0] = - akEigenvector[2][0];
|
---|
1493 | akEigenvector[2][1] = - akEigenvector[2][1];
|
---|
1494 | akEigenvector[2][2] = - akEigenvector[2][2];
|
---|
1495 | }
|
---|
1496 | }
|
---|
1497 | //-----------------------------------------------------------------------
|
---|
1498 | void Matrix3::TensorProduct (const Vector3& rkU, const Vector3& rkV,
|
---|
1499 | Matrix3& rkProduct)
|
---|
1500 | {
|
---|
1501 | for (size_t iRow = 0; iRow < 3; iRow++)
|
---|
1502 | {
|
---|
1503 | for (size_t iCol = 0; iCol < 3; iCol++)
|
---|
1504 | rkProduct[iRow][iCol] = rkU[iRow]*rkV[iCol];
|
---|
1505 | }
|
---|
1506 | }
|
---|
1507 | //-----------------------------------------------------------------------
|
---|
1508 | }
|
---|