1 | #include "lwEnvelope.h"
|
---|
2 |
|
---|
3 | lwKey *lwEnvelope::addKey( float time, float value )
|
---|
4 | {
|
---|
5 | lwKey *key = new lwKey(time, value);
|
---|
6 | keys.insert(lower_bound(keys.begin(), keys.end(), key), key);
|
---|
7 | return key;
|
---|
8 | }
|
---|
9 |
|
---|
10 | /*======================================================================
|
---|
11 | range()
|
---|
12 |
|
---|
13 | Given the value v of a periodic function, returns the equivalent value
|
---|
14 | v2 in the principal interval [lo, hi]. If i isn't NULL, it receives
|
---|
15 | the number of wavelengths between v and v2.
|
---|
16 |
|
---|
17 | v2 = v - i * (hi - lo)
|
---|
18 |
|
---|
19 | For example, range( 3 pi, 0, 2 pi, i ) returns pi, with i = 1.
|
---|
20 | ====================================================================== */
|
---|
21 |
|
---|
22 | float lwEnvelope::range( float v, float lo, float hi, int *i )
|
---|
23 | {
|
---|
24 | float v2, r = hi - lo;
|
---|
25 |
|
---|
26 | if ( r == 0.0 ) {
|
---|
27 | if ( i ) *i = 0;
|
---|
28 | return lo;
|
---|
29 | }
|
---|
30 |
|
---|
31 | v2 = lo + v - r * ( float ) floor(( double ) v / r );
|
---|
32 | if ( i ) *i = -( int )(( v2 - v ) / r + ( v2 > v ? 0.5 : -0.5 ));
|
---|
33 |
|
---|
34 | return v2;
|
---|
35 | }
|
---|
36 |
|
---|
37 | /*======================================================================
|
---|
38 | hermite()
|
---|
39 |
|
---|
40 | Calculate the Hermite coefficients.
|
---|
41 | ====================================================================== */
|
---|
42 |
|
---|
43 | void lwEnvelope::hermite( float t, float *h1, float *h2, float *h3, float *h4 )
|
---|
44 | {
|
---|
45 | float t2, t3;
|
---|
46 |
|
---|
47 | t2 = t * t;
|
---|
48 | t3 = t * t2;
|
---|
49 |
|
---|
50 | *h2 = 3.0f * t2 - t3 - t3;
|
---|
51 | *h1 = 1.0f - *h2;
|
---|
52 | *h4 = t3 - t2;
|
---|
53 | *h3 = *h4 - t2 + t;
|
---|
54 | }
|
---|
55 |
|
---|
56 | /*======================================================================
|
---|
57 | bezier()
|
---|
58 |
|
---|
59 | Interpolate the value of a 1D Bezier curve.
|
---|
60 | ====================================================================== */
|
---|
61 |
|
---|
62 | float lwEnvelope::bezier( float x0, float x1, float x2, float x3, float t )
|
---|
63 | {
|
---|
64 | float a, b, c, t2, t3;
|
---|
65 |
|
---|
66 | t2 = t * t;
|
---|
67 | t3 = t2 * t;
|
---|
68 |
|
---|
69 | c = 3.0f * ( x1 - x0 );
|
---|
70 | b = 3.0f * ( x2 - x1 ) - c;
|
---|
71 | a = x3 - x0 - c - b;
|
---|
72 |
|
---|
73 | return a * t3 + b * t2 + c * t + x0;
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | /*======================================================================
|
---|
78 | bez2_time()
|
---|
79 |
|
---|
80 | Find the t for which bezier() returns the input time. The handle
|
---|
81 | endpoints of a BEZ2 curve represent the control points, and these have
|
---|
82 | (time, value) coordinates, so time is used as both a coordinate and a
|
---|
83 | parameter for this curve type.
|
---|
84 | ====================================================================== */
|
---|
85 |
|
---|
86 | float lwEnvelope::bez2_time( float x0, float x1, float x2, float x3, float time, float *t0, float *t1 )
|
---|
87 | {
|
---|
88 | float v, t;
|
---|
89 |
|
---|
90 | t = *t0 + ( *t1 - *t0 ) * 0.5f;
|
---|
91 | v = bezier( x0, x1, x2, x3, t );
|
---|
92 | if ( fabs( time - v ) > .0001f ) {
|
---|
93 | if ( v > time )
|
---|
94 | *t1 = t;
|
---|
95 | else
|
---|
96 | *t0 = t;
|
---|
97 | return bez2_time( x0, x1, x2, x3, time, t0, t1 );
|
---|
98 | }
|
---|
99 | else
|
---|
100 | return t;
|
---|
101 | }
|
---|
102 |
|
---|
103 |
|
---|
104 | /*
|
---|
105 | ======================================================================
|
---|
106 | bez2()
|
---|
107 |
|
---|
108 | Interpolate the value of a BEZ2 curve.
|
---|
109 | ====================================================================== */
|
---|
110 |
|
---|
111 | float lwEnvelope::bez2( lwKey *key0, lwKey *key1, float time )
|
---|
112 | {
|
---|
113 | float x, y, t, t0 = 0.0f, t1 = 1.0f;
|
---|
114 |
|
---|
115 | if ( key0->shape == ID_BEZ2 )
|
---|
116 | x = key0->time + key0->param[ 2 ];
|
---|
117 | else
|
---|
118 | x = key0->time + ( key1->time - key0->time ) / 3.0f;
|
---|
119 |
|
---|
120 | t = bez2_time( key0->time, x, key1->time + key1->param[ 0 ], key1->time,
|
---|
121 | time, &t0, &t1 );
|
---|
122 |
|
---|
123 | if ( key0->shape == ID_BEZ2 )
|
---|
124 | y = key0->value + key0->param[ 3 ];
|
---|
125 | else
|
---|
126 | y = key0->value + key0->param[ 1 ] / 3.0f;
|
---|
127 |
|
---|
128 | return bezier( key0->value, y, key1->param[ 1 ] + key1->value, key1->value, t );
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | /*
|
---|
133 | ======================================================================
|
---|
134 | outgoing()
|
---|
135 |
|
---|
136 | Return the outgoing tangent to the curve at key0. The value returned
|
---|
137 | for the BEZ2 case is used when extrapolating a linear pre behavior and
|
---|
138 | when interpolating a non-BEZ2 span.
|
---|
139 | ====================================================================== */
|
---|
140 |
|
---|
141 | float lwEnvelope::outgoing( unsigned int key0, unsigned int key1 )
|
---|
142 | {
|
---|
143 | float a, b, d, t, tout;
|
---|
144 |
|
---|
145 | switch ( keys[key0]->shape )
|
---|
146 | {
|
---|
147 | case ID_TCB:
|
---|
148 | a = ( 1.0f - keys[key0]->tension )
|
---|
149 | * ( 1.0f + keys[key0]->continuity )
|
---|
150 | * ( 1.0f + keys[key0]->bias );
|
---|
151 | b = ( 1.0f - keys[key0]->tension )
|
---|
152 | * ( 1.0f - keys[key0]->continuity )
|
---|
153 | * ( 1.0f - keys[key0]->bias );
|
---|
154 | d = keys[key1]->value - keys[key0]->value;
|
---|
155 |
|
---|
156 |
|
---|
157 | if ( key0 > 0 )
|
---|
158 | {
|
---|
159 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
|
---|
160 | tout = t * ( a * ( keys[key0]->value - keys[ key0-1 ]->value ) + b * d );
|
---|
161 | }
|
---|
162 | else
|
---|
163 | tout = b * d;
|
---|
164 | break;
|
---|
165 |
|
---|
166 | case ID_LINE:
|
---|
167 | d = keys[key1]->value - keys[key0]->value;
|
---|
168 | if ( key0 > 0 )
|
---|
169 | {
|
---|
170 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
|
---|
171 | tout = t * ( keys[key0]->value - keys[ key0-1 ]->value + d );
|
---|
172 | }
|
---|
173 | else
|
---|
174 | tout = d;
|
---|
175 | break;
|
---|
176 |
|
---|
177 | case ID_BEZI:
|
---|
178 | case ID_HERM:
|
---|
179 | tout = keys[key0]->param[ 1 ];
|
---|
180 |
|
---|
181 | if ( key0 > 0 )
|
---|
182 | tout *= ( keys[key1]->time - keys[key0]->time ) / ( keys[key1]->time - keys[ key0-1 ]->time );
|
---|
183 |
|
---|
184 | break;
|
---|
185 |
|
---|
186 | case ID_BEZ2:
|
---|
187 | tout = keys[key0]->param[ 3 ] * ( keys[key1]->time - keys[key0]->time );
|
---|
188 | if ( fabs( keys[key0]->param[ 2 ] ) > 1e-5f )
|
---|
189 | tout /= keys[key0]->param[ 2 ];
|
---|
190 | else
|
---|
191 | tout *= 1e5f;
|
---|
192 | break;
|
---|
193 |
|
---|
194 | case ID_STEP:
|
---|
195 | default:
|
---|
196 | tout = 0.0f;
|
---|
197 | break;
|
---|
198 | }
|
---|
199 |
|
---|
200 | return tout;
|
---|
201 | }
|
---|
202 |
|
---|
203 |
|
---|
204 | /*======================================================================
|
---|
205 | incoming()
|
---|
206 |
|
---|
207 | Return the incoming tangent to the curve at key1. The value returned
|
---|
208 | for the BEZ2 case is used when extrapolating a linear post behavior.
|
---|
209 | ====================================================================== */
|
---|
210 |
|
---|
211 | float lwEnvelope::incoming( unsigned int key0, unsigned int key1 )
|
---|
212 | {
|
---|
213 | float a, b, d, t, tin;
|
---|
214 |
|
---|
215 | switch ( keys[key1]->shape )
|
---|
216 | {
|
---|
217 | case ID_LINE:
|
---|
218 | d = keys[key1]->value - keys[key0]->value;
|
---|
219 |
|
---|
220 | if ( key1 < keys.size()-1 )
|
---|
221 | {
|
---|
222 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
|
---|
223 | tin = t * ( keys[ key1+1 ]->value - keys[key1]->value + d );
|
---|
224 | }
|
---|
225 | else
|
---|
226 | tin = d;
|
---|
227 |
|
---|
228 | break;
|
---|
229 |
|
---|
230 | case ID_TCB:
|
---|
231 | a = ( 1.0f - keys[key1]->tension )
|
---|
232 | * ( 1.0f - keys[key1]->continuity )
|
---|
233 | * ( 1.0f + keys[key1]->bias );
|
---|
234 | b = ( 1.0f - keys[key1]->tension )
|
---|
235 | * ( 1.0f + keys[key1]->continuity )
|
---|
236 | * ( 1.0f - keys[key1]->bias );
|
---|
237 | d = keys[key1]->value - keys[key0]->value;
|
---|
238 | if ( key1 < keys.size()-1 ) {
|
---|
239 | t = ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
|
---|
240 | tin = t * ( b * ( keys[ key1+1 ]->value - keys[key1]->value ) + a * d );
|
---|
241 | }
|
---|
242 | else
|
---|
243 | tin = a * d;
|
---|
244 | break;
|
---|
245 |
|
---|
246 | case ID_BEZI:
|
---|
247 | case ID_HERM:
|
---|
248 | tin = keys[key1]->param[ 0 ];
|
---|
249 | if ( key1 < keys.size()-1 )
|
---|
250 | tin *= ( keys[key1]->time - keys[key0]->time ) / ( keys[ key1+1 ]->time - keys[key0]->time );
|
---|
251 | break;
|
---|
252 | return tin;
|
---|
253 |
|
---|
254 | case ID_BEZ2:
|
---|
255 | tin = keys[key1]->param[ 1 ] * ( keys[key1]->time - keys[key0]->time );
|
---|
256 | if ( fabs( keys[key1]->param[ 0 ] ) > 1e-5f )
|
---|
257 | tin /= keys[key1]->param[ 0 ];
|
---|
258 | else
|
---|
259 | tin *= 1e5f;
|
---|
260 | break;
|
---|
261 |
|
---|
262 | case ID_STEP:
|
---|
263 | default:
|
---|
264 | tin = 0.0f;
|
---|
265 | break;
|
---|
266 | }
|
---|
267 |
|
---|
268 | return tin;
|
---|
269 | }
|
---|
270 |
|
---|
271 | /*======================================================================
|
---|
272 | evalEnvelope()
|
---|
273 |
|
---|
274 | Given a list of keys and a time, returns the interpolated value of the
|
---|
275 | envelope at that time.
|
---|
276 | ====================================================================== */
|
---|
277 |
|
---|
278 | float lwEnvelope::evaluate( float time )
|
---|
279 | {
|
---|
280 | lwKey *key0, *key1, *skey, *ekey;
|
---|
281 | float t, h1, h2, h3, h4, tin, tout, offset = 0.0f;
|
---|
282 | int noff;
|
---|
283 | int key0index, key1index;
|
---|
284 |
|
---|
285 |
|
---|
286 | /* if there's no key, the value is 0 */
|
---|
287 |
|
---|
288 | if ( keys.size() == 0 ) return 0.0f;
|
---|
289 |
|
---|
290 | /* if there's only one key, the value is constant */
|
---|
291 |
|
---|
292 | if ( keys.size() == 1 ) return keys[0]->value;
|
---|
293 |
|
---|
294 | /* find the first and last keys */
|
---|
295 |
|
---|
296 | key0index = 0;
|
---|
297 | key1index = keys.size()-1;
|
---|
298 | skey = keys[key0index];
|
---|
299 | ekey = keys[key1index];
|
---|
300 |
|
---|
301 | /* use pre-behavior if time is before first key time */
|
---|
302 |
|
---|
303 | if ( time < skey->time )
|
---|
304 | {
|
---|
305 | switch ( behavior[ 0 ] )
|
---|
306 | {
|
---|
307 | case BEH_RESET:
|
---|
308 | return 0.0f;
|
---|
309 |
|
---|
310 | case BEH_CONSTANT:
|
---|
311 | return skey->value;
|
---|
312 |
|
---|
313 | case BEH_REPEAT:
|
---|
314 | time = range( time, skey->time, ekey->time, NULL );
|
---|
315 | break;
|
---|
316 |
|
---|
317 | case BEH_OSCILLATE:
|
---|
318 | time = range( time, skey->time, ekey->time, &noff );
|
---|
319 | if ( noff % 2 )
|
---|
320 | time = ekey->time - skey->time - time;
|
---|
321 | break;
|
---|
322 |
|
---|
323 | case BEH_OFFSET:
|
---|
324 | time = range( time, skey->time, ekey->time, &noff );
|
---|
325 | offset = noff * ( ekey->value - skey->value );
|
---|
326 | break;
|
---|
327 |
|
---|
328 | case BEH_LINEAR:
|
---|
329 | tout = outgoing( key0index, key0index+1 ) / ( keys[key0index+1]->time - keys[key0index]->time );
|
---|
330 |
|
---|
331 | return tout * ( time - skey->time ) + skey->value;
|
---|
332 | }
|
---|
333 | }
|
---|
334 |
|
---|
335 | /* use post-behavior if time is after last key time */
|
---|
336 |
|
---|
337 | else if ( time > ekey->time ) {
|
---|
338 | switch ( behavior[ 1 ] )
|
---|
339 | {
|
---|
340 | case BEH_RESET:
|
---|
341 | return 0.0f;
|
---|
342 |
|
---|
343 | case BEH_CONSTANT:
|
---|
344 | return ekey->value;
|
---|
345 |
|
---|
346 | case BEH_REPEAT:
|
---|
347 | time = range( time, skey->time, ekey->time, NULL );
|
---|
348 | break;
|
---|
349 |
|
---|
350 | case BEH_OSCILLATE:
|
---|
351 | time = range( time, skey->time, ekey->time, &noff );
|
---|
352 | if ( noff % 2 )
|
---|
353 | time = ekey->time - skey->time - time;
|
---|
354 | break;
|
---|
355 |
|
---|
356 | case BEH_OFFSET:
|
---|
357 | time = range( time, skey->time, ekey->time, &noff );
|
---|
358 | offset = noff * ( ekey->value - skey->value );
|
---|
359 | break;
|
---|
360 |
|
---|
361 | case BEH_LINEAR:
|
---|
362 | tin = incoming( key1index-1, key1index ) / ( ekey->time - keys[key1index-1]->time );
|
---|
363 | return tin * ( time - ekey->time ) + ekey->value;
|
---|
364 | }
|
---|
365 | }
|
---|
366 |
|
---|
367 | /* get the endpoints of the interval being evaluated */
|
---|
368 |
|
---|
369 | key0index = keys.size()-2;
|
---|
370 | key1index = keys.size()-1;
|
---|
371 | key0 = keys[key0index];
|
---|
372 | key1 = keys[key1index];
|
---|
373 |
|
---|
374 | /* check for singularities first */
|
---|
375 |
|
---|
376 | if ( time == key0->time )
|
---|
377 | return key0->value + offset;
|
---|
378 | else if ( time == key1->time )
|
---|
379 | return key1->value + offset;
|
---|
380 |
|
---|
381 | /* get interval length, time in [0, 1] */
|
---|
382 |
|
---|
383 | t = ( time - key0->time ) / ( key1->time - key0->time );
|
---|
384 |
|
---|
385 | /* interpolate */
|
---|
386 |
|
---|
387 | switch ( key1->shape )
|
---|
388 | {
|
---|
389 | case ID_TCB:
|
---|
390 | case ID_BEZI:
|
---|
391 | case ID_HERM:
|
---|
392 | tout = outgoing( key0index, key1index );
|
---|
393 | tin = incoming( key0index, key1index );
|
---|
394 | hermite( t, &h1, &h2, &h3, &h4 );
|
---|
395 | return h1 * key0->value + h2 * key1->value + h3 * tout + h4 * tin + offset;
|
---|
396 |
|
---|
397 | case ID_BEZ2:
|
---|
398 | return bez2( key0, key1, time ) + offset;
|
---|
399 |
|
---|
400 | case ID_LINE:
|
---|
401 | return key0->value + t * ( key1->value - key0->value ) + offset;
|
---|
402 |
|
---|
403 | case ID_STEP:
|
---|
404 | return key0->value + offset;
|
---|
405 |
|
---|
406 | default:
|
---|
407 | return offset;
|
---|
408 | }
|
---|
409 | }
|
---|