Integration of preprocessed visibility

Jifi Bittner, Oliver Mattausch, Michael Wimmer
Institute of Computer Graphics and Algorithms, Vienna University of Technology

January 30, 2007

Contents

1 Introduction
1.1 Structure of the report
1.2 Domain of visibility problems . . .

1.3 Dimension of the problem-relevant line set

1.4 Classification of visibility algorithms
1.5 Summary

o0 W NN

Chapter 1

Requirements

Integration of the preprocessed visibility into your engine Requirements
Following libraries compile the Preprocessor application and must be added to application

1. zdll.lib

N

zziplib.lib

3. xercesc_2.lib
devil lib
glut32.1ib

OpenGL32.Lib

S A

glu32.1lib
8. glew32.lib

Nel

. glew32s.1ib

These libariys are all part of the NonGtp directory of the repository.

Chapter 2

Build Preprocessor.lib

Open the GtpVisibility.sln with Visual Studio 2003 (2005 might work, but we did not test it). Use Release;
as build target. Build the project Testpreprocessor.

Chapter 3

Generate Visibility Solution

3.1 Structure of the report

The report consists of two introductory chapters, which provide a theoretical background for description of
the algorithms, and three chapters dealing with the actual visibility algorithms.

This chapter provides an introduction to visibility by using a taxonomy of visibility problems and
algorithms. The taxonomy is used to classify the later described visibility algorithms. Chapter ?? provides
an analysis of visibility in 2D and 3D polygonal scenes. This analysis also includes formal description
of visibility using Pliicker coordinates of lines. Pliicker coordinates are exploited later in algorithms for
mutual visibility verification (Chapter ?7?).

Chapter ?? describes a visibility culling algorithm used to implement the online visibility culling mod-
ule. This algorithm can be used accelerate rendering of fully dynamic scenes using recent graphics hard-
ware. Chapter ?? describes global visibility sampling algorithm which forms a core of the PVS computa-
tion module. This chapter also describes view space partitioning algorithms used in close relation with the
PVS computation. Finally, Chapter ?? describes mutual visibility verification algorithms, which are used
by the PVS computation module to generate the final solution for precomputed visibility.

3.2 Domain of visibility problems

Computer graphics deals with visibility problems in the context of 2D, 2%D, or 3D scenes. The actual
problem domain is given by restricting the set of rays for which visibility should be determined.
Below we list common problem domains used and the corresponding domain restrictions:

1. visibility along a line

(a) line

(b) ray (origin + direction)

2. visibility from a point (from-point visibility)

(a) point
(b) point + restricted set of rays

i. point + raster image (discrete form)
ii. point + beam (continuous form)

3. visibility from a line segment (from-segment visibility)

(a) line segment

(b) line segment + restricted set of rays
4. visibility from a polygon (from-polygon visibility)

(a) polygon
(b) polygon + restricted set of rays

5. visibility from a region (from-region visibility)

(a) region

(b) region + restricted set of rays
6. global visibility

(a) no further input (all rays in the scene)

(b) restricted set of rays

The domain restrictions can be given independently of the dimension of the scene, but the impact of the
restrictions differs depending on the scene dimension. For example, visibility from a polygon is equivalent
to visibility from a (polygonal) region in 2D, but not in 3D.

3.3 Dimension of the problem-relevant line set

The six domains of visibility problems stated in Section 1.2 can be characterized by the problem-relevant
line set denoted Lr. We give a classification of visibility problems according to the dimension of the
problem-relevant line set. We discuss why this classification is important for understanding the nature of
the given visibility problem and for identifying its relation to other problems.

For the following discussion we assume that a line in primal space can be mapped to a point in line
space. For purposes of the classification we define the line space as a vector space where a point corre-
sponds to a line in the primal space'.

3.3.1 Parametrization of lines in 2D

There are two independent parameters that specify a 2D line and thus the corresponding set of lines is two-
dimensional. There is a natural duality between lines and points in 2D. For example a line expressed as:
l:y = ax + cis dual to a point p = (—c, a). This particular duality cannot handle vertical lines. example
of other dual mappings in the plane. To avoid the singularity in the mapping, a line [: ax + by + ¢ = 0 can
be represented as a point p; = (a, b, ¢) in 2D projective space P2 [?]. Multiplying p; by a non-zero scalar
we obtain a vector that represents the same line [. More details about this singularity-free mapping will be
discussed in Chapter ??.

To sum up: In 2D there are two degrees of freedom in description of a line and the corresponding line
space is two-dimensional. The problem-relevant line set £ then forms a k-dimensional subset of P2,
where 0 < k£ < 2. An illustration of the concept of the problem-relevant line set is depicted in

IA classical mathematical definition says: Line space is a direct product of two Hilbert spaces [?]. However, this definition differs
from the common understanding of line space in computer graphics [?]

3.3.2 Parametrization of lines in 3D

Lines in 3D form a four-parametric space [?]. A line intersecting a given scene can be described by two
points on a sphere enclosing the scene. Since the surface of the sphere is a two parametric space, we need
four parameters to describe the line.

The two plane parametrization of 3D lines describes a line by points of intersection with the given two
planes [?]. This parametrization exhibits a singularity since it cannot describe lines parallel to these planes.
See two plane parameterizations.

Another common parametrization of 3D lines are the Pliicker coordinates. Pliicker coordinates of an
oriented 3D line are a six tuple that can be understood as a point in 5D oriented projective space [?]. There
are six coordinates in Pliicker representation of a line although we know that the L is four-dimensional.
This can be explained as follows:

e Firstly, Pliicker coordinates are homogeneous coordinates of a 5D point. By multiplication of the
coordinates by any positive scalar we get a mapping of the same line.

e Secondly, only 4D subset of the 5D oriented projective space corresponds to real lines. This subset
is a 4D ruled quadric called the Pliicker quadric or the Grassman manifold [?, ?].

Although the Pliicker coordinates need more coefficients they have no singularity and preserve some
linearities: lines intersecting a set of lines in 3D correspond to an intersection of 5D hyperplanes. More
details on Pliicker coordinates will be discussed in Chapter ?? and Chapter ?? where they are used to solve
the from-region visibility problem.

To sum up: In 3D there are four degrees of freedom in the description of a line and thus the correspond-
ing line space is four-dimensional. Fixing certain line parameters (e.g. direction) the problem-relevant line
set, denoted £, forms a k-dimensional subset of P*, where 0 < k < 4.

3.3.3 Visibility along a line

The simplest visibility problems deal with visibility along a single line. The problem-relevant line set is
zero-dimensional, i.e. it is fully specified by the given line. A typical example of a visibility along a line
problem is ray shooting.

A similar problem to ray shooting is the point-to-point visibility. The point-to-point visibility deter-
mines whether the line segment between two points is occluded, i.e. it has an intersection with an opaque
object in the scene. Point-to-point visibility provides a visibility classification (answer 1a), whereas ray
shooting determines a visible object (answer 2a) and/or a point of intersection (answer 3a). Note that the
point-to-point visibility can be solved easily by means of ray shooting. Another constructive visibility
along a line problem is determining the for an illustration of typical visibility along a line problems.

3.3.4 Visibility from a point

Lines intersecting a point in 3D can be described by two parameters. For example the lines can be ex-
pressed by an intersection with a unit sphere centered at the given point. The most common parametrization
describes a line by a point of intersection with a given viewport. Note that this parametrization accounts
only for a

In 3D the problem-relevant line set Ly is a 2D subset of the 4D line space. In 2D the Lg is a 1D
subset of the 2D line space. The typical visibility from a point problem is the visible surface determination.
Due to its importance the visible surface determination is covered by the majority of existing visibility
algorithms. Other visibility from a point problem is the construction of the visibility map or the point-to-
region visibility that classifies a region as visible, invisible, or partially visible with respect to the given
point.

3.3.5 Visibility from a line segment

Lines intersecting a line segment in 3D can be described by three parameters. One parameter fixes the
intersection of the line with the segment the other two express the direction of the line. The problem-
relevant line set Ly is three-dimensional and it can be understood as a 2D cross section of Lr swept
according to the translation on the given line segment (see

In 2D lines intersecting a line segment form a two-dimensional problem-relevant line set. Thus for the
2D case the Ly is a two-dimensional subset of 2D line space.

3.3.6 Visibility from a region

Visibility from a region (or from-region visibility) involves the most general visibility problems. In 3D the
L is a 4D subset of the 4D line space. In 2D the Ly is a 2D subset of the 2D line space. Consequently, in
the presented classification visibility from a region in 2D is equivalent to visibility from a line segment in
2D.

A typical visibility from a region problem is the problem of region-to-region visibility that aims to
determine if the two given regions in the scene are visible, invisible, or partially visible (see computation
of a potentially visible set (PVS) with respect to a given view cell. The PVS consists of a set of objects that
are potentially visible from any point inside the view cell. Further visibility from a region problems include
computing form factors between two polygons, soft shadow algorithms or discontinuity meshing.

3.3.7 Global visibility

According to the classification the global visibility problems can be seen as an extension of the from-region
visibility problems. The dimension of the problem-relevant line set is the same (k = 2 for 2D and k = 4
for 3D scenes). Nevertheless, the global visibility problems typically deal with much larger set of rays, i.e.
all rays that penetrate the scene. Additionally, there is no given set of reference points from which visibility
is studied and hence there is no given priority ordering of objects along each particular line from Lp.
Therefore an additional parameter must be used to describe visibility (visible object) along each ray.

3.3.8 Summary

The classification of visibility problems according to the dimension of the problem-relevant line set is sum-
marized in Table 1.1. This classification provides means for understanding how difficult it is to compute,
describe, and maintain visibility for a particular class of problems. For example a data structure repre-
senting the visible or occluded parts of the scene for the visibility from a point problem needs to partition
a 2D Lpg into visible and occluded sets of lines. This observation conforms with the traditional visible
surface algorithms — they partition a 2D viewport into empty/nonempty regions and associate each non-
empty regions (pixels) with a visible object. In this case the viewport represents the Ly as each point of
the viewport corresponds to a line through that point. To analytically describe visibility from a region a
subdivision of 4D L should be performed. This is much more difficult than the 2D subdivision. Moreover
the description of visibility from a region involves non-linear subdivisions of both primal space and line
space even for polygonal scenes [?, ?].

3.4 Classification of visibility algorithms

The taxonomy of visibility problems groups similar visibility problems in the same class. A visibility prob-
lem can be solved by means of various visibility algorithms. A visibility algorithm poses further restrictions
on the input and output data. These restrictions can be seen as a more precise definition of the visibility
problem that is solved by the algorithm.

Above we classified visibility problems according to the problem domain and the desired answers.
In this section we provide a classification of visibility algorithms according to other important criteria
characterizing a particular visibility algorithm.

2D
domain \ d(Lr) | problems
visibility along a line 0 ray shooting, point-to-point visibility
visibility from a point 1 view around a point, point-to-region visibility
visibility from a line segment
visibility from region 2 region-to-region visibility, PVS
global visibility
3D
domain \ d(LR) | problems
visibility along a line 0 ray shooting, point-to-point visibility
from point in a surface 1 see visibility from point in 2D
. . visible (hidden) surfaces, point-to-region visibility,
visibility from a point 2 Visibilit(y map, hard shador\)wvs : ’
visibility from a line segment 3 segment-to-region visibility (rare)
visibility from a region region-region visibility, PVS, aspect graph,
global visibility soft shadows, discontinuity meshing

Table 3.1: Classification of visibility problems in 2D and 3D according to the dimension of the problem-
relevant line set.

3.4.1 Scene restrictions

Visibility algorithms can be classified according to the restrictions they pose on the scene description.
The type of the scene description influences the difficulty of solving the given problem: it is simpler to
implement an algorithm computing a visibility map for scenes consisting of triangles than for scenes with
NURBS surfaces. We list common restrictions on the scene primitives suitable for visibility computations:

e triangles, convex polygons, concave polygons,

e volumetric data,

® points,

e general parametric, implicit, or procedural surfaces.

Some attributes of scenes objects further increase the complexity of the visibility computation:
e transparent objects,

e dynamic objects.

The majority of analytic visibility algorithms deals with static polygonal scenes without transparency.
The polygons are often subdivided into triangles for easier manipulation and representation.

3.4.2 Accuracy

Visibility algorithms can be classified according to the accuracy of the result as:
e exact,
e conservative,
® aggressive,

e approximate.

An exact algorithm provides an exact analytic result for the given problem (in practice however this re-
sult is typically influenced by the finite precision of the floating point arithmetics). A conservative algorithm
overestimates visibility, i.e. it never misses any visible object, surface or point. An aggressive algorithm
always underestimates visibility, i.e. it never reports an invisible object, surface or point as visible. An
approximate algorithm provides only an approximation of the result, i.e. it can overestimate visibility for
one input and underestimate visibility for another input.

The classification according to the accuracy is best illustrated on computing PVS: an exact algorithm
computes an exact PVS. A conservative algorithm computes a superset of the exact PVS. An aggressive
algorithm determines a subset of the exact PVS. An approximate algorithm computes an approximation to
the exact PVS that is neither its subset or its superset for all possible inputs.

A more precise quality measure of algorithms computing PVSs can be expressed by the relative overes-
timation and the relative underestimation of the PVS with respect to the exact PVS. We can define a quality
measure of an algorithm A on input I as a tuple Q(I):

QYI) = (QXNID).QXI), IeD (.1)
A I

iy = A (?g\(fﬂ(m (32)
£ A

Al = E (;)g\(f)'(m (33)

where I is an input from the input domain D, S (I) is the PVS determined by the algorithm A for input
I and S¢ (I) is the exact PVS for the given input. Q2 (I) expresses the relative overestimation of the PVS,
Q:X(I) is the relative underestimation.

The expected quality of the algorithm over all possible inputs can be given as:

QY = E[Q DI (3.4)
= 3 fDAJQAD? + QA (3.5)
VIieD

where f(1) is the probability density function expressing the probability of occurrence of input I. The
quality measure Q“(I) can be used to classify a PVS algorithm into one of the four accuracy classes
according to Section 1.4.2:

1. exact
VI€D:QMI)=0AQA()=0

2. conservative
VI€D:QMI)>0NQA(I)=0

3. aggressive
VI€D:QMI)=0AQA(1)>0

4. approximate
3, Ix € D:QIMI;) > 0AQA(I) >0
3.4.3 Solution space

The solution space is the domain in which the algorithm determines the desired result. Note that the
solution space does not need to match the domain of the result.
The algorithms can be classified as:

e discrete,

e continuous,

e hybrid.

A discrete algorithm solves the problem using a discrete solution space; the solution is typically an
approximation of the result. A continuous algorithm works in a continuous domain and often computes
an analytic solution to the given problem. A hybrid algorithm uses both the discrete and the continuous
solution space.

The classification according to the solution space is easily demonstrated on visible surface algorithms:
The z-buffer [?] is a common example of a discrete algorithm. The Weiler-Atherton algorithm [?] is an
example of a continuous one. A hybrid solution space is used by scan-line algorithms that solve the problem
in discrete steps (scan-lines) and for each step they provide a continuous solution (spans).

Further classification reflects the semantics of the solution space. According to this criteria we can
classify the algorithms as:

e primal space (object space),
e line space,

— image space,

— general,
o hybrid.

A primal space algorithm solves the problem by studying the visibility between objects without a trans-
formation to a different solution space. A line space algorithm studies visibility using a transformation
of the problem to line space. Image space algorithms can be seen as an important subclass of line space
algorithms for solving visibility from a point problems in 3D. These algorithms cover all visible surface
algorithms and many visibility culling algorithms. They solve visibility in a given image plane that repre-
sents the problem-relevant line set Lr — each ray originating at the viewpoint corresponds to a point in
the image plane.

The described classification differs from the sometimes mentioned understanding of image space and
object space algorithms that incorrectly considers all image space algorithms discrete and all object space
algorithms continuous.

3.5 Summary

The presented taxonomy classifies visibility problems independently of their target application. The classi-
fication should help to understand the nature of the given problem and it should assist in finding relation-
ships between visibility problems and algorithms in different application areas. The algorithms address the
following classes of visibility problems:

e Visibility from a point in 3D d(Lg) = 2.
e Global visibility in 3D d(Lg) = 4.
e Visibility from a region in 3D, d(L) = 4.

This chapter discussed several important criteria for the classification of visibility algorithms. This
classification can be seen as a finer structuring of the taxonomy of visibility problems. We discussed
important steps in the design of a visibility algorithm that should also assist in understanding the quality of
a visibility algorithm. According to the classification the visibility algorithms described later in the report
address algorithms with the following properties:

e Domain:
— viewpoint (online visibility culling),

— global visibility (global visibility sampling)

10

— polygon or polyhedron (mutual visibility verification)
Scene restrictions (occluders):
— meshes consisting of convex polygons
Scene restrictions (group objects):
— bounding boxes
Output:
- PVS
Accuracy:

— conservative
— exact

— aggresive

Solution space:

— discrete (online visibility culling, global visibility sampling, conservative and approximate al-

gorithm from the mutual visibility verification)

— continuous (exact algorithm from mutual visibility verification)

Solution space data structures: viewport (online visibility culling), ray stack (global visibility sam-
pling, conservative and approximate algorithm from the mutual visibility verification), BSP tree (ex-

act algorithm from the mutual visibility verification)
Use of coherence of visibility:

— spatial coherence (all algorithms)

— temporal coherence (online visibility culling)
Output sensitivity: expected in practice (all algorithms)
Acceleration data structure: kD-tree (all algorithms)

Use of graphics hardware: online visibility culling

11

