1 | /*
|
---|
2 | -----------------------------------------------------------------------------
|
---|
3 | This source file is part of OGRE
|
---|
4 | (Object-oriented Graphics Rendering Engine)
|
---|
5 | For the latest info, see http://www.ogre3d.org/
|
---|
6 |
|
---|
7 | Copyright (c) 2000-2005 The OGRE Team
|
---|
8 | Also see acknowledgements in Readme.html
|
---|
9 |
|
---|
10 | This program is free software; you can redistribute it and/or modify it under
|
---|
11 | the terms of the GNU Lesser General Public License as published by the Free Software
|
---|
12 | Foundation; either version 2 of the License, or (at your option) any later
|
---|
13 | version.
|
---|
14 |
|
---|
15 | This program is distributed in the hope that it will be useful, but WITHOUT
|
---|
16 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
---|
17 | FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
|
---|
18 |
|
---|
19 | You should have received a copy of the GNU Lesser General Public License along with
|
---|
20 | this program; if not, write to the Free Software Foundation, Inc., 59 Temple
|
---|
21 | Place - Suite 330, Boston, MA 02111-1307, USA, or go to
|
---|
22 | http://www.gnu.org/copyleft/lesser.txt.
|
---|
23 | -----------------------------------------------------------------------------
|
---|
24 | */
|
---|
25 | #include "OgreStableHeaders.h"
|
---|
26 | #include "OgreRotationalSpline.h"
|
---|
27 |
|
---|
28 |
|
---|
29 |
|
---|
30 | namespace Ogre {
|
---|
31 |
|
---|
32 | //---------------------------------------------------------------------
|
---|
33 | RotationalSpline::RotationalSpline()
|
---|
34 | {
|
---|
35 | }
|
---|
36 | //---------------------------------------------------------------------
|
---|
37 | RotationalSpline::~RotationalSpline()
|
---|
38 | {
|
---|
39 | }
|
---|
40 | //---------------------------------------------------------------------
|
---|
41 | void RotationalSpline::addPoint(const Quaternion& p)
|
---|
42 | {
|
---|
43 | mPoints.push_back(p);
|
---|
44 | if (mAutoCalc)
|
---|
45 | {
|
---|
46 | recalcTangents();
|
---|
47 | }
|
---|
48 | }
|
---|
49 | //---------------------------------------------------------------------
|
---|
50 | Quaternion RotationalSpline::interpolate(Real t, bool useShortestPath)
|
---|
51 | {
|
---|
52 | // Work out which segment this is in
|
---|
53 | Real fSeg = t * (mPoints.size() - 1);
|
---|
54 | unsigned int segIdx = (unsigned int)fSeg;
|
---|
55 | // Apportion t
|
---|
56 | t = fSeg - segIdx;
|
---|
57 |
|
---|
58 | return interpolate(segIdx, t, useShortestPath);
|
---|
59 |
|
---|
60 | }
|
---|
61 | //---------------------------------------------------------------------
|
---|
62 | Quaternion RotationalSpline::interpolate(unsigned int fromIndex, Real t,
|
---|
63 | bool useShortestPath)
|
---|
64 | {
|
---|
65 | // Bounds check
|
---|
66 | assert (fromIndex >= 0 && fromIndex < mPoints.size() &&
|
---|
67 | "fromIndex out of bounds");
|
---|
68 |
|
---|
69 | if ((fromIndex + 1) == mPoints.size())
|
---|
70 | {
|
---|
71 | // Duff request, cannot blend to nothing
|
---|
72 | // Just return source
|
---|
73 | return mPoints[fromIndex];
|
---|
74 |
|
---|
75 | }
|
---|
76 | // Fast special cases
|
---|
77 | if (t == 0.0f)
|
---|
78 | {
|
---|
79 | return mPoints[fromIndex];
|
---|
80 | }
|
---|
81 | else if(t == 1.0f)
|
---|
82 | {
|
---|
83 | return mPoints[fromIndex + 1];
|
---|
84 | }
|
---|
85 |
|
---|
86 | // Real interpolation
|
---|
87 | // Use squad using tangents we've already set up
|
---|
88 | Quaternion &p = mPoints[fromIndex];
|
---|
89 | Quaternion &q = mPoints[fromIndex+1];
|
---|
90 | Quaternion &a = mTangents[fromIndex];
|
---|
91 | Quaternion &b = mTangents[fromIndex+1];
|
---|
92 |
|
---|
93 | // NB interpolate to nearest rotation
|
---|
94 | return Quaternion::Squad(t, p, a, b, q, useShortestPath);
|
---|
95 |
|
---|
96 | }
|
---|
97 | //---------------------------------------------------------------------
|
---|
98 | void RotationalSpline::recalcTangents(void)
|
---|
99 | {
|
---|
100 | // ShoeMake (1987) approach
|
---|
101 | // Just like Catmull-Rom really, just more gnarly
|
---|
102 | // And no, I don't understand how to derive this!
|
---|
103 | //
|
---|
104 | // let p = point[i], pInv = p.Inverse
|
---|
105 | // tangent[i] = p * exp( -0.25 * ( log(pInv * point[i+1]) + log(pInv * point[i-1]) ) )
|
---|
106 | //
|
---|
107 | // Assume endpoint tangents are parallel with line with neighbour
|
---|
108 |
|
---|
109 | unsigned int i, numPoints;
|
---|
110 | bool isClosed;
|
---|
111 |
|
---|
112 | numPoints = (unsigned int)mPoints.size();
|
---|
113 |
|
---|
114 | if (numPoints < 2)
|
---|
115 | {
|
---|
116 | // Can't do anything yet
|
---|
117 | return;
|
---|
118 | }
|
---|
119 |
|
---|
120 | mTangents.resize(numPoints);
|
---|
121 |
|
---|
122 | if (mPoints[0] == mPoints[numPoints-1])
|
---|
123 | {
|
---|
124 | isClosed = true;
|
---|
125 | }
|
---|
126 | else
|
---|
127 | {
|
---|
128 | isClosed = false;
|
---|
129 | }
|
---|
130 |
|
---|
131 | Quaternion invp, part1, part2, preExp;
|
---|
132 | for(i = 0; i < numPoints; ++i)
|
---|
133 | {
|
---|
134 | Quaternion &p = mPoints[i];
|
---|
135 | invp = p.Inverse();
|
---|
136 |
|
---|
137 | if (i ==0)
|
---|
138 | {
|
---|
139 | // special case start
|
---|
140 | part1 = (invp * mPoints[i+1]).Log();
|
---|
141 | if (isClosed)
|
---|
142 | {
|
---|
143 | // Use numPoints-2 since numPoints-1 == end == start == this one
|
---|
144 | part2 = (invp * mPoints[numPoints-2]).Log();
|
---|
145 | }
|
---|
146 | else
|
---|
147 | {
|
---|
148 | part2 = (invp * p).Log();
|
---|
149 | }
|
---|
150 | }
|
---|
151 | else if (i == numPoints-1)
|
---|
152 | {
|
---|
153 | // special case end
|
---|
154 | if (isClosed)
|
---|
155 | {
|
---|
156 | // Wrap to [1] (not [0], this is the same as end == this one)
|
---|
157 | part1 = (invp * mPoints[1]).Log();
|
---|
158 | }
|
---|
159 | else
|
---|
160 | {
|
---|
161 | part1 = (invp * p).Log();
|
---|
162 | }
|
---|
163 | part2 = (invp * mPoints[i-1]).Log();
|
---|
164 | }
|
---|
165 | else
|
---|
166 | {
|
---|
167 | part1 = (invp * mPoints[i+1]).Log();
|
---|
168 | part2 = (invp * mPoints[i-1]).Log();
|
---|
169 | }
|
---|
170 |
|
---|
171 | preExp = -0.25 * (part1 + part2);
|
---|
172 | mTangents[i] = p * preExp.Exp();
|
---|
173 |
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 |
|
---|
178 | }
|
---|
179 | //---------------------------------------------------------------------
|
---|
180 | const Quaternion& RotationalSpline::getPoint(unsigned short index) const
|
---|
181 | {
|
---|
182 | assert (index < mPoints.size() && "Point index is out of bounds!!");
|
---|
183 |
|
---|
184 | return mPoints[index];
|
---|
185 | }
|
---|
186 | //---------------------------------------------------------------------
|
---|
187 | unsigned short RotationalSpline::getNumPoints(void) const
|
---|
188 | {
|
---|
189 | return (unsigned short)mPoints.size();
|
---|
190 | }
|
---|
191 | //---------------------------------------------------------------------
|
---|
192 | void RotationalSpline::clear(void)
|
---|
193 | {
|
---|
194 | mPoints.clear();
|
---|
195 | mTangents.clear();
|
---|
196 | }
|
---|
197 | //---------------------------------------------------------------------
|
---|
198 | void RotationalSpline::updatePoint(unsigned short index, const Quaternion& value)
|
---|
199 | {
|
---|
200 | assert (index < mPoints.size() && "Point index is out of bounds!!");
|
---|
201 |
|
---|
202 | mPoints[index] = value;
|
---|
203 | if (mAutoCalc)
|
---|
204 | {
|
---|
205 | recalcTangents();
|
---|
206 | }
|
---|
207 | }
|
---|
208 | //---------------------------------------------------------------------
|
---|
209 | void RotationalSpline::setAutoCalculate(bool autoCalc)
|
---|
210 | {
|
---|
211 | mAutoCalc = autoCalc;
|
---|
212 | }
|
---|
213 | //---------------------------------------------------------------------
|
---|
214 |
|
---|
215 |
|
---|
216 |
|
---|
217 | }
|
---|
218 |
|
---|
219 |
|
---|
220 |
|
---|
221 |
|
---|