1 | #include "Ray.h"
|
---|
2 | #include "Mesh.h"
|
---|
3 | #include "MeshKdTree.h"
|
---|
4 | #include "Triangle3.h"
|
---|
5 |
|
---|
6 | int MeshInstance::mailID = 21843194198;
|
---|
7 |
|
---|
8 | void
|
---|
9 | Mesh::Preprocess()
|
---|
10 | {
|
---|
11 | mBox.Initialize();
|
---|
12 |
|
---|
13 | VertexContainer::const_iterator vi = mVertices.begin();
|
---|
14 | for (; vi != mVertices.end(); vi++) {
|
---|
15 | mBox.Include(*vi);
|
---|
16 | }
|
---|
17 |
|
---|
18 | /** true if it is a watertight convex mesh */
|
---|
19 | mIsConvex = false;
|
---|
20 |
|
---|
21 | if (mFaces.size() > MeshKdTree::mTermMinCost) {
|
---|
22 | mKdTree = new MeshKdTree(this);
|
---|
23 | MeshKdLeaf *root = (MeshKdLeaf *)mKdTree->GetRoot();
|
---|
24 | for (int i = 0; i < mFaces.size(); i++)
|
---|
25 | root->mFaces.push_back(i);
|
---|
26 | cout<<"KD";
|
---|
27 | mKdTree->Construct();
|
---|
28 |
|
---|
29 | if (mKdTree->GetRoot()->IsLeaf()) {
|
---|
30 | cout<<"d";
|
---|
31 | delete mKdTree;
|
---|
32 | }
|
---|
33 | }
|
---|
34 | }
|
---|
35 |
|
---|
36 | AxisAlignedBox3
|
---|
37 | Mesh::GetFaceBox(const int faceIndex)
|
---|
38 | {
|
---|
39 | Face *face = mFaces[faceIndex];
|
---|
40 | AxisAlignedBox3 box;
|
---|
41 | box.SetMin( mVertices[face->mVertexIndices[0]] );
|
---|
42 | box.SetMax(box.Min());
|
---|
43 | for (int i = 1; i < face->mVertexIndices.size(); i++) {
|
---|
44 | box.Include(mVertices[face->mVertexIndices[i]]);
|
---|
45 | }
|
---|
46 | return box;
|
---|
47 | }
|
---|
48 |
|
---|
49 | int
|
---|
50 | Mesh::CastRayToFace(
|
---|
51 | const int faceIndex,
|
---|
52 | Ray &ray,
|
---|
53 | float &nearestT,
|
---|
54 | int &nearestFace,
|
---|
55 | MeshInstance *instance
|
---|
56 | )
|
---|
57 | {
|
---|
58 | float t;
|
---|
59 | int hit = 0;
|
---|
60 | if (RayFaceIntersection(faceIndex, ray, t, nearestT) == Ray::INTERSECTION) {
|
---|
61 | switch (ray.GetType()) {
|
---|
62 | case Ray::GLOBAL_RAY:
|
---|
63 | ray.intersections.push_back(Ray::Intersection(t, instance, faceIndex));
|
---|
64 | hit++;
|
---|
65 | break;
|
---|
66 | case Ray::LOCAL_RAY:
|
---|
67 | nearestT = t;
|
---|
68 | nearestFace = faceIndex;
|
---|
69 | hit++;
|
---|
70 | break;
|
---|
71 | }
|
---|
72 | }
|
---|
73 | return hit;
|
---|
74 | }
|
---|
75 |
|
---|
76 | int
|
---|
77 | Mesh::CastRay(
|
---|
78 | Ray &ray,
|
---|
79 | MeshInstance *instance
|
---|
80 | )
|
---|
81 | {
|
---|
82 | if (mKdTree) {
|
---|
83 | return mKdTree->CastRay(ray, instance);
|
---|
84 | }
|
---|
85 |
|
---|
86 | int faceIndex = 0;
|
---|
87 | int hits = 0;
|
---|
88 | float nearestT = MAX_FLOAT;
|
---|
89 | int nearestFace = -1;
|
---|
90 |
|
---|
91 | if (ray.GetType() == Ray::LOCAL_RAY && ray.intersections.size())
|
---|
92 | nearestT = ray.intersections[0].mT;
|
---|
93 |
|
---|
94 | for ( ;
|
---|
95 | faceIndex < mFaces.size();
|
---|
96 | faceIndex++) {
|
---|
97 | hits += CastRayToFace(faceIndex, ray, nearestT, nearestFace, instance);
|
---|
98 | if (mIsConvex && nearestFace != -1)
|
---|
99 | break;
|
---|
100 | }
|
---|
101 |
|
---|
102 | if ( hits && ray.GetType() == Ray::LOCAL_RAY ) {
|
---|
103 | if (ray.intersections.size())
|
---|
104 | ray.intersections[0] = Ray::Intersection(nearestT, instance, nearestFace);
|
---|
105 | else
|
---|
106 | ray.intersections.push_back(Ray::Intersection(nearestT, instance, nearestFace));
|
---|
107 | }
|
---|
108 |
|
---|
109 | return hits;
|
---|
110 | }
|
---|
111 |
|
---|
112 | int
|
---|
113 | Mesh::CastRayToSelectedFaces(
|
---|
114 | Ray &ray,
|
---|
115 | const vector<int> &faces,
|
---|
116 | MeshInstance *instance
|
---|
117 | )
|
---|
118 | {
|
---|
119 | vector<int>::const_iterator fi;
|
---|
120 | int faceIndex = 0;
|
---|
121 | int hits = 0;
|
---|
122 | float nearestT = MAX_FLOAT;
|
---|
123 | int nearestFace = -1;
|
---|
124 |
|
---|
125 | if (ray.GetType() == Ray::LOCAL_RAY && ray.intersections.size())
|
---|
126 | nearestT = ray.intersections[0].mT;
|
---|
127 |
|
---|
128 | for ( fi = faces.begin();
|
---|
129 | fi != faces.end();
|
---|
130 | fi++) {
|
---|
131 | hits += CastRayToFace(*fi, ray, nearestT, nearestFace, instance);
|
---|
132 | if (mIsConvex && nearestFace != -1)
|
---|
133 | break;
|
---|
134 | }
|
---|
135 |
|
---|
136 | if ( hits && ray.GetType() == Ray::LOCAL_RAY ) {
|
---|
137 | if (ray.intersections.size())
|
---|
138 | ray.intersections[0] = Ray::Intersection(nearestT, instance, nearestFace);
|
---|
139 | else
|
---|
140 | ray.intersections.push_back(Ray::Intersection(nearestT, instance, nearestFace));
|
---|
141 | }
|
---|
142 |
|
---|
143 | return hits;
|
---|
144 | }
|
---|
145 |
|
---|
146 |
|
---|
147 | // int_lineseg returns 1 if the given line segment intersects a 2D
|
---|
148 | // ray travelling in the positive X direction. This is used in the
|
---|
149 | // Jordan curve computation for polygon intersection.
|
---|
150 | inline int
|
---|
151 | int_lineseg(float px,
|
---|
152 | float py,
|
---|
153 | float u1,
|
---|
154 | float v1,
|
---|
155 | float u2,
|
---|
156 | float v2)
|
---|
157 | {
|
---|
158 | float t;
|
---|
159 | float ydiff;
|
---|
160 |
|
---|
161 | u1 -= px; u2 -= px; // translate line
|
---|
162 | v1 -= py; v2 -= py;
|
---|
163 |
|
---|
164 | if ((v1 > 0 && v2 > 0) ||
|
---|
165 | (v1 < 0 && v2 < 0) ||
|
---|
166 | (u1 < 0 && u2 < 0))
|
---|
167 | return 0;
|
---|
168 |
|
---|
169 | if (u1 > 0 && u2 > 0)
|
---|
170 | return 1;
|
---|
171 |
|
---|
172 | ydiff = v2 - v1;
|
---|
173 | if (fabs(ydiff) < Limits::Small) { // denominator near 0
|
---|
174 | if (((fabs(v1) > Limits::Small) ||
|
---|
175 | (u1 > 0) || (u2 > 0)))
|
---|
176 | return 0;
|
---|
177 | return 1;
|
---|
178 | }
|
---|
179 |
|
---|
180 | t = -v1 / ydiff; // Compute parameter
|
---|
181 |
|
---|
182 | return (u1 + t * (u2 - u1)) > 0;
|
---|
183 | }
|
---|
184 |
|
---|
185 |
|
---|
186 |
|
---|
187 | // intersection with the polygonal face of the mesh
|
---|
188 | int
|
---|
189 | Mesh::RayFaceIntersection(const int faceIndex,
|
---|
190 | const Ray &ray,
|
---|
191 | float &t,
|
---|
192 | const float nearestT
|
---|
193 | )
|
---|
194 | {
|
---|
195 | Face *face = mFaces[faceIndex];
|
---|
196 |
|
---|
197 | Plane3 plane = GetFacePlane(faceIndex);
|
---|
198 | float dot = DotProd(plane.mNormal, ray.GetDir());
|
---|
199 |
|
---|
200 | // Watch for near-zero denominator
|
---|
201 | // ONLY single sided polygons!!!!!
|
---|
202 | if (dot > -Limits::Small)
|
---|
203 | // if (fabs(dot) < Limits::Small)
|
---|
204 | return Ray::NO_INTERSECTION;
|
---|
205 |
|
---|
206 | t = (-plane.mD - DotProd(plane.mNormal, ray.GetLoc())) / dot;
|
---|
207 |
|
---|
208 | if (t <= Limits::Small)
|
---|
209 | return Ray::INTERSECTION_OUT_OF_LIMITS;
|
---|
210 |
|
---|
211 | if (t >= nearestT) {
|
---|
212 | return Ray::INTERSECTION_OUT_OF_LIMITS; // no intersection was found
|
---|
213 | }
|
---|
214 |
|
---|
215 | int count = 0;
|
---|
216 | float u, v, u1, v1, u2, v2;
|
---|
217 | int i;
|
---|
218 |
|
---|
219 | int paxis = plane.mNormal.DrivingAxis();
|
---|
220 |
|
---|
221 | // Project the intersection point onto the coordinate plane
|
---|
222 | // specified by which.
|
---|
223 | ray.Extrap(t).ExtractVerts(&u, &v, paxis);
|
---|
224 |
|
---|
225 |
|
---|
226 | int size = face->mVertexIndices.size();
|
---|
227 |
|
---|
228 | mVertices[face->mVertexIndices[size - 1]].
|
---|
229 | ExtractVerts(&u1, &v1, paxis );
|
---|
230 |
|
---|
231 | if (0 && size <= 4) {
|
---|
232 | // assume a convex face
|
---|
233 | for (i = 0; i < size; i++) {
|
---|
234 | mVertices[face->mVertexIndices[i]].ExtractVerts(&u2, &v2, paxis);
|
---|
235 | // line u1, v1, u2, v2
|
---|
236 | if ((v2 - v1)*(u1 - u) > (u2 - u1)*(v1 - v))
|
---|
237 | return Ray::NO_INTERSECTION;
|
---|
238 | u1 = u2;
|
---|
239 | v1 = v2;
|
---|
240 | }
|
---|
241 |
|
---|
242 | return Ray::INTERSECTION;
|
---|
243 | }
|
---|
244 |
|
---|
245 | // We're stuck with the Jordan curve computation. Count number
|
---|
246 | // of intersections between the line segments the polygon comprises
|
---|
247 | // with a ray originating at the point of intersection and
|
---|
248 | // travelling in the positive X direction.
|
---|
249 | for (i = 0; i < size; i++) {
|
---|
250 | mVertices[face->mVertexIndices[i]].ExtractVerts(&u2, &v2, paxis);
|
---|
251 | count += (int_lineseg(u, v, u1, v1, u2, v2) != 0);
|
---|
252 | u1 = u2;
|
---|
253 | v1 = v2;
|
---|
254 | }
|
---|
255 |
|
---|
256 | // We hit polygon if number of intersections is odd.
|
---|
257 | return (count & 1) ? Ray::INTERSECTION : Ray::NO_INTERSECTION;
|
---|
258 | }
|
---|
259 |
|
---|
260 |
|
---|
261 | void
|
---|
262 | Mesh::GetRandomSurfacePoint(Vector3 &point, Vector3 &normal)
|
---|
263 | {
|
---|
264 | int faceIndex = RandomValue(0, mFaces.size()-1);
|
---|
265 |
|
---|
266 | // assume the face is convex and generate a convex combination
|
---|
267 | //
|
---|
268 | Face *face = mFaces[faceIndex];
|
---|
269 | point = Vector3(0,0,0);
|
---|
270 | float sum = 0.0f;
|
---|
271 | for (int i = 0; i < face->mVertexIndices.size(); i++) {
|
---|
272 | float r = RandomValue(0,1);
|
---|
273 | sum += r;
|
---|
274 | point += mVertices[face->mVertexIndices[i]]*r;
|
---|
275 | }
|
---|
276 | point *= 1.0f/sum;
|
---|
277 | normal = GetFacePlane(faceIndex).mNormal;
|
---|
278 | }
|
---|
279 |
|
---|
280 |
|
---|
281 | int
|
---|
282 | MeshInstance::CastRay(
|
---|
283 | Ray &ray
|
---|
284 | )
|
---|
285 | {
|
---|
286 | int res = mMesh->CastRay(ray, this);
|
---|
287 | return res;
|
---|
288 | }
|
---|
289 |
|
---|
290 | int
|
---|
291 | MeshInstance::CastRay(
|
---|
292 | Ray &ray,
|
---|
293 | const vector<int> &faces
|
---|
294 | )
|
---|
295 | {
|
---|
296 | return mMesh->CastRayToSelectedFaces(ray, faces, this);
|
---|
297 | }
|
---|
298 |
|
---|
299 |
|
---|
300 |
|
---|
301 | void
|
---|
302 | MeshInstance::GetRandomSurfacePoint(Vector3 &point, Vector3 &normal)
|
---|
303 | {
|
---|
304 | mMesh->GetRandomSurfacePoint(point, normal);
|
---|
305 | }
|
---|
306 |
|
---|
307 | void
|
---|
308 | TransformedMeshInstance::GetRandomSurfacePoint(Vector3 &point, Vector3 &normal)
|
---|
309 | {
|
---|
310 | mMesh->GetRandomSurfacePoint(point, normal);
|
---|
311 | point = mWorldTransform*point;
|
---|
312 | normal = TransformNormal(mWorldTransform, normal);
|
---|
313 | }
|
---|
314 |
|
---|
315 | Plane3
|
---|
316 | Mesh::GetFacePlane(const int faceIndex)
|
---|
317 | {
|
---|
318 | Face *face = mFaces[faceIndex];
|
---|
319 | return Plane3(mVertices[face->mVertexIndices[0]],
|
---|
320 | mVertices[face->mVertexIndices[1]],
|
---|
321 | mVertices[face->mVertexIndices[2]]);
|
---|
322 | }
|
---|
323 |
|
---|
324 | int
|
---|
325 | TransformedMeshInstance::CastRay(
|
---|
326 | Ray &ray
|
---|
327 | )
|
---|
328 | {
|
---|
329 | ray.ApplyTransform(Invert(mWorldTransform));
|
---|
330 | int res = mMesh->CastRay(ray, this);
|
---|
331 | ray.ApplyTransform(mWorldTransform);
|
---|
332 |
|
---|
333 | return res;
|
---|
334 | }
|
---|
335 |
|
---|
336 |
|
---|
337 | void
|
---|
338 | Mesh::AddTriangle(const Triangle3 &triangle)
|
---|
339 | {
|
---|
340 | int index = mVertices.size();
|
---|
341 |
|
---|
342 | for (int i=0; i < 3; i++) {
|
---|
343 | mVertices.push_back(triangle.mVertices[i]);
|
---|
344 | }
|
---|
345 |
|
---|
346 | AddFace(new Face(index + 0, index + 1, index + 2) );
|
---|
347 | }
|
---|
348 |
|
---|
349 | void
|
---|
350 | Mesh::AddRectangle(const Rectangle3 &rect)
|
---|
351 | {
|
---|
352 | int index = mVertices.size();
|
---|
353 |
|
---|
354 | for (int i=0; i < 4; i++) {
|
---|
355 | mVertices.push_back(rect.mVertices[i]);
|
---|
356 | }
|
---|
357 |
|
---|
358 | AddFace(new Face(index + 0, index + 1, index + 2, index + 3) );
|
---|
359 | }
|
---|