[138] | 1 | #ifndef __GEO_VECTOR2__
|
---|
| 2 | #define __GEO_VECTOR2__
|
---|
| 3 | #ifndef DOXYGEN_SHOULD_SKIP_THIS
|
---|
| 4 |
|
---|
| 5 |
|
---|
| 6 | #include "GeoBase.h"
|
---|
| 7 | #include <cmath>
|
---|
| 8 | #include <cassert>
|
---|
| 9 | #include <ostream>
|
---|
| 10 |
|
---|
| 11 | namespace Geometry
|
---|
| 12 | {
|
---|
| 13 |
|
---|
| 14 | class Vector2
|
---|
| 15 | {
|
---|
| 16 | public:
|
---|
| 17 | union {
|
---|
| 18 | struct {
|
---|
| 19 | Real x, y;
|
---|
| 20 | };
|
---|
| 21 | Real val[2];
|
---|
| 22 | };
|
---|
| 23 |
|
---|
| 24 | public:
|
---|
| 25 | inline Vector2()
|
---|
| 26 | {
|
---|
| 27 | }
|
---|
| 28 |
|
---|
| 29 | inline Vector2( Real fX, Real fY )
|
---|
| 30 | : x( fX ), y( fY )
|
---|
| 31 | {
|
---|
| 32 | }
|
---|
| 33 |
|
---|
| 34 | inline Vector2( const Real* const r )
|
---|
| 35 | : x( r[0] ), y( r[1] )
|
---|
| 36 | {
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | inline Vector2( const Vector2& rkVector )
|
---|
| 40 | : x( rkVector.x ), y( rkVector.y )
|
---|
| 41 | {
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | inline Real operator [] ( size_t i ) const
|
---|
| 45 | {
|
---|
| 46 | assert( i < 2 );
|
---|
| 47 |
|
---|
| 48 | return *(&x+i);
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | inline Real& operator [] ( size_t i )
|
---|
| 52 | {
|
---|
| 53 | assert( i < 2 );
|
---|
| 54 |
|
---|
| 55 | return *(&x+i);
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | /** Assigns the value of the other vector.
|
---|
| 59 | @param
|
---|
| 60 | rkVector The other vector
|
---|
| 61 | */
|
---|
| 62 | inline Vector2& operator = ( const Vector2& rkVector )
|
---|
| 63 | {
|
---|
| 64 | x = rkVector.x;
|
---|
| 65 | y = rkVector.y;
|
---|
| 66 |
|
---|
| 67 | return *this;
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | inline bool operator == ( const Vector2& rkVector ) const
|
---|
| 71 | {
|
---|
| 72 | return ( x == rkVector.x && y == rkVector.y );
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 | inline bool operator != ( const Vector2& rkVector ) const
|
---|
| 76 | {
|
---|
| 77 | return ( x != rkVector.x || y != rkVector.y );
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | // arithmetic operations
|
---|
| 81 | inline Vector2 operator + ( const Vector2& rkVector ) const
|
---|
| 82 | {
|
---|
| 83 | Vector2 kSum;
|
---|
| 84 |
|
---|
| 85 | kSum.x = x + rkVector.x;
|
---|
| 86 | kSum.y = y + rkVector.y;
|
---|
| 87 |
|
---|
| 88 | return kSum;
|
---|
| 89 | }
|
---|
| 90 |
|
---|
| 91 | inline Vector2 operator - ( const Vector2& rkVector ) const
|
---|
| 92 | {
|
---|
| 93 | Vector2 kDiff;
|
---|
| 94 |
|
---|
| 95 | kDiff.x = x - rkVector.x;
|
---|
| 96 | kDiff.y = y - rkVector.y;
|
---|
| 97 |
|
---|
| 98 | return kDiff;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | inline Vector2 operator * ( Real fScalar ) const
|
---|
| 102 | {
|
---|
| 103 | Vector2 kProd;
|
---|
| 104 |
|
---|
| 105 | kProd.x = fScalar*x;
|
---|
| 106 | kProd.y = fScalar*y;
|
---|
| 107 |
|
---|
| 108 | return kProd;
|
---|
| 109 | }
|
---|
| 110 |
|
---|
| 111 | inline Vector2 operator * ( const Vector2& rhs) const
|
---|
| 112 | {
|
---|
| 113 | Vector2 kProd;
|
---|
| 114 |
|
---|
| 115 | kProd.x = rhs.x * x;
|
---|
| 116 | kProd.y = rhs.y * y;
|
---|
| 117 |
|
---|
| 118 | return kProd;
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | inline Vector2 operator / ( Real fScalar ) const
|
---|
| 122 | {
|
---|
| 123 | assert( fScalar != 0.0f );
|
---|
| 124 |
|
---|
| 125 | Vector2 kDiv;
|
---|
| 126 |
|
---|
| 127 | Real fInv = 1.0f / fScalar;
|
---|
| 128 | kDiv.x = x * fInv;
|
---|
| 129 | kDiv.y = y * fInv;
|
---|
| 130 |
|
---|
| 131 | return kDiv;
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | inline Vector2 operator - () const
|
---|
| 135 | {
|
---|
| 136 | Vector2 kNeg;
|
---|
| 137 |
|
---|
| 138 | kNeg.x = -x;
|
---|
| 139 | kNeg.y = -y;
|
---|
| 140 |
|
---|
| 141 | return kNeg;
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | inline friend Vector2 operator * ( Real fScalar, const Vector2& rkVector )
|
---|
| 145 | {
|
---|
| 146 | Vector2 kProd;
|
---|
| 147 |
|
---|
| 148 | kProd.x = fScalar * rkVector.x;
|
---|
| 149 | kProd.y = fScalar * rkVector.y;
|
---|
| 150 |
|
---|
| 151 | return kProd;
|
---|
| 152 | }
|
---|
| 153 |
|
---|
| 154 | // arithmetic updates
|
---|
| 155 | inline Vector2& operator += ( const Vector2& rkVector )
|
---|
| 156 | {
|
---|
| 157 | x += rkVector.x;
|
---|
| 158 | y += rkVector.y;
|
---|
| 159 |
|
---|
| 160 | return *this;
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | inline Vector2& operator -= ( const Vector2& rkVector )
|
---|
| 164 | {
|
---|
| 165 | x -= rkVector.x;
|
---|
| 166 | y -= rkVector.y;
|
---|
| 167 |
|
---|
| 168 | return *this;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | inline Vector2& operator *= ( Real fScalar )
|
---|
| 172 | {
|
---|
| 173 | x *= fScalar;
|
---|
| 174 | y *= fScalar;
|
---|
| 175 |
|
---|
| 176 | return *this;
|
---|
| 177 | }
|
---|
| 178 |
|
---|
| 179 | inline Vector2& operator /= ( Real fScalar )
|
---|
| 180 | {
|
---|
| 181 | assert( fScalar != 0.0f );
|
---|
| 182 |
|
---|
| 183 | Real fInv = 1.0f / fScalar;
|
---|
| 184 |
|
---|
| 185 | x *= fInv;
|
---|
| 186 | y *= fInv;
|
---|
| 187 |
|
---|
| 188 | return *this;
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 | /** Returns the length (magnitude) of the vector.
|
---|
| 192 | @warning
|
---|
| 193 | This operation requires a square root and is expensive in
|
---|
| 194 | terms of CPU operations. If you don't need to know the exact
|
---|
| 195 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
| 196 | instead.
|
---|
| 197 | */
|
---|
| 198 | inline Real length () const
|
---|
| 199 | {
|
---|
| 200 | return sqrt( x * x + y * y );
|
---|
| 201 | }
|
---|
| 202 |
|
---|
| 203 | /** Returns the square of the length(magnitude) of the vector.
|
---|
| 204 | @remarks
|
---|
| 205 | This method is for efficiency - calculating the actual
|
---|
| 206 | length of a vector requires a square root, which is expensive
|
---|
| 207 | in terms of the operations required. This method returns the
|
---|
| 208 | square of the length of the vector, i.e. the same as the
|
---|
| 209 | length but before the square root is taken. Use this if you
|
---|
| 210 | want to find the longest / shortest vector without incurring
|
---|
| 211 | the square root.
|
---|
| 212 | */
|
---|
| 213 | inline Real squaredLength () const
|
---|
| 214 | {
|
---|
| 215 | return x * x + y * y;
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
| 219 | @remarks
|
---|
| 220 | The dot product can be used to calculate the angle between 2
|
---|
| 221 | vectors. If both are unit vectors, the dot product is the
|
---|
| 222 | cosine of the angle; otherwise the dot product must be
|
---|
| 223 | divided by the product of the lengths of both vectors to get
|
---|
| 224 | the cosine of the angle. This result can further be used to
|
---|
| 225 | calculate the distance of a point from a plane.
|
---|
| 226 | @param
|
---|
| 227 | vec Vector with which to calculate the dot product (together
|
---|
| 228 | with this one).
|
---|
| 229 | @returns
|
---|
| 230 | A float representing the dot product value.
|
---|
| 231 | */
|
---|
| 232 | inline Real dotProduct(const Vector2& vec) const
|
---|
| 233 | {
|
---|
| 234 | return x * vec.x + y * vec.y;
|
---|
| 235 | }
|
---|
| 236 |
|
---|
| 237 | /** Normalises the vector.
|
---|
| 238 | @remarks
|
---|
| 239 | This method normalises the vector such that it's
|
---|
| 240 | length / magnitude is 1. The result is called a unit vector.
|
---|
| 241 | @note
|
---|
| 242 | This function will not crash for zero-sized vectors, but there
|
---|
| 243 | will be no changes made to their components.
|
---|
| 244 | @returns The previous length of the vector.
|
---|
| 245 | */
|
---|
| 246 | inline Real normalise()
|
---|
| 247 | {
|
---|
| 248 | Real fLength = sqrt( x * x + y * y);
|
---|
| 249 |
|
---|
| 250 | // Will also work for zero-sized vectors, but will change nothing
|
---|
| 251 | if ( fLength > 1e-08f )
|
---|
| 252 | {
|
---|
| 253 | Real fInvLength = 1.0f / fLength;
|
---|
| 254 | x *= fInvLength;
|
---|
| 255 | y *= fInvLength;
|
---|
| 256 | }
|
---|
| 257 |
|
---|
| 258 | return fLength;
|
---|
| 259 | }
|
---|
| 260 |
|
---|
| 261 |
|
---|
| 262 |
|
---|
| 263 | /** Returns a vector at a point half way between this and the passed
|
---|
| 264 | in vector.
|
---|
| 265 | */
|
---|
| 266 | inline Vector2 midPoint( const Vector2& vec ) const
|
---|
| 267 | {
|
---|
| 268 | return Vector2(
|
---|
| 269 | ( x + vec.x ) * 0.5f,
|
---|
| 270 | ( y + vec.y ) * 0.5f );
|
---|
| 271 | }
|
---|
| 272 |
|
---|
| 273 | /** Returns true if the vector's scalar components are all greater
|
---|
| 274 | that the ones of the vector it is compared against.
|
---|
| 275 | */
|
---|
| 276 | inline bool operator < ( const Vector2& rhs ) const
|
---|
| 277 | {
|
---|
| 278 | if( x < rhs.x && y < rhs.y )
|
---|
| 279 | return true;
|
---|
| 280 | return false;
|
---|
| 281 | }
|
---|
| 282 |
|
---|
| 283 | /** Returns true if the vector's scalar components are all smaller
|
---|
| 284 | that the ones of the vector it is compared against.
|
---|
| 285 | */
|
---|
| 286 | inline bool operator > ( const Vector2& rhs ) const
|
---|
| 287 | {
|
---|
| 288 | if( x > rhs.x && y > rhs.y )
|
---|
| 289 | return true;
|
---|
| 290 | return false;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | /** Sets this vector's components to the minimum of its own and the
|
---|
| 294 | ones of the passed in vector.
|
---|
| 295 | @remarks
|
---|
| 296 | 'Minimum' in this case means the combination of the lowest
|
---|
| 297 | value of x, y and z from both vectors. Lowest is taken just
|
---|
| 298 | numerically, not magnitude, so -1 < 0.
|
---|
| 299 | */
|
---|
| 300 | inline void makeFloor( const Vector2& cmp )
|
---|
| 301 | {
|
---|
| 302 | if( cmp.x < x ) x = cmp.x;
|
---|
| 303 | if( cmp.y < y ) y = cmp.y;
|
---|
| 304 | }
|
---|
| 305 |
|
---|
| 306 | /** Sets this vector's components to the maximum of its own and the
|
---|
| 307 | ones of the passed in vector.
|
---|
| 308 | @remarks
|
---|
| 309 | 'Maximum' in this case means the combination of the highest
|
---|
| 310 | value of x, y and z from both vectors. Highest is taken just
|
---|
| 311 | numerically, not magnitude, so 1 > -3.
|
---|
| 312 | */
|
---|
| 313 | inline void makeCeil( const Vector2& cmp )
|
---|
| 314 | {
|
---|
| 315 | if( cmp.x > x ) x = cmp.x;
|
---|
| 316 | if( cmp.y > y ) y = cmp.y;
|
---|
| 317 | }
|
---|
| 318 |
|
---|
| 319 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
| 320 | @remarks
|
---|
| 321 | This method will return a vector which is perpendicular to this
|
---|
| 322 | vector. There are an infinite number of possibilities but this
|
---|
| 323 | method will guarantee to generate one of them. If you need more
|
---|
| 324 | control you should use the Quaternion class.
|
---|
| 325 | */
|
---|
| 326 | inline Vector2 perpendicular(void) const
|
---|
| 327 | {
|
---|
| 328 | return Vector2 (-y, x);
|
---|
| 329 | }
|
---|
| 330 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
| 331 | lies perpendicular to them both.
|
---|
| 332 | @remarks
|
---|
| 333 | The cross-product is normally used to calculate the normal
|
---|
| 334 | vector of a plane, by calculating the cross-product of 2
|
---|
| 335 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
| 336 | of a triangle).
|
---|
| 337 | @param
|
---|
| 338 | vec Vector which, together with this one, will be used to
|
---|
| 339 | calculate the cross-product.
|
---|
| 340 | @returns
|
---|
| 341 | A vector which is the result of the cross-product. This
|
---|
| 342 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
| 343 | - call Vector3::normalise on the result if you wish this to
|
---|
| 344 | be done. As for which side the resultant vector will be on, the
|
---|
| 345 | returned vector will be on the side from which the arc from 'this'
|
---|
| 346 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
| 347 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
| 348 | @par
|
---|
| 349 | For a clearer explanation, look a the left and the bottom edges
|
---|
| 350 | of your monitor's screen. Assume that the first vector is the
|
---|
| 351 | left edge and the second vector is the bottom edge, both of
|
---|
| 352 | them starting from the lower-left corner of the screen. The
|
---|
| 353 | resulting vector is going to be perpendicular to both of them
|
---|
| 354 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
| 355 | (assuming you're using a CRT monitor, of course).
|
---|
| 356 | */
|
---|
| 357 | inline Vector2 crossProduct( const Vector2& rkVector ) const
|
---|
| 358 | {
|
---|
| 359 | return Vector2(-rkVector.y, rkVector.x);
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | /** Returns true if this vector is zero length. */
|
---|
| 363 | inline bool isZeroLength(void) const
|
---|
| 364 | {
|
---|
| 365 | Real sqlen = (x * x) + (y * y);
|
---|
| 366 | return (sqlen < (1e-06 * 1e-06));
|
---|
| 367 |
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | /** As normalise, except that this vector is unaffected and the
|
---|
| 371 | normalised vector is returned as a copy. */
|
---|
| 372 | inline Vector2 normalisedCopy(void) const
|
---|
| 373 | {
|
---|
| 374 | Vector2 ret = *this;
|
---|
| 375 | ret.normalise();
|
---|
| 376 | return ret;
|
---|
| 377 | }
|
---|
| 378 |
|
---|
| 379 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
| 380 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
| 381 | */
|
---|
| 382 | inline Vector2 reflect(const Vector2& normal)
|
---|
| 383 | {
|
---|
| 384 | return Vector2( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
| 385 | }
|
---|
| 386 |
|
---|
| 387 | // special points
|
---|
| 388 | static const Vector2 ZERO;
|
---|
| 389 | static const Vector2 UNIT_X;
|
---|
| 390 | static const Vector2 UNIT_Y;
|
---|
| 391 | static const Vector2 NEGATIVE_UNIT_X;
|
---|
| 392 | static const Vector2 NEGATIVE_UNIT_Y;
|
---|
| 393 | static const Vector2 UNIT_SCALE;
|
---|
| 394 |
|
---|
| 395 | /** Function for writing to a stream.
|
---|
| 396 | */
|
---|
| 397 | inline friend std::ostream& operator <<
|
---|
| 398 | ( std::ostream& o, const Vector2& v )
|
---|
| 399 | {
|
---|
| 400 | o << "Vector2(" << v.x << ", " << v.y << ")";
|
---|
| 401 | return o;
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 |
|
---|
| 405 | };
|
---|
| 406 |
|
---|
| 407 | }
|
---|
| 408 | #endif /* DOXYGEN_SHOULD_SKIP_THIS */
|
---|
| 409 | #endif
|
---|