source: trunk/VUT/GtpVisibilityPreprocessor/src/AxisAlignedBox3.h @ 492

Revision 492, 17.2 KB checked in by bittner, 19 years ago (diff)

Large merge - viewcells seem not functional now

Line 
1#ifndef _AxisAlignedBox3_H__
2#define _AxisAlignedBox3_H__
3
4#include "Rectangle3.h"
5#include "Matrix4x4.h"
6#include "Vector3.h"
7#include "Plane3.h"
8
9class Ray;
10class Polygon3;
11class Mesh;
12// --------------------------------------------------------
13// CAABox class.
14//  This is a box in 3-space, defined by min and max
15//  corner vectors.  Many useful operations are defined
16//  on this
17// --------------------------------------------------------
18class AxisAlignedBox3
19{
20protected:
21  Vector3 mMin, mMax;
22public:
23  // Constructors.
24  AxisAlignedBox3() { }
25  AxisAlignedBox3(const Vector3 &nMin, const Vector3 &nMax)
26  {
27    mMin = nMin; mMax = nMax;
28  }
29
30  //  AxisAlignedBox3(const Vector3 &center, const float radius):min(center - Vector3(radius)),
31  //                                                  max(center + Vector3(radius)) {}
32
33  // initialization to the non existing bounding box
34  void Initialize() {
35    mMin = Vector3(MAXFLOAT);
36    mMax = Vector3(-MAXFLOAT);
37  }
38
39  // The center of the box
40  Vector3 Center() const { return 0.5 * (mMin + mMax); }
41 
42  // The diagonal of the box
43  Vector3 Diagonal() const { return (mMax -mMin); }
44
45  float Center(const int axis) const {
46    return  0.5f * (mMin[axis] + mMax[axis]);
47  }
48
49  float Min(const int axis) const {
50    return mMin[axis];
51  }
52
53  float Max(const int axis) const {
54    return  mMax[axis];
55  }
56
57  float Size(const int axis) const {
58    return  Max(axis) - Min(axis);
59  }
60
61  // Read-only const access tomMin and max vectors using references
62  const Vector3& Min() const { return mMin;}
63  const Vector3& Max() const { return mMax;}
64
65  void Enlarge (const Vector3 &v) {
66    mMax += v;
67    mMin -= v;
68  }
69
70
71  void SetMin(const Vector3 &v) {
72    mMin = v;
73  }
74
75  void SetMax(const Vector3 &v) {
76    mMax = v;
77  }
78
79  void SetMin(int axis, const float value) {
80   mMin[axis] = value;
81  }
82
83  void SetMax(int axis, const float value) {
84    mMax[axis] = value;
85  }
86
87  // Decrease box by given splitting plane
88  void Reduce(int axis, int right, float value) {
89    if ( (value >=mMin[axis]) && (value <= mMax[axis]) )
90      if (right)
91                                mMin[axis] = value;
92      else
93        mMax[axis] = value;
94  }
95       
96  // the size of the box along all the axes
97  Vector3 Size() const { return mMax - mMin; }
98
99  // Return whether the box is unbounded.  Unbounded boxes appear
100  // when unbounded objects such as quadric surfaces are included.
101  bool Unbounded() const;
102
103  // Expand the axis-aligned box to include the given object.
104  void Include(const Vector3 &newpt);
105  void Include(const Polygon3 &newpoly);
106  void Include(const AxisAlignedBox3 &bbox);
107  // Expand the axis-aligned box to include given values in particular axis
108  void Include(const int &axis, const float &newBound);
109
110 
111  int
112  Side(const Plane3 &plane) const;
113
114  // Overlap returns 1 if the two axis-aligned boxes overlap .. even weakly
115  friend inline bool Overlap(const AxisAlignedBox3 &, const AxisAlignedBox3 &);
116
117  // Overlap returns 1 if the two axis-aligned boxes overlap .. only strongly
118  friend inline bool OverlapS(const AxisAlignedBox3 &,const AxisAlignedBox3 &);
119
120  // Overlap returns 1 if the two axis-aligned boxes overlap for a given
121  // epsilon. If eps > 0.0, then the boxes has to have the real intersection
122  // box, if eps < 0.0, then the boxes need not intersect really, they
123  // can be at eps distance in the projection
124  friend inline bool Overlap(const AxisAlignedBox3 &,
125                             const AxisAlignedBox3 &,
126                             float eps);
127
128  // Includes returns true if a includes b (completely
129  bool Includes(const AxisAlignedBox3 &b) const;
130
131  virtual int IsInside(const Vector3 &v) const;
132 
133  // Test if the box is really sensefull
134  virtual bool IsCorrect();
135
136  // To answer true requires the box of real volume of non-zero value
137  bool IsSingularOrIncorrect() const;
138
139  // When the box is not of non-zero or negative surface area
140  bool IsCorrectAndNotPoint() const;
141
142  // Returns true when the box degenerates to a point
143  bool IsPoint() const;
144
145  void Scale(const float scale) {
146        Vector3 newSize = Size()*(scale*0.5f);
147        Vector3 center = Center();
148        mMin = center - newSize;
149        mMax = center + newSize;
150  }
151 
152  void
153  GetSqrDistances(const Vector3 &point,
154                  float &minDistance,
155                  float &maxDistance
156                  ) const;
157
158  // returns true, when the sphere specified by the origin and radius
159  // fully contains the box
160  bool IsFullyContainedInSphere(const Vector3 &center, float radius) const;
161
162  // returns true, when the volume of the sphere and volume of the
163  // axis aligned box has no intersection
164  bool HasNoIntersectionWithSphere(const Vector3 &center,
165                                   float radius) const;
166
167
168  // Given a sphere described by the center and radius,
169  // the fullowing function returns:
170  //   -1 ... the sphere and the box are completely separate
171  //    0 ... the sphere and the box only partially overlap
172  //    1 ... the sphere contains fully the box
173  //  Note: the case when box fully contains the sphere is not reported
174  //        since it was not required.
175  int MutualPositionWithSphere(const Vector3 &center, float radius) const;
176
177  // Given a cube described by the center and half-size (radius),
178  // the following function returns:
179  //   -1 ... the cube and the box are completely separate
180  //    0 ... the cube and the box only partially overlap
181  //    1 ... the cube contains fully the box
182  int MutualPositionWithCube(const Vector3 &center, float halfSize) const;
183
184
185  Vector3 GetRandomPoint() const {
186    Vector3 size = Size();
187    return mMin + Vector3(RandomValue(0, size.x),
188                                                                                                        RandomValue(0, size.y),
189                                                                                                        RandomValue(0, size.z));
190  }
191
192
193  Vector3 GetPoint(const Vector3 &p) const {
194    return mMin + p*Size();
195  }
196
197  // Returns the smallest axis-aligned box that includes all points
198  // inside the two given boxes.
199  friend inline AxisAlignedBox3 Union(const AxisAlignedBox3 &x,
200                             const AxisAlignedBox3 &y);
201
202  // Returns the intersection of two axis-aligned boxes.
203  friend inline AxisAlignedBox3 Intersect(const AxisAlignedBox3 &x,
204                                 const AxisAlignedBox3 &y);
205
206  // Given 4x4 matrix, transform the current box to new one.
207  friend inline AxisAlignedBox3 Transform(const AxisAlignedBox3 &box,
208                                          const Matrix4x4 &tform);
209
210 
211  // returns true when two boxes are completely equal
212  friend inline int operator== (const AxisAlignedBox3 &A, const AxisAlignedBox3 &B);
213 
214  virtual float SurfaceArea() const;
215  virtual float GetVolume() const {
216    return (mMax.x - mMin.x) * (mMax.y - mMin.y) * (mMax.z - mMin.z);
217  }
218
219  // Six faces are distuinguished by their name.
220  enum EFaces { ID_Back = 0, ID_Left = 1, ID_Bottom = 2, ID_Front = 3,
221                ID_Right = 4, ID_Top = 5};
222 
223  int
224  ComputeMinMaxT(const Vector3 &origin,
225                                 const Vector3 &direction,
226                                 float *tmin,
227                                 float *tmax) const;
228       
229  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
230  int ComputeMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
231
232  // Compute tmin and tmax for a ray, whenever required .. need not pierce box
233  int ComputeMinMaxT(const Ray &ray,
234                                         float *tmin,
235                                         float *tmax,
236                                         EFaces &entryFace,
237                                         EFaces &exitFace) const;
238 
239  // If a ray pierces the box .. returns 1, otherwise 0.
240  // Computes the signed distances for case: tmin < tmax and tmax > 0
241  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax) const;
242  // computes the signed distances for case: tmin < tmax and tmax > 0
243  int GetMinMaxT(const Ray &ray, float *tmin, float *tmax,
244                 EFaces &entryFace, EFaces &exitFace) const;
245 
246  // Writes a brief description of the object, indenting by the given
247  // number of spaces first.
248  virtual void Describe(ostream& app, int ind) const;
249
250  // For edge .. number <0..11> returns two incident vertices
251  void GetEdge(const int edge, Vector3 *a, Vector3 *b) const;
252
253  // Compute the coordinates of one vertex of the box for 0/1 in each axis
254  // 0 .. smaller coordinates, 1 .. large coordinates
255  Vector3 GetVertex(int xAxis, int yAxis, int zAxis) const;
256
257  // Compute the vertex for number N=<0..7>, N = 4*x + 2*y + z, where
258  // x,y,z are either 0 or 1; (0 .. lower coordinate, 1 .. large coordinate)
259  // (xmin,ymin, zmin) .. N = 0, (xmax, ymax, zmax) .. N= 7
260  void GetVertex(const int N, Vector3 &vertex) const;
261
262  Vector3 GetVertex(const int N) const {
263    Vector3 v;
264    GetVertex(N, v);
265    return v;
266  }
267
268  // Returns 1, if the box includes on arbitrary face a given box
269  int IsPiercedByBox(const AxisAlignedBox3 &box, int &axis) const;
270
271
272  int GetFaceVisibilityMask(const Vector3 &position) const;
273  int GetFaceVisibilityMask(const Rectangle3 &rectangle) const;
274
275  Rectangle3 GetFace(const int face) const;
276 
277  // For a given point returns the region, where the point is located
278  // there are 27 regions (0..26) .. determined by the planes embedding in the
279  // sides of the bounding box (0 .. lower the position of the box,
280  // 1 .. inside the box, 2 .. greater than box). The region number is given as
281  // R = 9*x + 3*y + z  ; e.g. region .. inside the box is 13.
282  int GetRegionID(const Vector3 &point) const;
283 
284  // Set the corner point of rectangle on the face of bounding box
285  // given by the index number and the rectangle lying on this face
286  //  void GetFaceRectCorner(const CRectLeaf2D *rect, EFaces faceIndx,
287  //                     const int &cornerIndx, Vector3 &cornerPoint);
288
289  // Project the box to a plane given a normal vector of this plane. Computes
290  // the surface area of projected silhouettes for parallel projection.
291  float ProjectToPlaneSA(const Vector3 &normal) const;
292
293  // Computes projected surface area of the box to a given viewing plane
294  // given a viewpoint. This corresponds the probability, the box will
295  // be hit by the ray .. moreover returns .. the region number (0-26).
296  // the function supposes all the points lie of the box lies in the viewing
297  // frustrum !!! The positive halfspace of viewplane has to contain
298  // viewpoint. "projectionType" == 0 .. perspective projection,
299  // == 1 .. parallel projection.
300  float ProjectToPlaneSA(const Plane3 &viewplane,
301                         const Vector3 &viewpoint,
302                         int *tcase,
303                         const float &maxSA,
304                         int projectionType) const;
305
306  // Computes projected surface area of the box to a given viewing plane
307  // and viewpoint. It clipps the area by all the planes given .. they should
308  // define the viewing frustrum. Variable tclip defines, which planes are
309  // used for clipping, parameter 31 is the most general, clip all the plane.
310  // 1 .. clip left, 2 .. clip top, 4 .. clip right, 8 .. clip bottom,
311  // 16 .. clip supporting plane(its normal towards the viewing frustrum).
312  // "typeProjection" == 0 .. perspective projection,
313  // == 1 .. parallel projection
314  float ProjectToPlaneSA(const Plane3 &viewplane,
315                         const Vector3 &viewpoint,
316                         int *tcase, int &tclip,
317                         const Plane3 &leftPlane,
318                         const Plane3 &topPlane,
319                         const Plane3 &rightPlane,
320                         const Plane3 &bottomPlane,
321                         const Plane3 &suppPlane,
322                         const float &maxSA,
323                         int typeProjection) const;
324
325  // Projects the box to a unit sphere enclosing a given viewpoint and
326  // returns the solid angle of the box projected to a unit sphere
327  float ProjectToSphereSA(const Vector3 &viewpoint, int *tcase) const;
328
329  /** Returns vertex indices of edge.
330  */
331  void GetEdge(const int edge, int  &aIdx, int &bIdx) const;
332
333  /** Computes cross section of plane with box (i.e., bounds box).
334          @returns the cross section
335  */
336  Polygon3 *CrossSection(const Plane3 &plane) const;
337
338  /** Computes minimal and maximal t of ray, including the object intersections.
339          @returns true if ray hits the bounding box.
340  */
341  bool GetRaySegment(const Ray &ray,
342                                float &minT,
343                                float &maxT) const;
344
345  /** If the boxes are intersecting on a common face, this function
346          returns the face intersection, false otherwise.
347   
348          @param neighbour the neighbouring box intersecting with this box.
349  */
350  bool GetIntersectionFace(Rectangle3 &face,
351                                                   const AxisAlignedBox3 &neighbour) const;
352
353  /** Adds the box faces to the mesh.
354  */
355  void AddBoxToMesh(Mesh *mesh) const;
356
357#define __EXTENT_HACK
358  // get the extent of face
359  float GetExtent(const int &face) const {
360#if defined(__EXTENT_HACK) && defined(__VECTOR_HACK)
361    return mMin[face];
362#else
363    if (face < 3)
364      return mMin[face];
365    else
366      return mMax[face-3];
367#endif
368  }
369
370  // The vertices that form boundaries of the projected bounding box
371  // for all the regions possible, number of regions is 3^3 = 27,
372  // since two parallel sides of bbox forms three disjoint spaces
373  // the vertices are given in anti-clockwise order .. stopped by -1 elem.
374  static const int bvertices[27][9];
375
376  // The list of all faces visible from a given region (except region 13)
377  // the faces are identified by triple: (axis, min-vertex, max-vertex),
378  // that is maximaly three triples are defined. axis = 0 (x-axis),
379  // axis = 1 (y-axis), axis = 2 (z-axis), -1 .. terminator. Is is always
380  // true that: min-vertex < max-vertex for all coordinates excluding axis
381  static const int bfaces[27][10];
382 
383  // The correct corners indexed starting from entry face to exit face
384  // first index determines entry face, second index exit face, and
385  // the two numbers (indx, inc) determines: ind = the index on the exit
386  // face, when starting from the vertex 0 on entry face, 'inc' is
387  // the increment when we go on entry face in order 0,1,2,3 to create
388  // convex shaft with the rectangle on exit face. That is, inc = -1 or 1.
389  static const int pairFaceRects[6][6][2];
390
391  // The vertices that form CLOSEST points with respect to the region
392  // for all the regions possible, number of regions is 3^3 = 27,
393  // since two parallel sides of bbox forms three disjoint spaces.
394  // The vertices are given in anti-clockwise order, stopped by -1 elem,
395  // at most 8 points, at least 1 point.
396  static const int cvertices[27][9];
397  static const int csvertices[27][6];
398
399  // The vertices that form FARTHEST points with respect to the region
400  // for all the regions possible, number of regions is 3^3 = 27,
401  // since two parallel sides of bbox forms three disjoint spaces.
402  // The vertices are given in anti-clockwise order, stopped by -1 elem,
403  // at most 8 points, at least 1 point.
404  static const int fvertices[27][9]; 
405  static const int fsvertices[27][9];
406
407  // input and output operator with stream
408  friend ostream& operator<<(ostream &s, const AxisAlignedBox3 &A);
409  friend istream& operator>>(istream &s, AxisAlignedBox3 &A);
410
411protected:
412  // definition of friend functions
413  friend class Ray;
414};
415
416// --------------------------------------------------------------------------
417// Implementation of inline (member) functions
418 
419inline bool
420Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
421{
422  if (x.mMax.x < y.mMin.x ||
423      x.mMin.x > y.mMax.x ||
424      x.mMax.y < y.mMin.y ||
425      x.mMin.y > y.mMax.y ||
426      x.mMax.z < y.mMin.z ||
427      x.mMin.z > y.mMax.z) {
428    return false;
429  }
430  return true;
431}
432
433inline bool
434OverlapS(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
435{
436  if (x.mMax.x <= y.mMin.x ||
437      x.mMin.x >= y.mMax.x ||
438      x.mMax.y <= y.mMin.y ||
439      x.mMin.y >= y.mMax.y ||
440      x.mMax.z <= y.mMin.z ||
441      x.mMin.z >= y.mMax.z) {
442    return false;
443  }
444  return true;
445}
446
447inline bool
448Overlap(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y, float eps)
449{
450  if ( (x.mMax.x - eps) < y.mMin.x ||
451       (x.mMin.x + eps) > y.mMax.x ||
452       (x.mMax.y - eps) < y.mMin.y ||
453       (x.mMin.y + eps) > y.mMax.y ||
454       (x.mMax.z - eps) < y.mMin.z ||
455       (x.mMin.z + eps) > y.mMax.z ) {
456    return false;
457  }
458  return true;
459}
460
461inline AxisAlignedBox3
462Intersect(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
463{
464  if (x.Unbounded())
465    return y;
466  else
467    if (y.Unbounded())
468      return x;
469  AxisAlignedBox3 ret = x;
470  if (Overlap(ret, y)) {
471    Maximize(ret.mMin, y.mMin);
472    Minimize(ret.mMax, y.mMax);
473    return ret;
474  }
475  else      // Null intersection.
476    return AxisAlignedBox3(Vector3(0), Vector3(0));
477  // return AxisAlignedBox3(Vector3(0), Vector3(-1));
478}
479
480inline AxisAlignedBox3
481Union(const AxisAlignedBox3 &x, const AxisAlignedBox3 &y)
482{
483  Vector3 min = x.mMin;
484  Vector3 max = x.mMax;
485  Minimize(min, y.mMin);
486  Maximize(max, y.mMax);
487  return AxisAlignedBox3(min, max);
488}
489
490inline AxisAlignedBox3
491Transform(const AxisAlignedBox3 &box, const Matrix4x4 &tform)
492{
493  Vector3 mmin(MAXFLOAT);
494  Vector3 mmax(-MAXFLOAT);
495
496  AxisAlignedBox3 ret(mmin, mmax);
497  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMin.z));
498  ret.Include(tform * Vector3(box.mMin.x, box.mMin.y, box.mMax.z));
499  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMin.z));
500  ret.Include(tform * Vector3(box.mMin.x, box.mMax.y, box.mMax.z));
501  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMin.z));
502  ret.Include(tform * Vector3(box.mMax.x, box.mMin.y, box.mMax.z));
503  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMin.z));
504  ret.Include(tform * Vector3(box.mMax.x, box.mMax.y, box.mMax.z));
505  return ret;
506}
507
508
509inline int operator==(const AxisAlignedBox3 &A, const AxisAlignedBox3 &B)
510{
511  return (A.mMin == B.mMin) && (A.mMax == B.mMax);
512}
513
514 
515
516
517
518#endif
Note: See TracBrowser for help on using the repository browser.