[138] | 1 | #ifndef __GEO_VECTOR3__
|
---|
| 2 | #define __GEO_VECTOR3__
|
---|
| 3 | #ifndef DOXYGEN_SHOULD_SKIP_THIS
|
---|
| 4 |
|
---|
| 5 | #include "GeoBase.h"
|
---|
| 6 | #include <cmath>
|
---|
| 7 | #include <cassert>
|
---|
| 8 | #include <ostream>
|
---|
| 9 |
|
---|
| 10 | namespace Geometry
|
---|
| 11 | {
|
---|
| 12 |
|
---|
| 13 | class Vector3
|
---|
| 14 | {
|
---|
| 15 | public:
|
---|
| 16 | union {
|
---|
| 17 | struct {
|
---|
| 18 | Real x, y, z;
|
---|
| 19 | };
|
---|
| 20 | Real val[3];
|
---|
| 21 | };
|
---|
| 22 |
|
---|
| 23 | public:
|
---|
| 24 | inline Vector3()
|
---|
| 25 | {
|
---|
| 26 | }
|
---|
| 27 |
|
---|
| 28 | inline Vector3( Real fX, Real fY, Real fZ )
|
---|
| 29 | : x( fX ), y( fY ), z( fZ )
|
---|
| 30 | {
|
---|
| 31 | }
|
---|
| 32 |
|
---|
| 33 | inline Vector3( const Real* const r )
|
---|
| 34 | : x( r[0] ), y( r[1] ), z( r[2] )
|
---|
| 35 | {
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 | inline Vector3( const Vector3& rkVector )
|
---|
| 39 | : x( rkVector.x ), y( rkVector.y ), z( rkVector.z )
|
---|
| 40 | {
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | inline Real operator [] ( size_t i ) const
|
---|
| 44 | {
|
---|
| 45 | assert( i < 3 );
|
---|
| 46 | return *(&x+i);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | inline Real& operator [] ( size_t i )
|
---|
| 50 | {
|
---|
| 51 | assert( i < 3 );
|
---|
| 52 | return *(&x+i);
|
---|
| 53 | }
|
---|
| 54 |
|
---|
| 55 | /** Assigns the value of the other vector.
|
---|
| 56 | @param
|
---|
| 57 | rkVector The other vector
|
---|
| 58 | */
|
---|
| 59 | inline Vector3& operator = ( const Vector3& rkVector )
|
---|
| 60 | {
|
---|
| 61 | x = rkVector.x;
|
---|
| 62 | y = rkVector.y;
|
---|
| 63 | z = rkVector.z;
|
---|
| 64 |
|
---|
| 65 | return *this;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | inline bool operator == ( const Vector3& rkVector ) const
|
---|
| 69 | {
|
---|
| 70 | return ( x == rkVector.x && y == rkVector.y && z == rkVector.z );
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | inline bool operator != ( const Vector3& rkVector ) const
|
---|
| 74 | {
|
---|
| 75 | return ( x != rkVector.x || y != rkVector.y || z != rkVector.z );
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | // arithmetic operations
|
---|
| 79 | inline Vector3 operator + ( const Vector3& rkVector ) const
|
---|
| 80 | {
|
---|
| 81 | Vector3 kSum;
|
---|
| 82 |
|
---|
| 83 | kSum.x = x + rkVector.x;
|
---|
| 84 | kSum.y = y + rkVector.y;
|
---|
| 85 | kSum.z = z + rkVector.z;
|
---|
| 86 |
|
---|
| 87 | return kSum;
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | inline Vector3 operator - ( const Vector3& rkVector ) const
|
---|
| 91 | {
|
---|
| 92 | Vector3 kDiff;
|
---|
| 93 |
|
---|
| 94 | kDiff.x = x - rkVector.x;
|
---|
| 95 | kDiff.y = y - rkVector.y;
|
---|
| 96 | kDiff.z = z - rkVector.z;
|
---|
| 97 |
|
---|
| 98 | return kDiff;
|
---|
| 99 | }
|
---|
| 100 |
|
---|
| 101 | inline Vector3 operator * ( Real fScalar ) const
|
---|
| 102 | {
|
---|
| 103 | Vector3 kProd;
|
---|
| 104 |
|
---|
| 105 | kProd.x = fScalar*x;
|
---|
| 106 | kProd.y = fScalar*y;
|
---|
| 107 | kProd.z = fScalar*z;
|
---|
| 108 |
|
---|
| 109 | return kProd;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | inline Vector3 operator * ( const Vector3& rhs) const
|
---|
| 113 | {
|
---|
| 114 | Vector3 kProd;
|
---|
| 115 |
|
---|
| 116 | kProd.x = rhs.x * x;
|
---|
| 117 | kProd.y = rhs.y * y;
|
---|
| 118 | kProd.z = rhs.z * z;
|
---|
| 119 |
|
---|
| 120 | return kProd;
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | inline Vector3 operator / ( Real fScalar ) const
|
---|
| 124 | {
|
---|
| 125 | assert( fScalar != 0.0f );
|
---|
| 126 |
|
---|
| 127 | Vector3 kDiv;
|
---|
| 128 |
|
---|
| 129 | Real fInv = 1.0f / fScalar;
|
---|
| 130 | kDiv.x = x * fInv;
|
---|
| 131 | kDiv.y = y * fInv;
|
---|
| 132 | kDiv.z = z * fInv;
|
---|
| 133 |
|
---|
| 134 | return kDiv;
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | inline Vector3 operator / ( const Vector3& rhs) const
|
---|
| 138 | {
|
---|
| 139 | Vector3 kDiv;
|
---|
| 140 |
|
---|
| 141 | kDiv.x = x / rhs.x;
|
---|
| 142 | kDiv.y = y / rhs.y;
|
---|
| 143 | kDiv.z = z / rhs.z;
|
---|
| 144 |
|
---|
| 145 | return kDiv;
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 |
|
---|
| 149 | inline Vector3 operator - () const
|
---|
| 150 | {
|
---|
| 151 | Vector3 kNeg;
|
---|
| 152 |
|
---|
| 153 | kNeg.x = -x;
|
---|
| 154 | kNeg.y = -y;
|
---|
| 155 | kNeg.z = -z;
|
---|
| 156 |
|
---|
| 157 | return kNeg;
|
---|
| 158 | }
|
---|
| 159 |
|
---|
| 160 | inline friend Vector3 operator * ( Real fScalar, const Vector3& rkVector )
|
---|
| 161 | {
|
---|
| 162 | Vector3 kProd;
|
---|
| 163 |
|
---|
| 164 | kProd.x = fScalar * rkVector.x;
|
---|
| 165 | kProd.y = fScalar * rkVector.y;
|
---|
| 166 | kProd.z = fScalar * rkVector.z;
|
---|
| 167 |
|
---|
| 168 | return kProd;
|
---|
| 169 | }
|
---|
| 170 |
|
---|
| 171 | // arithmetic updates
|
---|
| 172 | inline Vector3& operator += ( const Vector3& rkVector )
|
---|
| 173 | {
|
---|
| 174 | x += rkVector.x;
|
---|
| 175 | y += rkVector.y;
|
---|
| 176 | z += rkVector.z;
|
---|
| 177 |
|
---|
| 178 | return *this;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | inline Vector3& operator -= ( const Vector3& rkVector )
|
---|
| 182 | {
|
---|
| 183 | x -= rkVector.x;
|
---|
| 184 | y -= rkVector.y;
|
---|
| 185 | z -= rkVector.z;
|
---|
| 186 |
|
---|
| 187 | return *this;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | inline Vector3& operator *= ( Real fScalar )
|
---|
| 191 | {
|
---|
| 192 | x *= fScalar;
|
---|
| 193 | y *= fScalar;
|
---|
| 194 | z *= fScalar;
|
---|
| 195 | return *this;
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | inline Vector3& operator *= ( const Vector3& rkVector )
|
---|
| 199 | {
|
---|
| 200 | x *= rkVector.x;
|
---|
| 201 | y *= rkVector.y;
|
---|
| 202 | z *= rkVector.z;
|
---|
| 203 |
|
---|
| 204 | return *this;
|
---|
| 205 | }
|
---|
| 206 |
|
---|
| 207 | inline Vector3& operator /= ( Real fScalar )
|
---|
| 208 | {
|
---|
| 209 | assert( fScalar != 0.0f );
|
---|
| 210 |
|
---|
| 211 | Real fInv = 1.0f / fScalar;
|
---|
| 212 |
|
---|
| 213 | x *= fInv;
|
---|
| 214 | y *= fInv;
|
---|
| 215 | z *= fInv;
|
---|
| 216 |
|
---|
| 217 | return *this;
|
---|
| 218 | }
|
---|
| 219 |
|
---|
| 220 | inline Vector3& operator /= ( const Vector3& rkVector )
|
---|
| 221 | {
|
---|
| 222 | x /= rkVector.x;
|
---|
| 223 | y /= rkVector.y;
|
---|
| 224 | z /= rkVector.z;
|
---|
| 225 |
|
---|
| 226 | return *this;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 |
|
---|
| 230 | /** Returns the length (magnitude) of the vector.
|
---|
| 231 | @warning
|
---|
| 232 | This operation requires a square root and is expensive in
|
---|
| 233 | terms of CPU operations. If you don't need to know the exact
|
---|
| 234 | length (e.g. for just comparing lengths) use squaredLength()
|
---|
| 235 | instead.
|
---|
| 236 | */
|
---|
| 237 | inline Real length () const
|
---|
| 238 | {
|
---|
| 239 | return sqrt( x * x + y * y + z * z );
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 | /** Returns the square of the length(magnitude) of the vector.
|
---|
| 243 | @remarks
|
---|
| 244 | This method is for efficiency - calculating the actual
|
---|
| 245 | length of a vector requires a square root, which is expensive
|
---|
| 246 | in terms of the operations required. This method returns the
|
---|
| 247 | square of the length of the vector, i.e. the same as the
|
---|
| 248 | length but before the square root is taken. Use this if you
|
---|
| 249 | want to find the longest / shortest vector without incurring
|
---|
| 250 | the square root.
|
---|
| 251 | */
|
---|
| 252 | inline Real squaredLength () const
|
---|
| 253 | {
|
---|
| 254 | return x * x + y * y + z * z;
|
---|
| 255 | }
|
---|
| 256 |
|
---|
| 257 | /** Calculates the dot (scalar) product of this vector with another.
|
---|
| 258 | @remarks
|
---|
| 259 | The dot product can be used to calculate the angle between 2
|
---|
| 260 | vectors. If both are unit vectors, the dot product is the
|
---|
| 261 | cosine of the angle; otherwise the dot product must be
|
---|
| 262 | divided by the product of the lengths of both vectors to get
|
---|
| 263 | the cosine of the angle. This result can further be used to
|
---|
| 264 | calculate the distance of a point from a plane.
|
---|
| 265 | @param
|
---|
| 266 | vec Vector with which to calculate the dot product (together
|
---|
| 267 | with this one).
|
---|
| 268 | @returns
|
---|
| 269 | A float representing the dot product value.
|
---|
| 270 | */
|
---|
| 271 | inline Real dotProduct(const Vector3& vec) const
|
---|
| 272 | {
|
---|
| 273 | return x * vec.x + y * vec.y + z * vec.z;
|
---|
| 274 | }
|
---|
| 275 |
|
---|
| 276 | /** Normalises the vector.
|
---|
| 277 | @remarks
|
---|
| 278 | This method normalises the vector such that it's
|
---|
| 279 | length / magnitude is 1. The result is called a unit vector.
|
---|
| 280 | @note
|
---|
| 281 | This function will not crash for zero-sized vectors, but there
|
---|
| 282 | will be no changes made to their components.
|
---|
| 283 | @returns The previous length of the vector.
|
---|
| 284 | */
|
---|
| 285 | inline Real normalise()
|
---|
| 286 | {
|
---|
| 287 | Real fLength = sqrt( x * x + y * y + z * z );
|
---|
| 288 |
|
---|
| 289 | // Will also work for zero-sized vectors, but will change nothing
|
---|
| 290 | if ( fLength > 1e-08 )
|
---|
| 291 | {
|
---|
| 292 | Real fInvLength = 1.0f / fLength;
|
---|
| 293 | x *= fInvLength;
|
---|
| 294 | y *= fInvLength;
|
---|
| 295 | z *= fInvLength;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | return fLength;
|
---|
| 299 | }
|
---|
| 300 |
|
---|
| 301 | /** Calculates the cross-product of 2 vectors, i.e. the vector that
|
---|
| 302 | lies perpendicular to them both.
|
---|
| 303 | @remarks
|
---|
| 304 | The cross-product is normally used to calculate the normal
|
---|
| 305 | vector of a plane, by calculating the cross-product of 2
|
---|
| 306 | non-equivalent vectors which lie on the plane (e.g. 2 edges
|
---|
| 307 | of a triangle).
|
---|
| 308 | @param
|
---|
| 309 | vec Vector which, together with this one, will be used to
|
---|
| 310 | calculate the cross-product.
|
---|
| 311 | @returns
|
---|
| 312 | A vector which is the result of the cross-product. This
|
---|
| 313 | vector will <b>NOT</b> be normalised, to maximise efficiency
|
---|
| 314 | - call Vector3::normalise on the result if you wish this to
|
---|
| 315 | be done. As for which side the resultant vector will be on, the
|
---|
| 316 | returned vector will be on the side from which the arc from 'this'
|
---|
| 317 | to rkVector is anticlockwise, e.g. UNIT_Y.crossProduct(UNIT_Z)
|
---|
| 318 | = UNIT_X, whilst UNIT_Z.crossProduct(UNIT_Y) = -UNIT_X.
|
---|
| 319 | @par
|
---|
| 320 | For a clearer explanation, look a the left and the bottom edges
|
---|
| 321 | of your monitor's screen. Assume that the first vector is the
|
---|
| 322 | left edge and the second vector is the bottom edge, both of
|
---|
| 323 | them starting from the lower-left corner of the screen. The
|
---|
| 324 | resulting vector is going to be perpendicular to both of them
|
---|
| 325 | and will go <i>inside</i> the screen, towards the cathode tube
|
---|
| 326 | (assuming you're using a CRT monitor, of course).
|
---|
| 327 | */
|
---|
| 328 | inline Vector3 crossProduct( const Vector3& rkVector ) const
|
---|
| 329 | {
|
---|
| 330 | Vector3 kCross;
|
---|
| 331 |
|
---|
| 332 | kCross.x = y * rkVector.z - z * rkVector.y;
|
---|
| 333 | kCross.y = z * rkVector.x - x * rkVector.z;
|
---|
| 334 | kCross.z = x * rkVector.y - y * rkVector.x;
|
---|
| 335 |
|
---|
| 336 | return kCross;
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | /** Returns a vector at a point half way between this and the passed
|
---|
| 340 | in vector.
|
---|
| 341 | */
|
---|
| 342 | inline Vector3 midPoint( const Vector3& vec ) const
|
---|
| 343 | {
|
---|
| 344 | return Vector3(
|
---|
| 345 | ( x + vec.x ) * 0.5f,
|
---|
| 346 | ( y + vec.y ) * 0.5f,
|
---|
| 347 | ( z + vec.z ) * 0.5f );
|
---|
| 348 | }
|
---|
| 349 |
|
---|
| 350 | /** Returns true if the vector's scalar components are all greater
|
---|
| 351 | that the ones of the vector it is compared against.
|
---|
| 352 | */
|
---|
| 353 | inline bool operator < ( const Vector3& rhs ) const
|
---|
| 354 | {
|
---|
| 355 | if( x < rhs.x && y < rhs.y && z < rhs.z )
|
---|
| 356 | return true;
|
---|
| 357 | return false;
|
---|
| 358 | }
|
---|
| 359 |
|
---|
| 360 | /** Returns true if the vector's scalar components are all smaller
|
---|
| 361 | that the ones of the vector it is compared against.
|
---|
| 362 | */
|
---|
| 363 | inline bool operator > ( const Vector3& rhs ) const
|
---|
| 364 | {
|
---|
| 365 | if( x > rhs.x && y > rhs.y && z > rhs.z )
|
---|
| 366 | return true;
|
---|
| 367 | return false;
|
---|
| 368 | }
|
---|
| 369 |
|
---|
| 370 | /** Sets this vector's components to the minimum of its own and the
|
---|
| 371 | ones of the passed in vector.
|
---|
| 372 | @remarks
|
---|
| 373 | 'Minimum' in this case means the combination of the lowest
|
---|
| 374 | value of x, y and z from both vectors. Lowest is taken just
|
---|
| 375 | numerically, not magnitude, so -1 < 0.
|
---|
| 376 | */
|
---|
| 377 | inline void makeFloor( const Vector3& cmp )
|
---|
| 378 | {
|
---|
| 379 | if( cmp.x < x ) x = cmp.x;
|
---|
| 380 | if( cmp.y < y ) y = cmp.y;
|
---|
| 381 | if( cmp.z < z ) z = cmp.z;
|
---|
| 382 | }
|
---|
| 383 |
|
---|
| 384 | /** Sets this vector's components to the maximum of its own and the
|
---|
| 385 | ones of the passed in vector.
|
---|
| 386 | @remarks
|
---|
| 387 | 'Maximum' in this case means the combination of the highest
|
---|
| 388 | value of x, y and z from both vectors. Highest is taken just
|
---|
| 389 | numerically, not magnitude, so 1 > -3.
|
---|
| 390 | */
|
---|
| 391 | inline void makeCeil( const Vector3& cmp )
|
---|
| 392 | {
|
---|
| 393 | if( cmp.x > x ) x = cmp.x;
|
---|
| 394 | if( cmp.y > y ) y = cmp.y;
|
---|
| 395 | if( cmp.z > z ) z = cmp.z;
|
---|
| 396 | }
|
---|
| 397 |
|
---|
| 398 | /** Generates a vector perpendicular to this vector (eg an 'up' vector).
|
---|
| 399 | @remarks
|
---|
| 400 | This method will return a vector which is perpendicular to this
|
---|
| 401 | vector. There are an infinite number of possibilities but this
|
---|
| 402 | method will guarantee to generate one of them. If you need more
|
---|
| 403 | control you should use the Quaternion class.
|
---|
| 404 | */
|
---|
| 405 | inline Vector3 perpendicular(void) const
|
---|
| 406 | {
|
---|
| 407 | static const Real fSquareZero = 1e-06f * 1e-06f;
|
---|
| 408 |
|
---|
| 409 | Vector3 perp = this->crossProduct( Vector3::UNIT_X );
|
---|
| 410 |
|
---|
| 411 | // Check length
|
---|
| 412 | if( perp.squaredLength() < fSquareZero )
|
---|
| 413 | {
|
---|
| 414 | /* This vector is the Y axis multiplied by a scalar, so we have
|
---|
| 415 | to use another axis.
|
---|
| 416 | */
|
---|
| 417 | perp = this->crossProduct( Vector3::UNIT_Y );
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | return perp;
|
---|
| 421 | }
|
---|
| 422 |
|
---|
| 423 | /** Returns true if this vector is zero length. */
|
---|
| 424 | inline bool isZeroLength(void) const
|
---|
| 425 | {
|
---|
| 426 | Real sqlen = (x * x) + (y * y) + (z * z);
|
---|
| 427 | return (sqlen < (1e-06 * 1e-06));
|
---|
| 428 |
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | /** As normalise, except that this vector is unaffected and the
|
---|
| 432 | normalised vector is returned as a copy. */
|
---|
| 433 | inline Vector3 normalisedCopy(void) const
|
---|
| 434 | {
|
---|
| 435 | Vector3 ret = *this;
|
---|
| 436 | ret.normalise();
|
---|
| 437 | return ret;
|
---|
| 438 | }
|
---|
| 439 |
|
---|
| 440 | /** Calculates a reflection vector to the plane with the given normal .
|
---|
| 441 | @remarks NB assumes 'this' is pointing AWAY FROM the plane, invert if it is not.
|
---|
| 442 | */
|
---|
| 443 | inline Vector3 reflect(const Vector3& normal)
|
---|
| 444 | {
|
---|
| 445 | return Vector3( *this - ( 2 * this->dotProduct(normal) * normal ) );
|
---|
| 446 | }
|
---|
| 447 |
|
---|
| 448 | // special points
|
---|
| 449 | static const Vector3 ZERO;
|
---|
| 450 | static const Vector3 UNIT_X;
|
---|
| 451 | static const Vector3 UNIT_Y;
|
---|
| 452 | static const Vector3 UNIT_Z;
|
---|
| 453 | static const Vector3 NEGATIVE_UNIT_X;
|
---|
| 454 | static const Vector3 NEGATIVE_UNIT_Y;
|
---|
| 455 | static const Vector3 NEGATIVE_UNIT_Z;
|
---|
| 456 | static const Vector3 UNIT_SCALE;
|
---|
| 457 |
|
---|
| 458 | /** Function for writing to a stream.
|
---|
| 459 | */
|
---|
| 460 | inline friend std::ostream& operator <<
|
---|
| 461 | ( std::ostream& o, const Vector3& v )
|
---|
| 462 | {
|
---|
| 463 | o << "Vector3(" << v.x << ", " << v.y << ", " << v.z << ")";
|
---|
| 464 | return o;
|
---|
| 465 | }
|
---|
| 466 | };
|
---|
| 467 |
|
---|
| 468 | }
|
---|
| 469 | #endif /* DOXYGEN_SHOULD_SKIP_THIS */
|
---|
| 470 | #endif
|
---|