1 | #ifndef _VspBspTree_H__
|
---|
2 | #define _VspBspTree_H__
|
---|
3 |
|
---|
4 | #include "Mesh.h"
|
---|
5 | #include "Containers.h"
|
---|
6 | #include "Polygon3.h"
|
---|
7 | #include <stack>
|
---|
8 | #include "Statistics.h"
|
---|
9 | #include "VssRay.h"
|
---|
10 | #include "RayInfo.h"
|
---|
11 | #include "ViewCellBsp.h"
|
---|
12 |
|
---|
13 | class ViewCell;
|
---|
14 | //class BspViewCell;
|
---|
15 | class Plane3;
|
---|
16 | class VspBspTree;
|
---|
17 | class BspInterior;
|
---|
18 | class BspNode;
|
---|
19 | class AxisAlignedBox3;
|
---|
20 | class Ray;
|
---|
21 | class ViewCellsStatistics;
|
---|
22 |
|
---|
23 | /*class BspNodeGeometry;
|
---|
24 | class BspTreeStatistics;
|
---|
25 | class ViewCellsStatistics;
|
---|
26 | class BspNode;
|
---|
27 | class BspLeaf;
|
---|
28 | class BspInterior;
|
---|
29 | */
|
---|
30 |
|
---|
31 | /**
|
---|
32 | This is a view space partitioning specialised BSPtree.
|
---|
33 | There are no polygon splits, but we split the sample rays.
|
---|
34 | The candidates for the next split plane are evaluated only
|
---|
35 | by checking the sampled visibility information.
|
---|
36 | The polygons are employed merely as candidates for the next split planes.
|
---|
37 | */
|
---|
38 | class VspBspTree
|
---|
39 | {
|
---|
40 | public:
|
---|
41 |
|
---|
42 | /** Additional data which is passed down the BSP tree during traversal.
|
---|
43 | */
|
---|
44 | struct VspBspTraversalData
|
---|
45 | {
|
---|
46 | /// the current node
|
---|
47 | BspNode *mNode;
|
---|
48 | /// polygonal data for splitting
|
---|
49 | PolygonContainer *mPolygons;
|
---|
50 | /// current depth
|
---|
51 | int mDepth;
|
---|
52 | /// rays piercing this node
|
---|
53 | RayInfoContainer *mRays;
|
---|
54 | /// area of current node
|
---|
55 | float mArea;
|
---|
56 | /// geometry of node as induced by planes
|
---|
57 | BspNodeGeometry *mGeometry;
|
---|
58 | /// pvs size
|
---|
59 | int mPvs;
|
---|
60 | /// how often this branch has missed the max-cost ratio
|
---|
61 | int mMaxCostMisses;
|
---|
62 | /** Returns average ray contribution.
|
---|
63 | */
|
---|
64 | float GetAvgRayContribution() const
|
---|
65 | {
|
---|
66 | return (float)mPvs / ((float)mRays->size() + Limits::Small);
|
---|
67 | }
|
---|
68 |
|
---|
69 |
|
---|
70 | VspBspTraversalData():
|
---|
71 | mNode(NULL),
|
---|
72 | mPolygons(NULL),
|
---|
73 | mDepth(0),
|
---|
74 | mRays(NULL),
|
---|
75 | mPvs(0),
|
---|
76 | mArea(0.0),
|
---|
77 | mGeometry(NULL),
|
---|
78 | mMaxCostMisses(0)
|
---|
79 | {}
|
---|
80 |
|
---|
81 | VspBspTraversalData(BspNode *node,
|
---|
82 | PolygonContainer *polys,
|
---|
83 | const int depth,
|
---|
84 | RayInfoContainer *rays,
|
---|
85 | int pvs,
|
---|
86 | float area,
|
---|
87 | BspNodeGeometry *geom):
|
---|
88 | mNode(node),
|
---|
89 | mPolygons(polys),
|
---|
90 | mDepth(depth),
|
---|
91 | mRays(rays),
|
---|
92 | mPvs(pvs),
|
---|
93 | mArea(area),
|
---|
94 | mGeometry(geom),
|
---|
95 | mMaxCostMisses(0)
|
---|
96 | {}
|
---|
97 |
|
---|
98 | VspBspTraversalData(PolygonContainer *polys,
|
---|
99 | const int depth,
|
---|
100 | RayInfoContainer *rays,
|
---|
101 | BspNodeGeometry *geom):
|
---|
102 | mNode(NULL),
|
---|
103 | mPolygons(polys),
|
---|
104 | mDepth(depth),
|
---|
105 | mRays(rays),
|
---|
106 | mPvs(0),
|
---|
107 | mArea(0),
|
---|
108 | mGeometry(geom),
|
---|
109 | mMaxCostMisses(0)
|
---|
110 | {}
|
---|
111 |
|
---|
112 | friend bool operator<(const VspBspTraversalData &a, const VspBspTraversalData &b)
|
---|
113 | {
|
---|
114 | #if 0
|
---|
115 | return a.mPvs * a.mArea < b.mPvs * b.mArea;
|
---|
116 | #endif
|
---|
117 | #if 1
|
---|
118 | return a.mPvs * (int)a.mRays->size() < b.mPvs * (int)b.mRays->size();
|
---|
119 | #endif
|
---|
120 | #if 0
|
---|
121 | return a.mPvs < b.mPvs;
|
---|
122 | #endif
|
---|
123 | #if 0
|
---|
124 | return
|
---|
125 | a.mPvs / (float)(a.mRays->size() + Limits::Small())
|
---|
126 | >
|
---|
127 | b.mPvs / (float)(b.mRays->size() + Limits::Small());
|
---|
128 | #endif
|
---|
129 | #if 0
|
---|
130 | return a.mPvs * (int)a.mRays->size() < b.mPvs * (int)b.mRays->size();
|
---|
131 | #endif
|
---|
132 | }
|
---|
133 | };
|
---|
134 |
|
---|
135 | typedef std::priority_queue<VspBspTraversalData> VspBspTraversalStack;
|
---|
136 | //typedef std::stack<VspBspTraversalData> VspBspTraversalStack;
|
---|
137 |
|
---|
138 | /** Default constructor creating an empty tree.
|
---|
139 | */
|
---|
140 | VspBspTree();
|
---|
141 |
|
---|
142 | /** Default destructor.
|
---|
143 | */
|
---|
144 | ~VspBspTree();
|
---|
145 |
|
---|
146 | /** Returns BSP Tree statistics.
|
---|
147 | */
|
---|
148 | const BspTreeStatistics &GetStatistics() const;
|
---|
149 |
|
---|
150 |
|
---|
151 | /** Constructs the tree from a given set of rays.
|
---|
152 | @param sampleRays the set of sample rays the construction is based on
|
---|
153 | @param viewCells if not NULL, new view cells are
|
---|
154 | created in the leafs and stored in the container
|
---|
155 | */
|
---|
156 | void Construct(const VssRayContainer &sampleRays);
|
---|
157 |
|
---|
158 | /** Returns list of BSP leaves.
|
---|
159 | */
|
---|
160 | void CollectLeaves(vector<BspLeaf *> &leaves) const;
|
---|
161 |
|
---|
162 | /** Returns box which bounds the whole tree.
|
---|
163 | */
|
---|
164 | AxisAlignedBox3 GetBoundingBox()const;
|
---|
165 |
|
---|
166 | /** Returns root of BSP tree.
|
---|
167 | */
|
---|
168 | BspNode *GetRoot() const;
|
---|
169 |
|
---|
170 | /** Exports VspBsp tree to file.
|
---|
171 | */
|
---|
172 | bool Export(const string filename);
|
---|
173 |
|
---|
174 | /** Collects the leaf view cells of the tree
|
---|
175 | @param viewCells returns the view cells
|
---|
176 | */
|
---|
177 | void CollectViewCells(ViewCellContainer &viewCells) const;
|
---|
178 |
|
---|
179 | /** A ray is cast possible intersecting the tree.
|
---|
180 | @param the ray that is cast.
|
---|
181 | @returns the number of intersections with objects stored in the tree.
|
---|
182 | */
|
---|
183 | int CastRay(Ray &ray);
|
---|
184 |
|
---|
185 | /// bsp tree construction types
|
---|
186 | enum {FROM_INPUT_VIEW_CELLS, FROM_SCENE_GEOMETRY, FROM_SAMPLES};
|
---|
187 |
|
---|
188 | /** Returns statistics.
|
---|
189 | */
|
---|
190 | BspTreeStatistics &GetStat();
|
---|
191 |
|
---|
192 | /** finds neighbouring leaves of this tree node.
|
---|
193 | */
|
---|
194 | int FindNeighbors(BspNode *n,
|
---|
195 | vector<BspLeaf *> &neighbors,
|
---|
196 | const bool onlyUnmailed) const;
|
---|
197 |
|
---|
198 | /** Constructs geometry associated with the half space intersections
|
---|
199 | leading to this node.
|
---|
200 | */
|
---|
201 | void ConstructGeometry(BspNode *n, PolygonContainer &cell) const;
|
---|
202 |
|
---|
203 | /** Constructs geometry associated with the half space intersections
|
---|
204 | leading to this node.
|
---|
205 | */
|
---|
206 | void ConstructGeometry(BspViewCell *vc, PolygonContainer &cell) const;
|
---|
207 |
|
---|
208 | /** Construct geometry and stores it in a geometry node container.
|
---|
209 | */
|
---|
210 | void ConstructGeometry(BspNode *n, BspNodeGeometry &cell) const;
|
---|
211 |
|
---|
212 | /** Returns random leaf of BSP tree.
|
---|
213 | @param halfspace defines the halfspace from which the leaf is taken.
|
---|
214 | */
|
---|
215 | BspLeaf *GetRandomLeaf(const Plane3 &halfspace);
|
---|
216 |
|
---|
217 | /** Returns random leaf of BSP tree.
|
---|
218 | @param onlyUnmailed if only unmailed leaves should be returned.
|
---|
219 | */
|
---|
220 | BspLeaf *GetRandomLeaf(const bool onlyUnmailed = false);
|
---|
221 |
|
---|
222 | /** Traverses tree and counts all view cells as well as their PVS size.
|
---|
223 | */
|
---|
224 | void EvaluateViewCellsStats(ViewCellsStatistics &stat) const;
|
---|
225 |
|
---|
226 |
|
---|
227 | /** Returns view cell corresponding to unbounded space.
|
---|
228 | */
|
---|
229 | BspViewCell *GetRootCell() const;
|
---|
230 |
|
---|
231 | /** Returns epsilon of this tree.
|
---|
232 | */
|
---|
233 | float GetEpsilon() const;
|
---|
234 |
|
---|
235 |
|
---|
236 | int
|
---|
237 | CastLineSegment(const Vector3 &origin,
|
---|
238 | const Vector3 &termination,
|
---|
239 | ViewCellContainer &viewcells
|
---|
240 | );
|
---|
241 |
|
---|
242 | protected:
|
---|
243 |
|
---|
244 | // --------------------------------------------------------------
|
---|
245 | // For sorting objects
|
---|
246 | // --------------------------------------------------------------
|
---|
247 | struct SortableEntry
|
---|
248 | {
|
---|
249 | enum {POLY_MIN, POLY_MAX};
|
---|
250 |
|
---|
251 | int type;
|
---|
252 | float value;
|
---|
253 | Polygon3 *poly;
|
---|
254 | SortableEntry() {}
|
---|
255 | SortableEntry(const int t, const float v, Polygon3 *poly):
|
---|
256 | type(t), value(v), poly(poly) {}
|
---|
257 |
|
---|
258 | bool operator<(const SortableEntry &b) const
|
---|
259 | {
|
---|
260 | return value < b.value;
|
---|
261 | }
|
---|
262 | };
|
---|
263 |
|
---|
264 | /** Evaluates tree stats in the BSP tree leafs.
|
---|
265 | */
|
---|
266 | void EvaluateLeafStats(const VspBspTraversalData &data);
|
---|
267 |
|
---|
268 | /** Subdivides node with respect to the traversal data.
|
---|
269 | @param tStack current traversal stack
|
---|
270 | @param tData traversal data also holding node to be subdivided
|
---|
271 | @returns new root of the subtree
|
---|
272 | */
|
---|
273 | BspNode *Subdivide(VspBspTraversalStack &tStack,
|
---|
274 | VspBspTraversalData &tData);
|
---|
275 |
|
---|
276 | /** Constructs the tree from the given traversal data.
|
---|
277 | @param polys stores set of polygons on which subdivision may be based
|
---|
278 | @param rays storesset of rays on which subdivision may be based
|
---|
279 | */
|
---|
280 | void Construct(const PolygonContainer &polys, RayInfoContainer *rays);
|
---|
281 |
|
---|
282 | /** Selects the best possible splitting plane.
|
---|
283 | @param plane returns the split plane
|
---|
284 | @param leaf the leaf to be split
|
---|
285 | @param polys the polygon list on which the split decition is based
|
---|
286 | @param rays ray container on which selection may be based
|
---|
287 | @note the polygons can be reordered in the process
|
---|
288 | @returns true if the cost of the split is under maxCostRatio
|
---|
289 |
|
---|
290 | */
|
---|
291 | bool SelectPlane(Plane3 &plane,
|
---|
292 | BspLeaf *leaf,
|
---|
293 | VspBspTraversalData &data);
|
---|
294 |
|
---|
295 | /** Strategies where the effect of the split plane is tested
|
---|
296 | on all input rays.
|
---|
297 |
|
---|
298 | @returns the cost of the candidate split plane
|
---|
299 | */
|
---|
300 | float SplitPlaneCost(const Plane3 &candidatePlane,
|
---|
301 | const VspBspTraversalData &data);
|
---|
302 |
|
---|
303 |
|
---|
304 | /** Subdivide leaf.
|
---|
305 | @param leaf the leaf to be subdivided
|
---|
306 |
|
---|
307 | @param polys the polygons to be split
|
---|
308 | @param frontPolys returns the polygons in front of the split plane
|
---|
309 | @param backPolys returns the polygons in the back of the split plane
|
---|
310 |
|
---|
311 | @param rays the polygons to be filtered
|
---|
312 | @param frontRays returns the polygons in front of the split plane
|
---|
313 | @param backRays returns the polygons in the back of the split plane
|
---|
314 |
|
---|
315 | @returns the root of the subdivision
|
---|
316 | */
|
---|
317 |
|
---|
318 | BspNode *SubdivideNode(VspBspTraversalData &tData,
|
---|
319 | VspBspTraversalData &frontData,
|
---|
320 | VspBspTraversalData &backData,
|
---|
321 | PolygonContainer &coincident);
|
---|
322 |
|
---|
323 | /** Selects the split plane in order to construct a tree with
|
---|
324 | certain characteristics (e.g., balanced tree, least splits,
|
---|
325 | 2.5d aligned)
|
---|
326 | @param bestPlane returns the split plane
|
---|
327 | @param polygons container of polygons
|
---|
328 | @param rays bundle of rays on which the split can be based
|
---|
329 |
|
---|
330 | @returns true if the overall cost is under maxCostRatio
|
---|
331 | */
|
---|
332 | bool SelectPlaneHeuristics(Plane3 &bestPlane,
|
---|
333 | BspLeaf *leaf,
|
---|
334 | VspBspTraversalData &data);
|
---|
335 |
|
---|
336 | /** Extracts the meshes of the objects and adds them to polygons.
|
---|
337 | Adds object aabb to the aabb of the tree.
|
---|
338 | @param maxPolys the maximal number of objects to be stored as polygons
|
---|
339 | @returns the number of polygons
|
---|
340 | */
|
---|
341 | int AddToPolygonSoup(const ObjectContainer &objects,
|
---|
342 | PolygonContainer &polys,
|
---|
343 | int maxObjects = 0);
|
---|
344 |
|
---|
345 | /** Extracts the meshes of the view cells and and adds them to polygons.
|
---|
346 | Adds view cell aabb to the aabb of the tree.
|
---|
347 | @param maxPolys the maximal number of objects to be stored as polygons
|
---|
348 | @returns the number of polygons
|
---|
349 | */
|
---|
350 | int AddToPolygonSoup(const ViewCellContainer &viewCells,
|
---|
351 | PolygonContainer &polys,
|
---|
352 | int maxObjects = 0);
|
---|
353 |
|
---|
354 | /** Extract polygons of this mesh and add to polygon container.
|
---|
355 | @param mesh the mesh that drives the polygon construction
|
---|
356 | @param parent the parent intersectable this polygon is constructed from
|
---|
357 | @returns number of polygons
|
---|
358 | */
|
---|
359 | int AddMeshToPolygons(Mesh *mesh, PolygonContainer &polys, MeshInstance *parent);
|
---|
360 |
|
---|
361 | /** returns next candidate index and reorders polygons so no candidate is chosen two times
|
---|
362 | @param the current candidate index
|
---|
363 | @param max the range of candidates
|
---|
364 | */
|
---|
365 | int GetNextCandidateIdx(int currentIdx, PolygonContainer &polys);
|
---|
366 |
|
---|
367 | /** Computes best cost ratio for the suface area heuristics for axis aligned
|
---|
368 | splits. This heuristics minimizes the cost for ray traversal.
|
---|
369 | @param polys the polygons guiding the ratio computation
|
---|
370 | @param box the bounding box of the leaf
|
---|
371 | @param axis the current split axis
|
---|
372 | @param position returns the split position
|
---|
373 | @param objectsBack the number of objects in the back of the split plane
|
---|
374 | @param objectsFront the number of objects in the front of the split plane
|
---|
375 | */
|
---|
376 | float BestCostRatio(const PolygonContainer &polys,
|
---|
377 | const AxisAlignedBox3 &box,
|
---|
378 | const int axis,
|
---|
379 | float &position,
|
---|
380 | int &objectsBack,
|
---|
381 | int &objectsFront) const;
|
---|
382 |
|
---|
383 | /** Sorts split candidates for surface area heuristics for axis aligned splits.
|
---|
384 | @param polys the input for choosing split candidates
|
---|
385 | @param axis the current split axis
|
---|
386 | @param splitCandidates returns sorted list of split candidates
|
---|
387 | */
|
---|
388 | void SortSplitCandidates(const PolygonContainer &polys,
|
---|
389 | const int axis,
|
---|
390 | vector<SortableEntry> &splitCandidates) const;
|
---|
391 |
|
---|
392 | /** Selects an axis aligned split plane.
|
---|
393 | Returns true if split is valied
|
---|
394 | */
|
---|
395 | bool SelectAxisAlignedPlane(Plane3 &plane, const PolygonContainer &polys) const;
|
---|
396 |
|
---|
397 | /** Subdivides the rays into front and back rays according to the split plane.
|
---|
398 |
|
---|
399 | @param plane the split plane
|
---|
400 | @param rays contains the rays to be split. The rays are
|
---|
401 | distributed into front and back rays.
|
---|
402 | @param frontRays returns rays on the front side of the plane
|
---|
403 | @param backRays returns rays on the back side of the plane
|
---|
404 |
|
---|
405 | @returns the number of splits
|
---|
406 | */
|
---|
407 | int SplitRays(const Plane3 &plane,
|
---|
408 | RayInfoContainer &rays,
|
---|
409 | RayInfoContainer &frontRays,
|
---|
410 | RayInfoContainer &backRays);
|
---|
411 |
|
---|
412 |
|
---|
413 | /** Extracts the split planes representing the space bounded by node n.
|
---|
414 | */
|
---|
415 | void ExtractHalfSpaces(BspNode *n, vector<Plane3> &halfSpaces) const;
|
---|
416 |
|
---|
417 | /** Adds the object to the pvs of the front and back leaf with a given classification.
|
---|
418 |
|
---|
419 | @param obj the object to be added
|
---|
420 | @param cf the ray classification regarding the split plane
|
---|
421 | @param frontPvs returns the PVS of the front partition
|
---|
422 | @param backPvs returns the PVS of the back partition
|
---|
423 |
|
---|
424 | */
|
---|
425 | void AddObjToPvs(Intersectable *obj, const int cf, int &frontPvs, int &backPvs) const;
|
---|
426 |
|
---|
427 | /** Computes PVS size induced by the rays.
|
---|
428 | */
|
---|
429 | int ComputePvsSize(const RayInfoContainer &rays) const;
|
---|
430 |
|
---|
431 | /** Returns true if tree can be terminated.
|
---|
432 | */
|
---|
433 | inline bool TerminationCriteriaMet(const VspBspTraversalData &data) const;
|
---|
434 |
|
---|
435 | /** Computes accumulated ray lenght of this rays.
|
---|
436 | */
|
---|
437 | float AccumulatedRayLength(const RayInfoContainer &rays) const;
|
---|
438 |
|
---|
439 | /** Splits polygons with respect to the split plane.
|
---|
440 |
|
---|
441 | @param plane the split plane
|
---|
442 | @param polys the polygons to be split. the polygons are consumed and
|
---|
443 | distributed to the containers frontPolys, backPolys, coincident.
|
---|
444 | @param frontPolys returns the polygons in the front of the split plane
|
---|
445 | @param backPolys returns the polygons in the back of the split plane
|
---|
446 | @param coincident returns the polygons coincident to the split plane
|
---|
447 |
|
---|
448 | @returns the number of splits
|
---|
449 | */
|
---|
450 | int SplitPolygons(const Plane3 &plane,
|
---|
451 | PolygonContainer &polys,
|
---|
452 | PolygonContainer &frontPolys,
|
---|
453 | PolygonContainer &backPolys,
|
---|
454 | PolygonContainer &coincident) const;
|
---|
455 |
|
---|
456 | /** Adds ray sample contributions to the PVS.
|
---|
457 | @param sampleContributions the number contributions of the samples
|
---|
458 | @param contributingSampels the number of contributing rays
|
---|
459 |
|
---|
460 | */
|
---|
461 | void AddToPvs(BspLeaf *leaf,
|
---|
462 | const RayInfoContainer &rays,
|
---|
463 | int &sampleContributions,
|
---|
464 | int &contributingSamples);
|
---|
465 |
|
---|
466 |
|
---|
467 |
|
---|
468 |
|
---|
469 | /// Pointer to the root of the tree
|
---|
470 | BspNode *mRoot;
|
---|
471 |
|
---|
472 | BspTreeStatistics mStat;
|
---|
473 |
|
---|
474 | /// Strategies for choosing next split plane.
|
---|
475 | enum {NO_STRATEGY = 0,
|
---|
476 | RANDOM_POLYGON = 1,
|
---|
477 | AXIS_ALIGNED = 2,
|
---|
478 | LEAST_RAY_SPLITS = 256,
|
---|
479 | BALANCED_RAYS = 512,
|
---|
480 | PVS = 1024
|
---|
481 | };
|
---|
482 |
|
---|
483 | /// box around the whole view domain
|
---|
484 | AxisAlignedBox3 mBox;
|
---|
485 |
|
---|
486 | /// view cell corresponding to unbounded space
|
---|
487 | BspViewCell *mRootCell;
|
---|
488 |
|
---|
489 | /// minimal number of rays before subdivision termination
|
---|
490 | int mTermMinRays;
|
---|
491 | /// maximal possible depth
|
---|
492 | int mTermMaxDepth;
|
---|
493 | /// mininum area
|
---|
494 | float mTermMinArea;
|
---|
495 | /// mininum PVS
|
---|
496 | int mTermMinPvs;
|
---|
497 |
|
---|
498 | /// minimal number of rays for axis aligned split
|
---|
499 | int mTermMinRaysForAxisAligned;
|
---|
500 | /// minimal number of objects for axis aligned split
|
---|
501 | int mTermMinObjectsForAxisAligned;
|
---|
502 | /// maximal contribution per ray
|
---|
503 | float mTermMaxRayContribution;
|
---|
504 | /// minimal accumulated ray length
|
---|
505 | float mTermMinAccRayLength;
|
---|
506 |
|
---|
507 | /// strategy to get the best split plane
|
---|
508 | int mSplitPlaneStrategy;
|
---|
509 | /// number of candidates evaluated for the next split plane
|
---|
510 | int mMaxPolyCandidates;
|
---|
511 | /// number of candidates for split planes evaluated using the rays
|
---|
512 | int mMaxRayCandidates;
|
---|
513 | /// balancing factor for PVS criterium
|
---|
514 | float mCtDivCi;
|
---|
515 |
|
---|
516 | //-- axis aligned split criteria
|
---|
517 | float mAxisAlignedCtDivCi;
|
---|
518 | /// spezifies the split border of the axis aligned split
|
---|
519 | float mAxisAlignedSplitBorder;
|
---|
520 |
|
---|
521 | /// maximal acceptable cost ratio
|
---|
522 | float mTermMaxCostRatio;
|
---|
523 | /// tolerance value indicating how often the max cost ratio can be failed
|
---|
524 | int mTermMissTolerance;
|
---|
525 |
|
---|
526 | //-- factors guiding the split plane heuristics
|
---|
527 | float mLeastRaySplitsFactor;
|
---|
528 | float mBalancedRaysFactor;
|
---|
529 | float mPvsFactor;
|
---|
530 |
|
---|
531 | /// if area or accumulated ray lenght should be used for PVS heuristics
|
---|
532 | bool mPvsUseArea;
|
---|
533 | /// tolerance for polygon split
|
---|
534 | float mEpsilon;
|
---|
535 | /// maximal number of test rays used to evaluate candidate split plane
|
---|
536 | int mMaxTests;
|
---|
537 | /// number of different bsp split plane criteria
|
---|
538 | int mNumCriteria;
|
---|
539 |
|
---|
540 | private:
|
---|
541 |
|
---|
542 | static const float sLeastRaySplitsTable[5];
|
---|
543 | /** Evaluates split plane classification with respect to the plane's
|
---|
544 | contribution for balanced rays.
|
---|
545 | */
|
---|
546 | static const float sBalancedRaysTable[5];
|
---|
547 |
|
---|
548 | /// Generates unique ids for PVS criterium
|
---|
549 | static void GenerateUniqueIdsForPvs();
|
---|
550 |
|
---|
551 | //-- unique ids for PVS criterium
|
---|
552 | static int sFrontId;
|
---|
553 | static int sBackId;
|
---|
554 | static int sFrontAndBackId;
|
---|
555 | };
|
---|
556 |
|
---|
557 | #endif
|
---|