- Timestamp:
- 08/28/05 15:12:11 (19 years ago)
- Location:
- trunk/VUT/doc/SciReport
- Files:
-
- 7 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/VUT/doc/SciReport/analysis.tex
r249 r255 1 1 \chapter{Analysis of Visibility in Polygonal Scenes} 2 2 3 4 \section{Related work}5 \label{VFR3D_RELATED_WORK}6 7 8 Below we briefly discuss the related work on visibility preprocessing9 in several application areas.10 11 12 \subsection{Aspect graph}13 14 The first algorithms dealing with from-region visibility belong to the15 area of computer vision. The {\em aspect16 graph}~\cite{Gigus90,Plantinga:1990:RTH, Sojka:1995:AGT} partitions17 the view space into cells that group viewpoints from which the18 projection of the scene is qualitatively equivalent. The aspect graph19 is a graph describing the view of the scene (aspect) for each cell of20 the partitioning. The major drawback of this approach is that for21 polygonal scenes with $n$ polygons there can be $\Theta(n^9)$ cells in22 the partitioning for unrestricted viewspace. A {\em scale space}23 aspect graph~\cite{bb12595,bb12590} improves robustness of the method24 by merging similar features according to the given scale.25 26 27 \subsection{Potentially visible sets}28 29 30 In the computer graphics community Airey~\cite{Airey90} introduced31 the concept of {\em potentially visible sets} (PVS). Airey assumes32 the existence of a natural subdivision of the environment into33 cells. For models of building interiors these cells roughly correspond34 to rooms and corridors. For each cell the PVS is formed by cells35 visible from any point of that cell. Airey uses ray shooting to36 approximate visibility between cells of the subdivision and so the37 computed PVS is not conservative.38 39 This concept was further elaborated by Teller et40 al.~\cite{Teller92phd,Teller:1991:VPI} to establish a conservative41 PVS. The PVS is constructed by testing the existence of a stabbing42 line through a sequence of polygonal portals between cells. Teller43 proposed an exact solution to this problem using \plucker44 coordinates~\cite{Teller:1992:CAA} and a simpler and more robust45 conservative solution~\cite{Teller92phd}. The portal based methods46 are well suited to static densely occluded environments with a47 particular structure. For less structured models they can face a48 combinatorial explosion of complexity~\cite{Teller92phd}. Yagel and49 Ray~\cite{Yagel95a} present an algorithm, that uses a regular spatial50 subdivision. Their approach is not sensitive to the structure of the51 model in terms of complexity, but its efficiency is altered by the52 discrete representation of the scene.53 54 Plantinga proposed a PVS algorithm based on a conservative viewspace55 partitioning by evaluating visual56 events~\cite{Plantinga:1993:CVP}. The construction of viewspace57 partitioning was further studied by Chrysanthou et58 al.~\cite{Chrysanthou:1998:VP}, Cohen-Or et al.~\cite{cohen-egc-98}59 and Sadagic~\cite{Sadagic}. Sudarsky and60 Gotsman~\cite{Sudarsky:1996:OVA} proposed an output-sensitive61 visibility algorithm for dynamic scenes. Cohen-Or et62 al.~\cite{COZ-gi98} developed a conservative algorithm determining63 visibility of an $\epsilon$-neighborhood of a given viewpoint that was64 used for network based walkthroughs.65 66 Conservative algorithms for computing PVS developed by Durand et67 al.~\cite{EVL-2000-60} and Schaufler et al.~\cite{EVL-2000-59} make68 use of several simplifying assumptions to avoid the usage of 4D data69 structures. Wang et al.~\cite{Wang98} proposed an algorithm that70 precomputes visibility within beams originating from the restricted71 viewpoint region. The approach is very similar to the 5D subdivision72 for ray tracing~\cite{Simiakakis:1994:FAS} and so it exhibits similar73 problems, namely inadequate memory and preprocessing complexities.74 Specialized algorithms for computing PVS in \m25d scenes were proposed75 by Wonka et al.~\cite{wonka00}, Koltun et al.~\cite{koltun01}, and76 Bittner et al.~\cite{bittner:2001:PG}.77 78 The method presented in the thesis was first outlined79 in~\cite{bittner99min}. Recently, a similar exact algorithm for PVS80 computation was developed by Nirenstein et81 al.~\cite{nirenstein:02:egwr}. This algorithm uses \plucker82 coordinates to compute visibility in shafts defined by each polygon in83 the scene.84 85 86 \subsection{Rendering of shadows}87 88 89 The from-region visibility problems include the computation of soft90 shadows due to an areal light source. Continuous algorithms for91 real-time soft shadow generation were studied by Chin and92 Feiner~\cite{Chin:1992:FOP}, Loscos and93 Drettakis~\cite{Loscos:1997:IHS}, and94 Chrysanthou~\cite{Chrysantho1996a} and Chrysanthou and95 Slater~\cite{Chrysanthou:1997:IUS}. Discrete solutions have been96 proposed by Nishita~\cite{Nishita85}, Brotman and97 Badler~\cite{Brotman:1984:GSS}, and Soler and Sillion~\cite{SS98}. An98 exact algorithm computing an antipenumbra of an areal light source was99 developed by Teller~\cite{Teller:1992:CAA}.100 101 102 \subsection{Discontinuity meshing}103 104 105 Discontinuity meshing is used in the context of the radiosity global106 illumination algorithm or computing soft shadows due to areal light107 sources. First approximate discontinuity meshing algorithms were108 studied by Campbell~\cite{Campbell:1990:AMG, Campbell91},109 Lischinski~\cite{lischinski92a}, and Heckbert~\cite{Heckbert92discon}.110 More elaborate methods were developed by111 Drettakis~\cite{Drettakis94-SSRII, Drettakis94-FSAAL}, and Stewart and112 Ghali~\cite{Stewart93-OSACS, Stewart:1994:FCSb}. These methods are113 capable of creating a complete discontinuity mesh that encodes all114 visual events involving the light source.115 116 The classical radiosity is based on an evaluation of form factors117 between two patches~\cite{Schroder:1993:FFB}. The visibility118 computation is a crucial step in the form factor119 evaluation~\cite{Teller:1993:GVA,Haines94,Teller:1994:POL,120 Nechvile:1996:FFE,Teichmann:WV}. Similar visibility computation takes121 place in the scope of hierarchical radiosity122 algorithms~\cite{Soler:1996:AEB, Drettakis:1997:IUG, Daubert:1997:HLS}.123 124 125 126 \subsection{Global visibility}127 128 The aim of {\em global visibility} computations is to capture and129 describe visibility in the whole scene~\cite{Durand:1996:VCN}. The130 global visibility algorithms are typically based on some form of {\em131 line space subdivision} that partitions lines or rays into equivalence132 classes according to their visibility classification. Each class133 corresponds to a continuous set of rays with a common visibility134 classification. The techniques differ mainly in the way how the line135 space subdivision is computed and maintained. A practical application136 of most of the proposed global visibility structures for 3D scenes is137 still an open problem. Prospectively these techniques provide an138 elegant method for ray shooting acceleration --- the ray shooting139 problem can be reduced to a point location in the line space140 subdivision.141 142 143 Pocchiola and Vegter introduced the visibility complex~\cite{pv-vc-93}144 that describes global visibility in 2D scenes. The visibility complex145 has been applied to solve various 2D visibility146 problems~\cite{r-tsvcp-95,r-wvcav-97, r-dvpsv-97,Orti96-UVCRC}. The147 approach was generalized to 3D by Durand et148 al.~\cite{Durand:1996:VCN}. Nevertheless, no implementation of the 3D149 visibility complex is currently known. Durand et150 al.~\cite{Durand:1997:VSP} introduced the {\em visibility skeleton}151 that is a graph describing a skeleton of the 3D visibility152 complex. The visibility skeleton was verified experimentally and the153 results indicate that its $O(n^4\log n)$ worst case complexity is much154 better in practice. Pu~\cite{Pu98-DSGIV} developed a similar method to155 the one presented in this chapter. He uses a BSP tree in \plucker156 coordinates to represent a global visibility map for a given set of157 polygons. The computation is performed considering all rays piercing158 the scene and so the method exhibits unacceptable memory complexity159 even for scenes of moderate size. Recently, Duguet and160 Drettakis~\cite{duguet:02:sig} developed a robust variant of the161 visibility skeleton algorithm that uses robust epsilon-visibility162 predicates.163 164 Discrete methods aiming to describe visibility in a 4D data structure165 were presented by Chrysanthou et al.~\cite{chrysanthou:cgi:98} and166 Blais and Poulin~\cite{blais98a}. These data structures are closely167 related to the {\em lumigraph}~\cite{Gortler:1996:L,buehler2001} or168 {\em light field}~\cite{Levoy:1996:LFR}. An interesting discrete169 hierarchical visibility algorithm for two-dimensional scenes was170 developed by Hinkenjann and M\"uller~\cite{EVL-1996-10}. One of the171 biggest problems of the discrete solution space data structures is172 their memory consumption required to achieve a reasonable173 accuracy. Prospectively, the scene complexity174 measures~\cite{Cazals:3204:1997} provide a useful estimate on the175 required sampling density and the size of the solution space data176 structure.177 178 179 \subsection{Other applications}180 181 Certain from-point visibility problems determining visibility over a182 period of time can be transformed to a static from-region visibility183 problem. Such a transformation is particularly useful for antialiasing184 purposes~\cite{grant85a}. The from-region visibility can also be used185 in the context of simulation of the sound186 propagation~\cite{Funkhouser98}. The sound propagation algorithms187 typically require lower resolution than the algorithms simulating the188 propagation of light, but they need to account for simulation of189 attenuation, reflection and time delays.190 3 191 4 -
trunk/VUT/doc/SciReport/code/c2tex.cpp
r243 r255 22 22 #define S_LEN 256 23 23 24 int pascal=0;24 int usePascal=0; 25 25 26 26 char comment_1b='/',comment_2b='*',comment_1e='*',comment_2e='/'; … … 475 475 void Help() 476 476 { 477 printf("Syntax : c2tex in_file [out_file] [- pascal] [-numbers]\n\n");477 printf("Syntax : c2tex in_file [out_file] [-usePascal] [-numbers]\n\n"); 478 478 printf("Default out_file is output.tex.\n"); 479 printf("- pascal use pascal comments (* *).\n");479 printf("-usePascal use usePascal comments (* *).\n"); 480 480 printf("-numbers print line numbers.\n"); 481 481 exit(1); … … 494 494 strcpy(s,"output.tex"); 495 495 496 if (options.isOption("- pascal")) {497 pascal=1;496 if (options.isOption("-usePascal")) { 497 usePascal=1; 498 498 comment_1b='('; 499 499 comment_2b='*'; -
trunk/VUT/doc/SciReport/code/c2tex.tex
r251 r255 13 13 \leftline{11:\ \ \ } 14 14 \leftline{12:\ \ \ } 15 \keyb{}\leftline{13:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}KEYWORD1\symbol{}\ \ \ \ \ \ \ \normal{}1\symbol{}\ \ \ \ \ \ comment{}//\ kody\ pro\ jednotlive\ znacky}15 \keyb{}\leftline{13:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}KEYWORD1\symbol{}\ \ \ \ \ \ \ \normal{}1\symbol{}\ \ \ \ \ \symbol{}/\normal{}ednotlive\symbol{}\ \normal{}znacky\symbol{} } 16 16 \keyb{}\leftline{14:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}KEYWORD2\symbol{}\ \ \ \ \ \ \ \normal{}2\symbol{} } 17 17 \keyb{}\leftline{15:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}SYMBOL\symbol{}\ \ \ \ \ \ \ \ \ \normal{}3\symbol{} } … … 23 23 \keyb{}\leftline{21:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}S_LEN\symbol{}\ \ \normal{}256\symbol{} } 24 24 \leftline{22:\ \ \ } 25 \keya{}\leftline{23:\ \ \ int\symbol{}\ \ keya{}pascal\symbol{}=\normal{}0\symbol{}; }25 \keya{}\leftline{23:\ \ \ int\symbol{}\ \normal{}usePascal\symbol{}=\normal{}0\symbol{}; } 26 26 \leftline{24:\ \ \ } 27 27 \keya{}\leftline{25:\ \ \ char\symbol{}\ \normal{}comment_1b\symbol{}='/',\normal{}comment_2b\symbol{}='*',\normal{}comment_1e\symbol{}='*',\normal{}comment_2e\symbol{}='/'; } … … 43 43 \leftline{41:\ \ \ \ \ \keya{}char\symbol{}\ **\normal{}strings\symbol{}; } 44 44 \leftline{42:\ \ \ \ \ } 45 \ comment{}\leftline{43:\ \ \ //\ \ OptionsC()\ $\{$\ number=0;\ $\}$ }46 \ symbol{}\leftline{44:\ \ \ \ \ \normal{}OptionsC\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\keya{}char\symbol{}\ **\normal{}a\symbol{})\ $\{$\ \normal{}init\symbol{}(\normal{}n\symbol{},\normal{}a\symbol{});\ $\}$}47 \leftline{45:\ \ \ }48 \leftline{46:\ \ \ \ \ \keya{} void\symbol{}\ \normal{}init\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\keya{}char\symbol{}\ **\normal{}s\symbol{})\ $\{$\ \normal{}number\symbol{}=\normal{}n\symbol{};\ \normal{}strings\symbol{}=\normal{}s\symbol{};\ $\}$}49 \leftline{47:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{} ); }50 \leftline{48:\ \ \ \ \ \keya{}int\symbol{}\ \normal{} isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\keya{}int\symbol{}\ *\normal{}number\symbol{}); }51 \leftline{49:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getParam\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ \normal{}n\symbol{}=\normal{}1\symbol{});}52 \leftline{50:\ \ \ }53 \leftline{51:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\ keya{}int\symbol{}\ *\normal{}result\symbol{}); }54 \leftline{52:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\ normal{}Real\symbol{}\ *\normal{}r\symbol{}); }55 \leftline{53:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\keya{}char\symbol{}\ *\normal{}result\symbol{});}56 \leftline{54:\ \ \ }57 \leftline{55:\ \ \ $\}$;}45 \symbol{}\leftline{43:\ \ \ /\normal{}OptionsC\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\keya{}char\symbol{}\ **\normal{}a\symbol{})\ $\{$\ \normal{}init\symbol{}(\normal{}n\symbol{},\normal{}a\symbol{});\ $\}$ } 46 \leftline{44:\ \ \ } 47 \leftline{45:\ \ \ \ \ \keya{}void\symbol{}\ \normal{}init\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\keya{}char\symbol{}\ **\normal{}s\symbol{})\ $\{$\ \normal{}number\symbol{}=\normal{}n\symbol{};\ \normal{}strings\symbol{}=\normal{}s\symbol{};\ $\}$ } 48 \leftline{46:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{}); } 49 \leftline{47:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\keya{}int\symbol{}\ *\normal{}number\symbol{}); } 50 \leftline{48:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getParam\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ \normal{}n\symbol{}=\normal{}1\symbol{}); } 51 \leftline{49:\ \ \ } 52 \leftline{50:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\keya{}int\symbol{}\ *\normal{}result\symbol{}); } 53 \leftline{51:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\normal{}Real\symbol{}\ *\normal{}r\symbol{}); } 54 \leftline{52:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{},\keya{}char\symbol{}\ *\normal{}result\symbol{}); } 55 \leftline{53:\ \ \ } 56 \leftline{54:\ \ \ $\}$; } 57 \leftline{55:\ \ \ } 58 58 \leftline{56:\ \ \ } 59 \ leftline{57:\ \ \}60 \ keya{}\leftline{58:\ \ \ class\symbol{}\ \normal{}LexanC\symbol{}:\ \keya{}public\symbol{}\ \normal{}BaseC\symbol{}}61 \ leftline{59:\ \ \ $\{$}62 \ keya{}\leftline{60:\ \ \ public\symbol{}:}63 \ normal{}\leftline{61:\ \ \ FILE\symbol{}\ *\normal{}file\symbol{};}64 \ leftline{62:\ \ \}65 \keya{}\leftline{63:\ \ \ int\symbol{}\ \ \ \ \normal{}nsep\symbol{},\normal{}nkey\symbol{}[\normal{}2\symbol{}]; }66 \keya{}\leftline{64:\ \ \ char\symbol{}\ \ \ * \normal{}separators\symbol{}; }67 \ keya{}\leftline{65:\ \ \ char\symbol{}\ \ \ **\normal{}key\symbol{}[\normal{}2\symbol{}];}68 \ leftline{66:\ \ \}69 \ normal{}\leftline{67:\ \ \ LexanC\symbol{}()$\{$\normal{}init\symbol{}("\normal{}default.lex\symbol{}");$\}$}70 \ leftline{68:\ \ \}71 \keya{}\leftline{69:\ \ \ int\symbol{}\ \ \ \ \normal{}is Separator\symbol{}(\keya{}int\symbol{}\ \normal{}c\symbol{})$\{$\ \keya{}return\symbol{}\ \normal{}strchr\symbol{}(\normal{}separators\symbol{},\normal{}c\symbol{})!=\normal{}NULL\symbol{};\ $\}$}72 \ keya{}\leftline{70:\ \ \ int\symbol{}\ \ \ \ \normal{}isKey\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{});}73 \ leftline{71:\ \ \}74 \keya{}\leftline{72:\ \ \ int\symbol{}\ \ \ \ \normal{} init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}lexname\symbol{}); }75 \ keya{}\leftline{73:\ \ \ int\symbol{}\ \ \ \ \normal{}open\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{});}76 \ leftline{74:\ \ \}77 \ keya{}\leftline{75:\ \ \ int\symbol{}\ \ \ \ \normal{}readWord\symbol{}(\normal{}FILE\symbol{}\ *\normal{}f\symbol{},\keya{}char\symbol{}\ *\normal{}string\symbol{});}78 \ leftline{76:\ \ \}79 \keya{}\leftline{77:\ \ \ int\symbol{}\ \ \ \ \normal{}read\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{});}80 \ keya{}\leftline{78:\ \ \ void\symbol{}\ \ \ \normal{}close\symbol{}()$\{$\normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$}81 \ leftline{79:\ \\ }82 \ keya{}\leftline{80:\ \ \ virtual\symbol{}\ \ \ \ \ \ \ \ \normal{}ostream\symbol{}\&\ \keya{}operator\symbol{}>>(\normal{}ostream\symbol{}\ \&\normal{}s\symbol{})\ $\{$\}83 \leftline{81:\ \ \ \ \ \ \ \ \ \ \ normal{}s\symbol{}<<\normal{}nsep\symbol{}<<"\\normal{}n\symbol{}"<<\normal{}nkey\symbol{}[\normal{}0\symbol{}]<<"\\normal{}n\symbol{}"<<\normal{}nkey\symbol{}[\normal{}1\symbol{}]<<"\\normal{}n\symbol{}"; }84 \leftline{82:\ \ \ \ \ \ \ \ \ \ \ keya{}return\symbol{}\ \normal{}s\symbol{};}85 \leftline{83:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$\}$ }86 \leftline{84:\ \ \ \~{}\normal{}LexanC\symbol{}()$\{$\normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$}87 \leftline{85:\ \ \ $\}$;}88 \ leftline{86:\ \ \}89 \ keya{}\leftline{87:\ \ \ class\symbol{}\ \normal{}TexC\symbol{}:\ \keya{}public\symbol{}\ \normal{}BaseC\symbol{}}90 \ leftline{88:\ \ \ $\{$}91 \ keya{}\leftline{89:\ \ \ public\symbol{}:}92 \leftline{90:\ \ \ \ \ \ normal{}FILE\symbol{}\ *\normal{}file\symbol{}; }93 \leftline{91:\ \ \ \ \ \keya{}int\symbol{}\ \normal{} numbers\symbol{}; }94 \leftline{92:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}lnumber\symbol{};}95 \leftline{93:\ \ \ \ \ }96 \leftline{94:\ \ \ \ \ \normal{}TexC\symbol{}( )$\{$\normal{}numbers\symbol{}=\normal{}0\symbol{};\ \normal{}init\symbol{}("\normal{}output.tex\symbol{}");$\}$ }97 \leftline{95:\ \ \ \ \ \ normal{}TexC\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\ \keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}s\symbol{})$\{$}98 \leftline{96:\ \ \ \ \ \ \ \normal{} lnumber\symbol{}=\normal{}0\symbol{};}99 \leftline{97:\ \ \ \ \ \ \ \normal{}numbers\symbol{}=\normal{}n\symbol{};\ \normal{}init\symbol{}(\normal{}s\symbol{});$\}$}100 \leftline{98:\ \ \ \ \ }101 \leftline{99:\ \ \ \ \ \keya{}int\symbol{}\ \normal{} init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}); }102 \leftline{100:\ \ \ \ \ \ keya{}int\symbol{}\ \normal{}write\symbol{}(\keya{}const\symbol{}\ \keya{}int\symbol{}\ \normal{}code\symbol{},\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}string\symbol{});}103 \leftline{101:\ \ \ \ \ \~{}\normal{}TexC\symbol{}()\ $\{$\ \comment{}/*\ fprintf(file,"\n\\bye\n");\ */\symbol{}\ \normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$}104 \leftline{102:\ \ \ }105 \leftline{103:\ \ \ $\}$;}59 \keya{}\leftline{57:\ \ \ class\symbol{}\ \normal{}LexanC\symbol{}:\ \keya{}public\symbol{}\ \normal{}BaseC\symbol{} } 60 \leftline{58:\ \ \ $\{$ } 61 \keya{}\leftline{59:\ \ \ public\symbol{}: } 62 \normal{}\leftline{60:\ \ \ FILE\symbol{}\ *\normal{}file\symbol{}; } 63 \leftline{61:\ \ \ } 64 \keya{}\leftline{62:\ \ \ int\symbol{}\ \ \ \ \normal{}nsep\symbol{},\normal{}nkey\symbol{}[\normal{}2\symbol{}]; } 65 \keya{}\leftline{63:\ \ \ char\symbol{}\ \ \ *\normal{}separators\symbol{}; } 66 \keya{}\leftline{64:\ \ \ char\symbol{}\ \ \ **\normal{}key\symbol{}[\normal{}2\symbol{}]; } 67 \leftline{65:\ \ \ } 68 \normal{}\leftline{66:\ \ \ LexanC\symbol{}()$\{$\normal{}init\symbol{}("\normal{}default.lex\symbol{}");$\}$ } 69 \leftline{67:\ \ \ } 70 \keya{}\leftline{68:\ \ \ int\symbol{}\ \ \ \ \normal{}isSeparator\symbol{}(\keya{}int\symbol{}\ \normal{}c\symbol{})$\{$\ \keya{}return\symbol{}\ \normal{}strchr\symbol{}(\normal{}separators\symbol{},\normal{}c\symbol{})!=\normal{}NULL\symbol{};\ $\}$ } 71 \keya{}\leftline{69:\ \ \ int\symbol{}\ \ \ \ \normal{}isKey\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{}); } 72 \leftline{70:\ \ \ } 73 \keya{}\leftline{71:\ \ \ int\symbol{}\ \ \ \ \normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}lexname\symbol{}); } 74 \keya{}\leftline{72:\ \ \ int\symbol{}\ \ \ \ \normal{}open\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}); } 75 \leftline{73:\ \ \ } 76 \keya{}\leftline{74:\ \ \ int\symbol{}\ \ \ \ \normal{}readWord\symbol{}(\normal{}FILE\symbol{}\ *\normal{}f\symbol{},\keya{}char\symbol{}\ *\normal{}string\symbol{}); } 77 \leftline{75:\ \ \ } 78 \keya{}\leftline{76:\ \ \ int\symbol{}\ \ \ \ \normal{}read\symbol{}(\keya{}char\symbol{}\ *\normal{}string\symbol{}); } 79 \keya{}\leftline{77:\ \ \ void\symbol{}\ \ \ \normal{}close\symbol{}()$\{$\normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$ } 80 \leftline{78:\ \ \ } 81 \keya{}\leftline{79:\ \ \ virtual\symbol{}\ \ \ \ \ \ \ \ \normal{}ostream\symbol{}\&\ \keya{}operator\symbol{}>>(\normal{}ostream\symbol{}\ \&\normal{}s\symbol{})\ $\{$\ } 82 \leftline{80:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}<<\normal{}nsep\symbol{}<<"\\normal{}n\symbol{}"<<\normal{}nkey\symbol{}[\normal{}0\symbol{}]<<"\\normal{}n\symbol{}"<<\normal{}nkey\symbol{}[\normal{}1\symbol{}]<<"\\normal{}n\symbol{}"; } 83 \leftline{81:\ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}s\symbol{}; } 84 \leftline{82:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$ } 85 \leftline{83:\ \ \ \~{}\normal{}LexanC\symbol{}()$\{$\normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$ } 86 \leftline{84:\ \ \ $\}$; } 87 \leftline{85:\ \ \ } 88 \keya{}\leftline{86:\ \ \ class\symbol{}\ \normal{}TexC\symbol{}:\ \keya{}public\symbol{}\ \normal{}BaseC\symbol{} } 89 \leftline{87:\ \ \ $\{$ } 90 \keya{}\leftline{88:\ \ \ public\symbol{}: } 91 \leftline{89:\ \ \ \ \ \normal{}FILE\symbol{}\ *\normal{}file\symbol{}; } 92 \leftline{90:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}numbers\symbol{}; } 93 \leftline{91:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}lnumber\symbol{}; } 94 \leftline{92:\ \ \ \ \ } 95 \leftline{93:\ \ \ \ \ \normal{}TexC\symbol{}()$\{$\normal{}numbers\symbol{}=\normal{}0\symbol{};\ \normal{}init\symbol{}("\normal{}output.tex\symbol{}");$\}$ } 96 \leftline{94:\ \ \ \ \ \normal{}TexC\symbol{}(\keya{}int\symbol{}\ \normal{}n\symbol{},\ \keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}s\symbol{})$\{$ } 97 \leftline{95:\ \ \ \ \ \ \ \normal{}lnumber\symbol{}=\normal{}0\symbol{}; } 98 \leftline{96:\ \ \ \ \ \ \ \normal{}numbers\symbol{}=\normal{}n\symbol{};\ \normal{}init\symbol{}(\normal{}s\symbol{});$\}$ } 99 \leftline{97:\ \ \ \ \ } 100 \leftline{98:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}); } 101 \leftline{99:\ \ \ \ \ \keya{}int\symbol{}\ \normal{}write\symbol{}(\keya{}const\symbol{}\ \keya{}int\symbol{}\ \normal{}code\symbol{},\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}string\symbol{}); } 102 \leftline{100:\ \ \ \ \ \~{}\normal{}TexC\symbol{}()\ $\{$\ \symbol{}/\normal{}fclose\symbol{}(\normal{}file\symbol{});$\}$ } 103 \leftline{101:\ \ \ } 104 \leftline{102:\ \ \ $\}$; } 105 \leftline{103:\ \ \ } 106 106 \leftline{104:\ \ \ } 107 107 \leftline{105:\ \ \ } … … 111 111 \leftline{109:\ \ \ } 112 112 \leftline{110:\ \ \ } 113 \ leftline{111:\ \ \}114 \ keya{}\leftline{112:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{})}115 \ leftline{113:\ \ \ $\{$}116 \ keya{}\leftline{114:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{};}117 \leftline{115:\ \ \ \ }118 \leftline{116:\ \ \ \ \ keya{}for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++)}119 \leftline{117:\ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}])==\normal{}0\symbol{})\ $\{$\ \normal{}found\symbol{}\ =\ \normal{}i\symbol{};\ \keya{}break\symbol{};$\}$}120 \leftline{118:\ \ \ }121 \leftline{119:\ \ \ \ \keya{}return\symbol{}\ \normal{}found\symbol{};}122 \leftline{120:\ \ \ $\}$}123 \ leftline{121:\ \ \}124 \ keya{}\leftline{122:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ *\normal{}n\symbol{})}125 \ leftline{123:\ \ \ $\{$}126 \ keya{}\leftline{124:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{};}127 \ leftline{125:\ \ \}128 \ keya{}\leftline{126:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) }129 \leftline{127:\ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}])==\normal{}0\symbol{})}130 \leftline{128:\ \ \ \ \ \ \ $\{$}131 \leftline{129:\ \ \ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}i\symbol{}+\normal{}1\symbol{}<\normal{}number\symbol{})}132 \leftline{130:\ \ \ \ \ \ \ \ \ \ $\{$}133 \leftline{131:\ \ \ \ \ \ \ \ \ \ \ \ *\normal{}n\symbol{}=\normal{}atoi\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}+\normal{}1\symbol{}]); }134 \leftline{132:\ \ \ \ \ \ \ \ \ \ \ \ \ normal{}found\symbol{}\ =\ \normal{}i\symbol{}; }135 \leftline{133:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}break\symbol{};}136 \leftline{134:\ \ \ \ \ \ \ \ \ \$\}$ }137 \leftline{135:\ \ \ \ \ \ \ $\}$}138 \ leftline{136:\ \ \}139 \ keya{}\leftline{137:\ \ \ return\symbol{}\ \normal{}found\symbol{};}140 \leftline{138:\ \ \ $\}$}113 \keya{}\leftline{111:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{}) } 114 \leftline{112:\ \ \ $\{$ } 115 \keya{}\leftline{113:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{}; } 116 \leftline{114:\ \ \ \ } 117 \leftline{115:\ \ \ \ \keya{}for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 118 \leftline{116:\ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}])==\normal{}0\symbol{})\ $\{$\ \normal{}found\symbol{}\ =\ \normal{}i\symbol{};\ \keya{}break\symbol{};$\}$ } 119 \leftline{117:\ \ \ } 120 \leftline{118:\ \ \ \ \keya{}return\symbol{}\ \normal{}found\symbol{}; } 121 \leftline{119:\ \ \ $\}$ } 122 \leftline{120:\ \ \ } 123 \keya{}\leftline{121:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}isOption\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ *\normal{}n\symbol{}) } 124 \leftline{122:\ \ \ $\{$ } 125 \keya{}\leftline{123:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{}; } 126 \leftline{124:\ \ \ } 127 \keya{}\leftline{125:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 128 \leftline{126:\ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}])==\normal{}0\symbol{}) } 129 \leftline{127:\ \ \ \ \ \ \ $\{$ } 130 \leftline{128:\ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}i\symbol{}+\normal{}1\symbol{}<\normal{}number\symbol{}) } 131 \leftline{129:\ \ \ \ \ \ \ \ \ \ $\{$ } 132 \leftline{130:\ \ \ \ \ \ \ \ \ \ \ \ *\normal{}n\symbol{}=\normal{}atoi\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}+\normal{}1\symbol{}]); } 133 \leftline{131:\ \ \ \ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{}; } 134 \leftline{132:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 135 \leftline{133:\ \ \ \ \ \ \ \ \ \ $\}$ } 136 \leftline{134:\ \ \ \ \ \ \ $\}$ } 137 \leftline{135:\ \ \ } 138 \keya{}\leftline{136:\ \ \ return\symbol{}\ \normal{}found\symbol{}; } 139 \leftline{137:\ \ \ $\}$ } 140 \leftline{138:\ \ \ } 141 141 \leftline{139:\ \ \ } 142 \ leftline{140:\ \ \}143 \ comment{}\leftline{141:\ \ \ //\ search\ for\ occurence\ of\ non-option}144 \keya{}\leftline{142:\ \ \ int\symbol{}\ \normal{} OptionsC\symbol{}::\normal{}getParam\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ \normal{}n\symbol{})}145 \leftline{143:\ \ \ $\{$}146 \keya{}\leftline{144:\ \ \ int\symbol{}\ \normal{}i\symbol{},\normal{}k\symbol{}=\normal{}1\symbol{},\normal{}found\symbol{}=\normal{}0\symbol{};}147 \leftline{145:\ \ \ }148 \ keya{}\leftline{146:\ \ \ for\symbol{}\ (\normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++)}149 \leftline{147:\ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strings\symbol{}[\normal{}i\symbol{}][\normal{}0\symbol{}]!='-')}150 \leftline{148:\ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}k\symbol{}==\normal{}n\symbol{})\ $\{$\ \normal{}found\symbol{}=\normal{}1\symbol{};\ \keya{}break\symbol{};$\}$}151 \leftline{149:\ \ \ \ \ \ \ \ \ \ \keya{}else\symbol{}}152 \ leftline{150:\ \ \ \ \ \ \ \ \ \ \ \normal{}k\symbol{}++; }142 \symbol{}\leftline{140:\ \ \ /\ \normal{}OptionsC\symbol{}::\normal{}getParam\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ \normal{}n\symbol{}) } 143 \leftline{141:\ \ \ $\{$ } 144 \keya{}\leftline{142:\ \ \ int\symbol{}\ \normal{}i\symbol{},\normal{}k\symbol{}=\normal{}1\symbol{},\normal{}found\symbol{}=\normal{}0\symbol{}; } 145 \leftline{143:\ \ \ } 146 \keya{}\leftline{144:\ \ \ for\symbol{}\ (\normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 147 \leftline{145:\ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strings\symbol{}[\normal{}i\symbol{}][\normal{}0\symbol{}]!='-') } 148 \leftline{146:\ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}k\symbol{}==\normal{}n\symbol{})\ $\{$\ \normal{}found\symbol{}=\normal{}1\symbol{};\ \keya{}break\symbol{};$\}$ } 149 \leftline{147:\ \ \ \ \ \ \ \ \ \ \keya{}else\symbol{} } 150 \leftline{148:\ \ \ \ \ \ \ \ \ \ \ \normal{}k\symbol{}++; } 151 \leftline{149:\ \ \ } 152 \keya{}\leftline{150:\ \ \ if\symbol{}\ (\normal{}found\symbol{})\ \normal{}strcpy\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}]); } 153 153 \leftline{151:\ \ \ } 154 \keya{}\leftline{152:\ \ \ if\symbol{}\ (\normal{}found\symbol{})\ \normal{}strcpy\symbol{}(\normal{}s\symbol{},\normal{}strings\symbol{}[\normal{}i\symbol{}]); }155 \leftline{153:\ \ \ }156 \ keya{}\leftline{154:\ \ \ return\symbol{}\ \normal{}found\symbol{};}157 \leftline{155:\ \ \ $\}$}154 \keya{}\leftline{152:\ \ \ return\symbol{}\ \normal{}found\symbol{}; } 155 \leftline{153:\ \ \ $\}$ } 156 \leftline{154:\ \ \ } 157 \leftline{155:\ \ \ } 158 158 \leftline{156:\ \ \ } 159 \ leftline{157:\ \ \}160 \leftline{158:\ \ \ }161 \keya{}\leftline{159:\ \ \ int\symbol{}\ \normal{} OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ *\normal{}result\symbol{})}162 \ leftline{160:\ \ \ $\{$}163 \ keya{}\leftline{161:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{};}164 \keya{}\leftline{162:\ \ \ char\symbol{}\ *\normal{}pp\symbol{};}165 \leftline{163:\ \ \ }166 \ keya{}\leftline{164:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) }167 \leftline{165:\ \ \ \ \ $\{$ }168 \leftline{166:\ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{}))}169 \leftline{167:\ \ \ \ \ \ \ $\{$}170 \leftline{168:\ \ \ \ \ \ \ \ \ \normal{} pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); }171 \leftline{169:\ \ \ \ \ \ \ \ \ *\normal{}result\symbol{}=\normal{}atoi\symbol{}(\normal{}pp\symbol{}); }172 \leftline{170:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{};}173 \leftline{171:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{};}174 \ leftline{172:\ \ \ \ \ \ \ $\}$}175 \leftline{173:\ \ \ \ \$\}$ }176 \ keya{}\leftline{174:\ \ \ return\symbol{}\ \normal{}found\symbol{};}177 \ leftline{175:\ \ \ $\}$}178 \ leftline{176:\ \ \}179 \ keya{}\leftline{177:\ \ \ int\symbol{}}180 \ normal{}\leftline{178:\ \ \ OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\normal{}Real\symbol{}\ *\normal{}result\symbol{})}181 \ leftline{179:\ \ \ $\{$}182 \ keya{}\leftline{180:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{};}183 \keya{}\leftline{181:\ \ \ char\symbol{}\ *\normal{}pp\symbol{};}184 \leftline{182:\ \ \ }185 \ keya{}\leftline{183:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) }186 \leftline{184:\ \ \ \ \ $\{$ }187 \leftline{185:\ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{}))}188 \leftline{186:\ \ \ \ \ \ \ $\{$}189 \leftline{187:\ \ \ \ \ \ \ \ \ \normal{} pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); }190 \leftline{188:\ \ \ \ \ \ \ \ \ *\normal{}result\symbol{}=\normal{}atof\symbol{}(\normal{}pp\symbol{}); }191 \leftline{189:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{};}192 \leftline{190:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{};}193 \ leftline{191:\ \ \ \ \ \ \ $\}$}194 \leftline{192:\ \ \ \ \$\}$ }195 \ keya{}\leftline{193:\ \ \ return\symbol{}\ \normal{}found\symbol{};}196 \ leftline{194:\ \ \ $\}$}197 \leftline{195:\ \ \ }198 \keya{}\leftline{196:\ \ \ int\symbol{}\ \normal{} OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}char\symbol{}\ *\normal{}result\symbol{})}199 \ leftline{197:\ \ \ $\{$}200 \ keya{}\leftline{198:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{};}201 \keya{}\leftline{199:\ \ \ char\symbol{}\ *\normal{}pp\symbol{};}202 \leftline{200:\ \ \ }203 \ keya{}\leftline{201:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) }204 \leftline{202:\ \ \ \ \ $\{$ }205 \leftline{203:\ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{}))}206 \leftline{204:\ \ \ \ \ \ \ $\{$}207 \leftline{205:\ \ \ \ \ \ \ \ \ \normal{} pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); }208 \leftline{206:\ \ \ \ \ \ \ \ \ \ normal{}strcpy\symbol{}(\normal{}result\symbol{},\normal{}pp\symbol{}); }209 \leftline{207:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{};}210 \leftline{208:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{};}211 \ leftline{209:\ \ \ \ \ \ \ $\}$}212 \leftline{210:\ \ \ \ \$\}$ }213 \ keya{}\leftline{211:\ \ \ return\symbol{}\ \normal{}found\symbol{};}214 \leftline{212:\ \ \ $\}$}215 \ leftline{213:\ \ \}216 \leftline{214:\ \ \ }217 \keya{}\leftline{215:\ \ \ int\symbol{}\ \normal{}TexC\symbol{}::\normal{}write\symbol{}(\keya{}const\symbol{}\ \keya{}int\symbol{}\ \normal{}code\symbol{},\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}string\symbol{})}218 \ leftline{216:\ \ \ $\{$}219 \keya{}\leftline{217:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \normal{}line\symbol{}=\normal{}1\symbol{}; }220 \ keya{}\leftline{218:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}0\symbol{};}221 \keya{}\leftline{219:\ \ \ const\symbol{}\ \keya{}char\symbol{}\ *\normal{}sp\symbol{};}222 \leftline{220:\ \ \ }223 \ keya{}\leftline{221:\ \ \ switch\symbol{}(\normal{}code\symbol{})\ $\{$}224 \leftline{222:\ \ \ \ \ 225 \leftline{223:\ \ \ \ \keya{}case\symbol{}\ \normal{} KEYWORD1\symbol{}\ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}keya\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; }226 \leftline{224:\ \ \ \ \keya{}case\symbol{}\ \normal{} KEYWORD2\symbol{}\ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}keyb\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; }227 \leftline{225:\ \ \ \ \keya{}case\symbol{}\ \normal{} COMMENT\symbol{}\ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}comment\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; }228 \leftline{226:\ \ \ \ \keya{}case\symbol{}\ \normal{}SYMBOL\symbol{}\ \ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}symbol\symbol{}$\{$$\}$");\ \keya{}break\symbol{};}229 \leftline{227:\ \ \ \ \keya{}case\symbol{}\ \normal{}NORMAL\symbol{}\ \ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}normal\symbol{}$\{$$\}$");\ \keya{}break\symbol{};}230 \leftline{228:\ \ \ $\}$}231 \leftline{229:\ \ \ \ }232 \leftline{230:\ \ \ \ \ keya{}for\symbol{}(\normal{}sp\symbol{}=\normal{}string\symbol{};*\normal{}sp\symbol{}!=\normal{}0\symbol{};\normal{}sp\symbol{}++,\normal{}i\symbol{}++)}233 \leftline{231:\ \ \ \ \ \ $\{$}234 \leftline{232:\ \ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}line\symbol{})\ $\{$}235 \leftline{233:\ \ \ \ \ \ \ \ \ \ \ normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}leftline\symbol{}$\{$");\ \normal{}line\symbol{}=\normal{}0\symbol{}; }236 \leftline{234:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{} strstr\symbol{}(\normal{}string\symbol{},\ "\keya{}Algorithm\symbol{}")\ ==\ \normal{}string\symbol{}) }237 \leftline{235:\ \ \ \ \ \ \ \ \ \ \ \normal{} lnumber\symbol{}\ =\ \normal{}0\symbol{}; }238 \leftline{236:\ \ \ \ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}numbers\symbol{}\ \&\&\ \normal{}lnumber\symbol{})}239 \leftline{237:\ \ \ \ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}\%2d\symbol{}:\\\ \\\ \\\ ",\normal{}lnumber\symbol{});}240 \leftline{238:\ \ \ \ \ \ \ \ \ \ \normal{}lnumber\symbol{}++;}241 \leftline{239:\ \ \ \ \ \ \ \ $\}$ }242 \leftline{240:\ \ \ \ \ \ \ \ }243 \ leftline{241:\ \ \ \ \ \ \ \ \keya{}switch\symbol{}(*\normal{}sp\symbol{})\ $\{$}244 \leftline{242:\ \ \ \ \ \ \ \ \ \ }245 \ keyb{}\leftline{243:\ \ \ \#define\symbol{}\ \normal{}TAB_SIZE\symbol{}\ \ \ \ \ \ \ \normal{}8\symbol{}}246 \leftline{244:\ \ \ \ \ \ \ \ \ keya{}case\symbol{}\ '\\normal{}t\symbol{}'\ :\ \ \ \ \ \ \}247 \leftline{245:\ \ \ \ \ \ \ \ \ \ \ comment{}//\ \ \ \ \ \ \ \ \ \ \ fprintf(file,"\\tab");\ break; }248 \ symbol{}\leftline{246:\ \ \ \ \ \ \ \ \ \ \keya{}int\symbol{}\ \normal{}n\symbol{},\normal{}j\symbol{};}249 \leftline{247:\ \ \ \ \ \ \ \ \ \ \normal{}n\symbol{}=((\normal{}i\symbol{}/\normal{}TAB_SIZE\symbol{})+\normal{}1\symbol{})*\normal{}TAB_SIZE\symbol{}-\normal{}i\symbol{};}250 \leftline{248:\ \ \ \ \ \ \ \ \ \ \keya{}for\symbol{}(\normal{}j\symbol{}=\normal{}0\symbol{};\normal{}j\symbol{}<\normal{}n\symbol{};\normal{}j\symbol{}++)\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\"); }251 \leftline{249:\ \ \ \ \ \ \ \ \ \ \ keya{}break\symbol{}; }252 \leftline{250:\ \ \ \ \ \ \ \ \ \ }253 \leftline{251:\ \ \ \ \ \ \ \ \ \}254 \leftline{252:\ \ \ \ \ \ \ \ \ keya{}case\symbol{}\ '\\normal{}n\symbol{}':\ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\ $\}$\\normal{}n\symbol{}"); }255 \leftline{253:\ \ \ \ \ \ \ \ \ \ \normal{}line\symbol{}=\normal{}1\symbol{};\ \normal{}i\symbol{}=\normal{}0\symbol{}; }256 \leftline{254:\ \ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; }257 \leftline{255:\ \ \ \ \ \ \ \ \ keya{}case\symbol{}\ '\ '\ :\ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\ "); }258 \leftline{256:\ \ \ \ \ \ \ \ \ \keya{} break\symbol{}; }259 \leftline{257:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\ &'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\&");\ \keya{}break\symbol{}; }260 \leftline{258:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\normal{}\ #\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}\#\symbol{}");\ \keya{}break\symbol{}; }261 \leftline{259:\ \ \ \ \ \ \ \ \ \ \comment{}//\ \ \ \ \ \ case\ '_'\ :\ \ \ \ fprintf(file,"\\_$\{$$\}$");\ break; }262 \ symbol{}\leftline{260:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\normal{}_\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}_\symbol{}");\ \keya{}break\symbol{}; }263 \leftline{261:\ \ \ \ \ \ \ \ \ \ keya{}case\symbol{}\ '\^{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\^{}$\{$$\}$");\ \keya{}break\symbol{}; }264 \leftline{262:\ \ \ \ \ \ \ \ \ \ keya{}case\symbol{}\ '\normal{}\%\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}\%\%\symbol{}");\ \keya{}break\symbol{}; }265 \leftline{263:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '$\{$'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}$\symbol{}\\$\{$\normal{}$\symbol{}");\ \keya{}break\symbol{}; }266 \leftline{264:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '$\}$'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}$\symbol{}\\$\}$\normal{}$\symbol{}");\ \keya{}break\symbol{}; }267 \leftline{265:\ \ \ \ \ \ \ \ \ \ \comment{}//\ \ case\ '\\'\ :\ \ \ \ \ \ \ fprintf(file,"$\\backslash$");\ break;}268 \ symbol{}\leftline{266:\ \ \ \ \ \ \ \ \ \ \comment{}//\ \ case\ '$'\ :\ \ \ \ \ \ \ \ fprintf(file,"\\$");\ break; }269 \ symbol{}\leftline{267:\ \ \ \ \ \ \ \comment{}//\ \ case\ '<'\ :\ \ \ \ \ fprintf(file,"\\<");\ break;}270 \ symbol{}\leftline{268:\ \ \ \ \ \ \ \comment{}//\ \ case\ '>'\ :\ \ \ \ \ fprintf(file,"\\>");\ break;}271 \ symbol{}\leftline{269:\ \ \}272 \leftline{270:\ \ \ \ \ \keya{}case\symbol{}\ '\~{}'\ :\ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\~{}$\{$$\}$");\ \keya{}break\symbol{};}273 \leftline{271:\ \ \ \ \ \ \ \ \}274 \ leftline{272:\ \ \ \ \ \ \}275 \leftline{273:\ \ \ \ \ \keya{}default\symbol{}\ \ :\ \ \ \normal{}fputc\symbol{}(*\normal{}sp\symbol{},\normal{}file\symbol{});}276 \leftline{274:\ \ \ \ \ $\}$}277 \leftline{275:\ \ \ $\}$}278 \keya{}\leftline{276:\ \ \ return\symbol{}\ \normal{}1\symbol{};}279 \leftline{277:\ \ \ $\ }$ }280 \ leftline{278:\ \ \}159 \keya{}\leftline{157:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}int\symbol{}\ *\normal{}result\symbol{}) } 160 \leftline{158:\ \ \ $\{$ } 161 \keya{}\leftline{159:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{}; } 162 \keya{}\leftline{160:\ \ \ char\symbol{}\ *\normal{}pp\symbol{}; } 163 \leftline{161:\ \ \ } 164 \keya{}\leftline{162:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 165 \leftline{163:\ \ \ \ \ $\{$ } 166 \leftline{164:\ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{})) } 167 \leftline{165:\ \ \ \ \ \ \ $\{$ } 168 \leftline{166:\ \ \ \ \ \ \ \ \ \normal{}pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); } 169 \leftline{167:\ \ \ \ \ \ \ \ \ *\normal{}result\symbol{}=\normal{}atoi\symbol{}(\normal{}pp\symbol{}); } 170 \leftline{168:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{}; } 171 \leftline{169:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 172 \leftline{170:\ \ \ \ \ \ \ $\}$ } 173 \leftline{171:\ \ \ \ \ $\}$ } 174 \keya{}\leftline{172:\ \ \ return\symbol{}\ \normal{}found\symbol{}; } 175 \leftline{173:\ \ \ $\}$ } 176 \leftline{174:\ \ \ } 177 \keya{}\leftline{175:\ \ \ int\symbol{} } 178 \normal{}\leftline{176:\ \ \ OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\normal{}Real\symbol{}\ *\normal{}result\symbol{}) } 179 \leftline{177:\ \ \ $\{$ } 180 \keya{}\leftline{178:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{}; } 181 \keya{}\leftline{179:\ \ \ char\symbol{}\ *\normal{}pp\symbol{}; } 182 \leftline{180:\ \ \ } 183 \keya{}\leftline{181:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 184 \leftline{182:\ \ \ \ \ $\{$ } 185 \leftline{183:\ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{})) } 186 \leftline{184:\ \ \ \ \ \ \ $\{$ } 187 \leftline{185:\ \ \ \ \ \ \ \ \ \normal{}pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); } 188 \leftline{186:\ \ \ \ \ \ \ \ \ *\normal{}result\symbol{}=\normal{}atof\symbol{}(\normal{}pp\symbol{}); } 189 \leftline{187:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{}; } 190 \leftline{188:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 191 \leftline{189:\ \ \ \ \ \ \ $\}$ } 192 \leftline{190:\ \ \ \ \ $\}$ } 193 \keya{}\leftline{191:\ \ \ return\symbol{}\ \normal{}found\symbol{}; } 194 \leftline{192:\ \ \ $\}$ } 195 \leftline{193:\ \ \ } 196 \keya{}\leftline{194:\ \ \ int\symbol{}\ \normal{}OptionsC\symbol{}::\normal{}getOptionValue\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{},\keya{}char\symbol{}\ *\normal{}result\symbol{}) } 197 \leftline{195:\ \ \ $\{$ } 198 \keya{}\leftline{196:\ \ \ int\symbol{}\ \normal{}found\symbol{}=\normal{}0\symbol{}; } 199 \keya{}\leftline{197:\ \ \ char\symbol{}\ *\normal{}pp\symbol{}; } 200 \leftline{198:\ \ \ } 201 \keya{}\leftline{199:\ \ \ for\symbol{}\ (\keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}1\symbol{};\normal{}i\symbol{}<\normal{}number\symbol{};\normal{}i\symbol{}++) } 202 \leftline{200:\ \ \ \ \ $\{$ } 203 \leftline{201:\ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}strings\symbol{}[\normal{}i\symbol{}],\normal{}s\symbol{})) } 204 \leftline{202:\ \ \ \ \ \ \ $\{$ } 205 \leftline{203:\ \ \ \ \ \ \ \ \ \normal{}pp\symbol{}=\normal{}strings\symbol{}[\normal{}i\symbol{}]+\normal{}strlen\symbol{}(\normal{}s\symbol{}); } 206 \leftline{204:\ \ \ \ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}result\symbol{},\normal{}pp\symbol{}); } 207 \leftline{205:\ \ \ \ \ \ \ \ \ \normal{}found\symbol{}\ =\ \normal{}i\symbol{}; } 208 \leftline{206:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 209 \leftline{207:\ \ \ \ \ \ \ $\}$ } 210 \leftline{208:\ \ \ \ \ $\}$ } 211 \keya{}\leftline{209:\ \ \ return\symbol{}\ \normal{}found\symbol{}; } 212 \leftline{210:\ \ \ $\}$ } 213 \leftline{211:\ \ \ } 214 \leftline{212:\ \ \ } 215 \keya{}\leftline{213:\ \ \ int\symbol{}\ \normal{}TexC\symbol{}::\normal{}write\symbol{}(\keya{}const\symbol{}\ \keya{}int\symbol{}\ \normal{}code\symbol{},\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}string\symbol{}) } 216 \leftline{214:\ \ \ $\{$ } 217 \keya{}\leftline{215:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \normal{}line\symbol{}=\normal{}1\symbol{}; } 218 \keya{}\leftline{216:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \normal{}i\symbol{}=\normal{}0\symbol{}; } 219 \keya{}\leftline{217:\ \ \ const\symbol{}\ \keya{}char\symbol{}\ *\normal{}sp\symbol{}; } 220 \leftline{218:\ \ \ } 221 \keya{}\leftline{219:\ \ \ switch\symbol{}(\normal{}code\symbol{})\ $\{$ } 222 \leftline{220:\ \ \ \ \ } 223 \leftline{221:\ \ \ \ \keya{}case\symbol{}\ \normal{}KEYWORD1\symbol{}\ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}keya\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 224 \leftline{222:\ \ \ \ \keya{}case\symbol{}\ \normal{}KEYWORD2\symbol{}\ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}keyb\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 225 \leftline{223:\ \ \ \ \keya{}case\symbol{}\ \normal{}COMMENT\symbol{}\ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}comment\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 226 \leftline{224:\ \ \ \ \keya{}case\symbol{}\ \normal{}SYMBOL\symbol{}\ \ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}symbol\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 227 \leftline{225:\ \ \ \ \keya{}case\symbol{}\ \normal{}NORMAL\symbol{}\ \ \ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}normal\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 228 \leftline{226:\ \ \ $\}$ } 229 \leftline{227:\ \ \ \ } 230 \leftline{228:\ \ \ \ \keya{}for\symbol{}(\normal{}sp\symbol{}=\normal{}string\symbol{};*\normal{}sp\symbol{}!=\normal{}0\symbol{};\normal{}sp\symbol{}++,\normal{}i\symbol{}++) } 231 \leftline{229:\ \ \ \ \ \ $\{$ } 232 \leftline{230:\ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}line\symbol{})\ $\{$ } 233 \leftline{231:\ \ \ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}leftline\symbol{}$\{$");\ \normal{}line\symbol{}=\normal{}0\symbol{}; } 234 \leftline{232:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strstr\symbol{}(\normal{}string\symbol{},\ "\keya{}Algorithm\symbol{}")\ ==\ \normal{}string\symbol{}) } 235 \leftline{233:\ \ \ \ \ \ \ \ \ \ \ \normal{}lnumber\symbol{}\ =\ \normal{}0\symbol{}; } 236 \leftline{234:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}numbers\symbol{}\ \&\&\ \normal{}lnumber\symbol{}) } 237 \leftline{235:\ \ \ \ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}\%2d\symbol{}:\\\ \\\ \\\ ",\normal{}lnumber\symbol{}); } 238 \leftline{236:\ \ \ \ \ \ \ \ \ \ \normal{}lnumber\symbol{}++; } 239 \leftline{237:\ \ \ \ \ \ \ \ $\}$ } 240 \leftline{238:\ \ \ \ \ \ \ \ } 241 \leftline{239:\ \ \ \ \ \ \ \ \keya{}switch\symbol{}(*\normal{}sp\symbol{})\ $\{$ } 242 \leftline{240:\ \ \ \ \ \ \ \ \ \ } 243 \keyb{}\leftline{241:\ \ \ \#define\symbol{}\ \normal{}TAB_SIZE\symbol{}\ \ \ \ \ \ \ \normal{}8\symbol{} } 244 \leftline{242:\ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\\normal{}t\symbol{}'\ :\ \ \ \ \ \ \ } 245 \leftline{243:\ \ \ \ \ \ \ \ \ \ \symbol{}/\normal{}IZE\symbol{})+\normal{}1\symbol{})*\normal{}TAB_SIZE\symbol{}-\normal{}i\symbol{}; } 246 \leftline{244:\ \ \ \ \ \ \ \ \ \ \keya{}for\symbol{}(\normal{}j\symbol{}=\normal{}0\symbol{};\normal{}j\symbol{}<\normal{}n\symbol{};\normal{}j\symbol{}++)\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\ "); } 247 \leftline{245:\ \ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 248 \leftline{246:\ \ \ \ \ \ \ \ \ \ } 249 \leftline{247:\ \ \ \ \ \ \ \ \ \ } 250 \leftline{248:\ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\\normal{}n\symbol{}':\ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\ $\}$\\normal{}n\symbol{}"); } 251 \leftline{249:\ \ \ \ \ \ \ \ \ \ \normal{}line\symbol{}=\normal{}1\symbol{};\ \normal{}i\symbol{}=\normal{}0\symbol{}; } 252 \leftline{250:\ \ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 253 \leftline{251:\ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\ '\ :\ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\ "); } 254 \leftline{252:\ \ \ \ \ \ \ \ \ \keya{}break\symbol{}; } 255 \leftline{253:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\&'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\&");\ \keya{}break\symbol{}; } 256 \leftline{254:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\normal{}\#\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}\#\symbol{}");\ \keya{}break\symbol{}; } 257 \leftline{255:\ \ \ \ \ \ \ \ \ \ \symbol{}/'\normal{}_\symbol{}'\ :\ \ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}_\symbol{}$\{$$\}$");\ \keya{}break\symbol{}; } 258 \leftline{256:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\normal{}_\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}_\symbol{}");\ \keya{}break\symbol{}; } 259 \leftline{257:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\^{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\^{}$\{$$\}$");\ \keya{}break\symbol{}; } 260 \leftline{258:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '\normal{}\%\symbol{}'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}\%\%\symbol{}");\ \keya{}break\symbol{}; } 261 \leftline{259:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '$\{$'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}$\symbol{}\\$\{$\normal{}$\symbol{}");\ \keya{}break\symbol{}; } 262 \leftline{260:\ \ \ \ \ \ \ \ \ \keya{}case\symbol{}\ '$\}$'\ :\ \ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}$\symbol{}\\$\}$\normal{}$\symbol{}");\ \keya{}break\symbol{}; } 263 \leftline{261:\ \ \ \ \ \ \ \ \ \ \symbol{}/\normal{}e\symbol{}\ '\\'\ :\ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\normal{}$\symbol{}\\\normal{}backslash$\symbol{}");\ \keya{}break\symbol{}; } 264 \leftline{262:\ \ \ \ \ \ \ \ \ \ \symbol{}/\ \ \keya{}case\symbol{}\ '\normal{}$\symbol{}'\ :\ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}$\symbol{}");\ \keya{}break\symbol{}; } 265 \leftline{263:\ \ \ \ \ \ \ \symbol{}/\ \ \keya{}case\symbol{}\ '<'\ :\ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\<");\ \keya{}break\symbol{}; } 266 \leftline{264:\ \ \ \ \ \ \ \symbol{}/\ \ \keya{}case\symbol{}\ '>'\ :\ \ \ \ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\>");\ \keya{}break\symbol{}; } 267 \leftline{265:\ \ \ } 268 \leftline{266:\ \ \ \ \ \keya{}case\symbol{}\ '\~{}'\ :\ \ \ \normal{}fprintf\symbol{}(\normal{}file\symbol{},"\\\~{}$\{$$\}$");\ \keya{}break\symbol{}; } 269 \leftline{267:\ \ \ \ \ \ \ \ \ } 270 \leftline{268:\ \ \ \ \ \ \ } 271 \leftline{269:\ \ \ \ \ \keya{}default\symbol{}\ \ :\ \ \ \normal{}fputc\symbol{}(*\normal{}sp\symbol{},\normal{}file\symbol{}); } 272 \leftline{270:\ \ \ \ \ $\}$ } 273 \leftline{271:\ \ \ $\}$ } 274 \keya{}\leftline{272:\ \ \ return\symbol{}\ \normal{}1\symbol{}; } 275 \leftline{273:\ \ \ $\}$ } 276 \leftline{274:\ \ \ } 277 \leftline{275:\ \ \ } 278 \keya{}\leftline{276:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}isKey\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{}) } 279 \leftline{277:\ \ \ $\{$ } 280 \keya{}\leftline{278:\ \ \ int\symbol{}\ \normal{}i\symbol{},\normal{}j\symbol{}; } 281 281 \leftline{279:\ \ \ } 282 \keya{}\leftline{280:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}isKey\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{}) }283 \leftline{281:\ \ \ $\{$}284 \ keya{}\leftline{282:\ \ \ int\symbol{}\ \normal{}i\symbol{},\normal{}j\symbol{}; }282 \keya{}\leftline{280:\ \ \ for\symbol{}\ (\normal{}i\symbol{}=\normal{}0\symbol{};\normal{}i\symbol{}<\normal{}2\symbol{};\normal{}i\symbol{}++) } 283 \leftline{281:\ \ \ \ \keya{}for\symbol{}(\normal{}j\symbol{}=\normal{}0\symbol{};\normal{}j\symbol{}<\normal{}nkey\symbol{}[\normal{}i\symbol{}];\normal{}j\symbol{}++) } 284 \leftline{282:\ \ \ \ \ \keya{}if\symbol{}(\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}key\symbol{}[\normal{}i\symbol{}][\normal{}j\symbol{}])==\normal{}0\symbol{})\ \keya{}return\symbol{}\ \normal{}i\symbol{}+\normal{}1\symbol{}; } 285 285 \leftline{283:\ \ \ } 286 \keya{}\leftline{284:\ \ \ for\symbol{}\ (\normal{}i\symbol{}=\normal{}0\symbol{};\normal{}i\symbol{}<\normal{}2\symbol{};\normal{}i\symbol{}++)}287 \leftline{285:\ \ \ \ \keya{}for\symbol{}(\normal{}j\symbol{}=\normal{}0\symbol{};\normal{}j\symbol{}<\normal{}nkey\symbol{}[\normal{}i\symbol{}];\normal{}j\symbol{}++)}288 \leftline{286:\ \ \ \ \ \keya{}if\symbol{}(\normal{}strcmp\symbol{}(\normal{}s\symbol{},\normal{}key\symbol{}[\normal{}i\symbol{}][\normal{}j\symbol{}])==\normal{}0\symbol{})\ \keya{}return\symbol{}\ \normal{}i\symbol{}+\normal{}1\symbol{};}286 \keya{}\leftline{284:\ \ \ return\symbol{}\ \normal{}0\symbol{}; } 287 \leftline{285:\ \ \ $\}$ } 288 \leftline{286:\ \ \ } 289 289 \leftline{287:\ \ \ } 290 \keya{}\leftline{288:\ \ \ return\symbol{}\ \normal{}0\symbol{};}291 \leftline{289:\ \ \ $\ }$ }292 \ leftline{290:\ \ \}293 \ leftline{291:\ \ \}294 \ keya{}\leftline{292:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}readWord\symbol{}(\normal{}FILE\symbol{}\ *\normal{}f\symbol{},\keya{}char\symbol{}\ *\normal{}s\symbol{})}295 \ leftline{293:\ \ \ $\{$}296 \ keya{}\leftline{294:\ \ \ int\symbol{}\ \ \ \ \normal{}i\symbol{}=\normal{}0\symbol{};}297 \ keya{}\leftline{295:\ \ \ int\symbol{}\ \ \ \ \normal{}c\symbol{}; }298 \leftline{296:\ \ \ }299 \ keya{}\leftline{297:\ \ \ do\symbol{}}300 \leftline{298:\ \ \ $\ {$}301 \leftline{299:\ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}f\symbol{});}302 \leftline{300:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}return\symbol{}\ \normal{}0\symbol{};}303 \ leftline{301:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (!\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ \keya{}break\symbol{};}304 \leftline{302:\ \ \ $\ }$\ \keya{}while\symbol{}(\normal{}1\symbol{});}305 \leftline{303:\ \ \ }306 \leftline{304:\ \ \ }307 \ keya{}\leftline{305:\ \ \ do\symbol{}}308 \leftline{306:\ \ \ $\{$}309 \leftline{307:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; }310 \leftline{308:\ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}f\symbol{});}311 \ leftline{309:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{}; }312 \ leftline{310:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ \keya{}break\symbol{}; }313 \leftline{311:\ \ \ $\}$ \ \keya{}while\symbol{}(\normal{}1\symbol{});}290 \keya{}\leftline{288:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}readWord\symbol{}(\normal{}FILE\symbol{}\ *\normal{}f\symbol{},\keya{}char\symbol{}\ *\normal{}s\symbol{}) } 291 \leftline{289:\ \ \ $\{$ } 292 \keya{}\leftline{290:\ \ \ int\symbol{}\ \ \ \ \normal{}i\symbol{}=\normal{}0\symbol{}; } 293 \keya{}\leftline{291:\ \ \ int\symbol{}\ \ \ \ \normal{}c\symbol{}; } 294 \leftline{292:\ \ \ } 295 \keya{}\leftline{293:\ \ \ do\symbol{} } 296 \leftline{294:\ \ \ $\{$ } 297 \leftline{295:\ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}f\symbol{}); } 298 \leftline{296:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}return\symbol{}\ \normal{}0\symbol{}; } 299 \leftline{297:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (!\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ \keya{}break\symbol{}; } 300 \leftline{298:\ \ \ $\}$\ \keya{}while\symbol{}(\normal{}1\symbol{}); } 301 \leftline{299:\ \ \ } 302 \leftline{300:\ \ \ } 303 \keya{}\leftline{301:\ \ \ do\symbol{} } 304 \leftline{302:\ \ \ $\{$ } 305 \leftline{303:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 306 \leftline{304:\ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}f\symbol{}); } 307 \leftline{305:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{}; } 308 \leftline{306:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ \keya{}break\symbol{}; } 309 \leftline{307:\ \ \ $\}$\ \keya{}while\symbol{}(\normal{}1\symbol{}); } 310 \leftline{308:\ \ \ } 311 \normal{}\leftline{309:\ \ \ s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; } 312 \keya{}\leftline{310:\ \ \ return\symbol{}\ \normal{}1\symbol{}; } 313 \leftline{311:\ \ \ $\}$ } 314 314 \leftline{312:\ \ \ } 315 \ normal{}\leftline{313:\ \ \ s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{};}316 \keya{}\leftline{314:\ \ \ return\symbol{}\ \normal{}1\symbol{};}317 \leftline{315:\ \ \ $\ }$ }318 \ leftline{316:\ \ \}315 \leftline{313:\ \ \ } 316 \keya{}\leftline{314:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}lexname\symbol{}) } 317 \leftline{315:\ \ \ $\{$ } 318 \normal{}\leftline{316:\ \ \ FILE\symbol{}\ *\normal{}f\symbol{}; } 319 319 \leftline{317:\ \ \ } 320 \keya{}\leftline{318:\ \ \ i nt\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}lexname\symbol{})}321 \leftline{319:\ \ \ $\{$}322 \ normal{}\leftline{320:\ \ \ FILE\symbol{}\ *\normal{}f\symbol{};}323 \ leftline{321:\ \ \}324 \ keya{}\leftline{322:\ \ \ if\symbol{}\ ((\normal{}f\symbol{}=\normal{}fopen\symbol{}(\normal{}lexname\symbol{},"\normal{}rt\symbol{}"))==\normal{}NULL\symbol{})\ \keya{}return\symbol{}\ \normal{}0\symbol{};}325 \ leftline{323:\ \ \}326 \ leftline{324:\ \ \}327 \ keyb{}\leftline{325:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}NKEY\symbol{}\ \ \normal{}512\symbol{}}320 \keya{}\leftline{318:\ \ \ if\symbol{}\ ((\normal{}f\symbol{}=\normal{}fopen\symbol{}(\normal{}lexname\symbol{},"\normal{}rt\symbol{}"))==\normal{}NULL\symbol{})\ \keya{}return\symbol{}\ \normal{}0\symbol{}; } 321 \leftline{319:\ \ \ } 322 \leftline{320:\ \ \ } 323 \keyb{}\leftline{321:\ \ \ \#define\symbol{}\ \ \ \ \ \ \ \ \normal{}NKEY\symbol{}\ \ \normal{}512\symbol{} } 324 \leftline{322:\ \ \ } 325 \normal{}\leftline{323:\ \ \ separators\symbol{}\ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}[\normal{}256\symbol{}]; } 326 \normal{}\leftline{324:\ \ \ key\symbol{}[\normal{}0\symbol{}]\ \ \ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}*[\normal{}NKEY\symbol{}]; } 327 \normal{}\leftline{325:\ \ \ key\symbol{}[\normal{}1\symbol{}]\ \ \ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}*[\normal{}NKEY\symbol{}]; } 328 328 \leftline{326:\ \ \ } 329 \normal{}\leftline{327:\ \ \ separators\symbol{}\ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}[\normal{}256\symbol{}]; }330 \normal{}\leftline{328:\ \ \ key\symbol{}[\normal{}0\symbol{}]\ \ \ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}*[\normal{}NKEY\symbol{}]; }331 \normal{}\leftline{329:\ \ \ key\symbol{}[\normal{}1\symbol{}]\ \ \ =\ \keya{}new\symbol{}\ \keya{}char\symbol{}*[\normal{}NKEY\symbol{}]; }332 \ leftline{330:\ \ \}333 \ normal{}\leftline{331:\ \ \ nsep\symbol{}=\normal{}0\symbol{};}334 \normal{}\leftline{332:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\ '; }335 \normal{}\leftline{333:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\\normal{}n\symbol{}'; }336 \ normal{}\leftline{334:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\\normal{}t\symbol{}';}337 \ leftline{335:\ \ \}338 \ normal{}\leftline{336:\ \ \ fgets\symbol{}(\normal{}separators\symbol{}+\normal{}nsep\symbol{},\normal{}100\symbol{},\normal{}f\symbol{}); }339 \ normal{}\leftline{337:\ \ \ nsep\symbol{}=\normal{}strlen\symbol{}(\normal{}separators\symbol{});}340 \ leftline{338:\ \ \}341 \ keya{}\leftline{339:\ \ \ int\symbol{}\ \normal{}i\symbol{}=\normal{}0\symbol{},\normal{}type\symbol{}=\normal{}0\symbol{};}342 \ keya{}\leftline{340:\ \ \ char\symbol{}\ \normal{}s\symbol{}[\normal{}64\symbol{}];}343 \leftline{341:\ \ \ }344 \ keya{}\leftline{342:\ \ \ while\symbol{}(\normal{}readWord\symbol{}(\normal{}f\symbol{},\normal{}s\symbol{}))}345 \leftline{343:\ \ \ \ \ \ \ \ \ \ $\{$}346 \leftline{344:\ \ \ \ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},"\normal{}KEYWORDS2\symbol{}")==\normal{}0\symbol{})\ }347 \leftline{345:\ \ \ \ \ \ \ \ \ \ $\{$}348 \leftline{346:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}KEYWORDS2\symbol{}\\normal{}n\symbol{}");}349 \leftline{347:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}nkey\symbol{}[\normal{}type\symbol{}]=\normal{}i\symbol{};\}350 \leftline{348:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}type\symbol{}++;\}351 \leftline{349:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ normal{}i\symbol{}=\normal{}0\symbol{};\ \ }352 \leftline{350:\ \ \ \ \ \ \ \ \ \ $\}$}353 \leftline{351:\ \ \ \ \ \ \ \ \ \ \ keya{}else\symbol{}}354 \leftline{352:\ \ \ \ \ \ \ \ \ \ $\{$}355 \leftline{353:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}\%s\symbol{}\\normal{}n\symbol{}",\normal{}s\symbol{});\ \ \ \}356 \leftline{354:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}key\symbol{}[\normal{}type\symbol{}][\normal{}i\symbol{}]=\keya{}new\symbol{}\ \keya{}char\symbol{}[\normal{}strlen\symbol{}(\normal{}s\symbol{})+\normal{}1\symbol{}];}357 \leftline{355:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}key\symbol{}[\normal{}type\symbol{}][\normal{}i\symbol{}],\normal{}s\symbol{});}358 \ leftline{356:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}i\symbol{}++;}359 \leftline{357:\ \ \ \ \ \ \ \ \ \ $\}$}360 \ leftline{358:\ \ \ \ \ \ \ \ \ \ $\}$}329 \normal{}\leftline{327:\ \ \ nsep\symbol{}=\normal{}0\symbol{}; } 330 \normal{}\leftline{328:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\ '; } 331 \normal{}\leftline{329:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\\normal{}n\symbol{}'; } 332 \normal{}\leftline{330:\ \ \ separators\symbol{}[\normal{}nsep\symbol{}++]='\\normal{}t\symbol{}'; } 333 \leftline{331:\ \ \ } 334 \normal{}\leftline{332:\ \ \ fgets\symbol{}(\normal{}separators\symbol{}+\normal{}nsep\symbol{},\normal{}100\symbol{},\normal{}f\symbol{}); } 335 \normal{}\leftline{333:\ \ \ nsep\symbol{}=\normal{}strlen\symbol{}(\normal{}separators\symbol{}); } 336 \leftline{334:\ \ \ } 337 \keya{}\leftline{335:\ \ \ int\symbol{}\ \normal{}i\symbol{}=\normal{}0\symbol{},\normal{}type\symbol{}=\normal{}0\symbol{}; } 338 \keya{}\leftline{336:\ \ \ char\symbol{}\ \normal{}s\symbol{}[\normal{}64\symbol{}]; } 339 \leftline{337:\ \ \ } 340 \keya{}\leftline{338:\ \ \ while\symbol{}(\normal{}readWord\symbol{}(\normal{}f\symbol{},\normal{}s\symbol{})) } 341 \leftline{339:\ \ \ \ \ \ \ \ \ \ $\{$ } 342 \leftline{340:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}strcmp\symbol{}(\normal{}s\symbol{},"\normal{}KEYWORDS2\symbol{}")==\normal{}0\symbol{})\ } 343 \leftline{341:\ \ \ \ \ \ \ \ \ \ $\{$ } 344 \leftline{342:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}KEYWORDS2\symbol{}\\normal{}n\symbol{}"); } 345 \leftline{343:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}nkey\symbol{}[\normal{}type\symbol{}]=\normal{}i\symbol{};\ } 346 \leftline{344:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}type\symbol{}++;\ } 347 \leftline{345:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}i\symbol{}=\normal{}0\symbol{};\ \ } 348 \leftline{346:\ \ \ \ \ \ \ \ \ \ $\}$ } 349 \leftline{347:\ \ \ \ \ \ \ \ \ \ \keya{}else\symbol{} } 350 \leftline{348:\ \ \ \ \ \ \ \ \ \ $\{$ } 351 \leftline{349:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}\%s\symbol{}\\normal{}n\symbol{}",\normal{}s\symbol{});\ \ \ \ } 352 \leftline{350:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}key\symbol{}[\normal{}type\symbol{}][\normal{}i\symbol{}]=\keya{}new\symbol{}\ \keya{}char\symbol{}[\normal{}strlen\symbol{}(\normal{}s\symbol{})+\normal{}1\symbol{}]; } 353 \leftline{351:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}key\symbol{}[\normal{}type\symbol{}][\normal{}i\symbol{}],\normal{}s\symbol{}); } 354 \leftline{352:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}i\symbol{}++; } 355 \leftline{353:\ \ \ \ \ \ \ \ \ \ $\}$ } 356 \leftline{354:\ \ \ \ \ \ \ \ \ \ $\}$ } 357 \leftline{355:\ \ \ } 358 \normal{}\leftline{356:\ \ \ nkey\symbol{}[\normal{}type\symbol{}]=\normal{}i\symbol{};\ } 359 \leftline{357:\ \ \ } 360 \normal{}\leftline{358:\ \ \ fclose\symbol{}(\normal{}f\symbol{}); } 361 361 \leftline{359:\ \ \ } 362 \ normal{}\leftline{360:\ \ \ nkey\symbol{}[\normal{}type\symbol{}]=\normal{}i\symbol{};\ }363 \ leftline{361:\ \ \}364 \ normal{}\leftline{362:\ \ \ fclose\symbol{}(\normal{}f\symbol{});}362 \leftline{360:\ \ \ \ } 363 \keya{}\leftline{361:\ \ \ return\symbol{}\ \normal{}1\symbol{}; } 364 \leftline{362:\ \ \ $\}$ } 365 365 \leftline{363:\ \ \ } 366 \ leftline{364:\ \ \ \}367 \ keya{}\leftline{365:\ \ \ return\symbol{}\ \normal{}1\symbol{};}368 \ leftline{366:\ \ \ $\}$}369 \ leftline{367:\ \ \}370 \ keya{}\leftline{368:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}open\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{})}371 \leftline{369:\ \ \ $\{$}372 \ normal{}\leftline{370:\ \ \ file\symbol{}=\normal{}fopen\symbol{}(\normal{}filename\symbol{},"\normal{}rt\symbol{}");}373 \ keya{}\leftline{371:\ \ \ return\symbol{}\ \normal{}file\symbol{}!=\normal{}NULL\symbol{};}374 \ leftline{372:\ \ \ $\}$}375 \ leftline{373:\ \ \}376 \keya{}\leftline{374:\ \ \ int\symbol{}\ \ \ \ \normal{} LexanC\symbol{}::\normal{}read\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{})}377 \ leftline{375:\ \ \ $\{$}378 \ keya{}\leftline{376:\ \ \ int\symbol{}\ \ \ \ \normal{}i\symbol{}=\normal{}0\symbol{};}379 \keya{}\leftline{377:\ \ \ i nt\symbol{}\ \ \ \ \normal{}type\symbol{}=\normal{}EOF\symbol{}; }380 \ keya{}\leftline{378:\ \ \ int\symbol{}\ \ \ \ \normal{}wasSlash\symbol{}=\normal{}0\symbol{};}381 \keya{}\leftline{379:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \ \ \ \ \normal{}c\symbol{}=-\normal{}2\symbol{}; }366 \keya{}\leftline{364:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}open\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}) } 367 \leftline{365:\ \ \ $\{$ } 368 \normal{}\leftline{366:\ \ \ file\symbol{}=\normal{}fopen\symbol{}(\normal{}filename\symbol{},"\normal{}rt\symbol{}"); } 369 \keya{}\leftline{367:\ \ \ return\symbol{}\ \normal{}file\symbol{}!=\normal{}NULL\symbol{}; } 370 \leftline{368:\ \ \ $\}$ } 371 \leftline{369:\ \ \ } 372 \keya{}\leftline{370:\ \ \ int\symbol{}\ \ \ \ \normal{}LexanC\symbol{}::\normal{}read\symbol{}(\keya{}char\symbol{}\ *\normal{}s\symbol{}) } 373 \leftline{371:\ \ \ $\{$ } 374 \keya{}\leftline{372:\ \ \ int\symbol{}\ \ \ \ \normal{}i\symbol{}=\normal{}0\symbol{}; } 375 \keya{}\leftline{373:\ \ \ int\symbol{}\ \ \ \ \normal{}type\symbol{}=\normal{}EOF\symbol{}; } 376 \keya{}\leftline{374:\ \ \ int\symbol{}\ \ \ \ \normal{}wasSlash\symbol{}=\normal{}0\symbol{}; } 377 \keya{}\leftline{375:\ \ \ static\symbol{}\ \keya{}int\symbol{}\ \ \ \ \ \normal{}c\symbol{}=-\normal{}2\symbol{}; } 378 \leftline{376:\ \ \ } 379 \keya{}\leftline{377:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==-\normal{}2\symbol{})\ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 380 \leftline{378:\ \ \ } 381 \keya{}\leftline{379:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}return\symbol{}\ \normal{}c\symbol{}; } 382 382 \leftline{380:\ \ \ } 383 \keya{}\leftline{381:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==-\normal{}2\symbol{})\ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{});}384 \ leftline{382:\ \ \}385 \ keya{}\leftline{383:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}return\symbol{}\ \normal{}c\symbol{}; }386 \leftline{384:\ \ \ }387 \ keya{}\leftline{385:\ \ \ do\symbol{}$\{$}388 \ keya{}\leftline{386:\ \ \ if\symbol{}\ (\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ $\{$ }389 \leftline{387:\ \ \ \ \ \ \ \ \ \ \ normal{}type\symbol{}=\normal{}SYMBOL\symbol{}; }390 \leftline{388:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{};}391 \ leftline{389:\ \ \}392 \leftline{390:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}wasSlash\symbol{})\ $\{$}393 \ leftline{391:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}comment_1b\symbol{})\ \ \comment{}//\ line\ comment}394 \ symbol{}\leftline{392:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$\}395 \leftline{393:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}i\symbol{}>\normal{}2\symbol{})\ $\{$\ \normal{}c\symbol{}=\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}];\ \normal{}fseek\symbol{}(\normal{}file\symbol{},-\normal{}1\symbol{},\normal{}SEEK_CUR\symbol{});\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]=\normal{}0\symbol{};\}396 \leftline{394:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}type\symbol{};\ $\}$}397 \leftline{395:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}fgets\symbol{}(\normal{}s\symbol{}+\normal{}i\symbol{},\normal{}S_LEN\symbol{},\normal{}file\symbol{});\}398 \leftline{396:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{});}399 \leftline{397:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}COMMENT\symbol{};}400 \leftline{398:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\ }$}401 \leftline{399:\ \ \ \ \ \ \ \ \ \ \ \ \ keya{}else\symbol{}}402 \leftline{400:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}comment_2b\symbol{})\ \ \comment{}//\ line\ comment}403 \ symbol{}\leftline{401:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$\ }404 \leftline{402:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}i\symbol{}>\normal{}2\symbol{})\ $\{$\ \normal{}c\symbol{}=\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}];\ \normal{}fseek\symbol{}(\normal{}file\symbol{},-\normal{}1\symbol{},\normal{}SEEK_CUR\symbol{});\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]=\normal{}0\symbol{};\}405 \leftline{403:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{} type\symbol{};\ $\}$}406 \leftline{404:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{});}407 \leftline{405:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}!=\normal{}EOF\symbol{})}408 \leftline{406:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$}409 \leftline{407:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{};}410 \leftline{408:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}int\symbol{}\ \normal{}count\symbol{}=\normal{}1\symbol{};}411 \leftline{409:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}do\symbol{}$\{$ }412 \leftline{410:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); }413 \leftline{411:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{};}414 \leftline{412:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{};}415 \leftline{413:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]==\normal{}comment_1e\symbol{}\ \&\&\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}1\symbol{}]==\normal{}comment_2e\symbol{})\ \normal{}count\symbol{}--; }416 \leftline{414:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]==\normal{}comment_1b\symbol{}\ \&\&\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}1\symbol{}]==\normal{}comment_2b\symbol{})\ \normal{}count\symbol{}++; }417 \leftline{415:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$\ \keya{}while\symbol{}(\normal{}count\symbol{}!=\normal{}0\symbol{});}418 \leftline{416:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$}419 \leftline{417:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ normal{}s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; }420 \leftline{418:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); }421 \leftline{419:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ keya{}return\symbol{}\ \normal{}COMMENT\symbol{}; }422 \leftline{420:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$}423 \leftline{421:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$}424 \leftline{422:\ \ \ \ \ \ \ \ \ \ \ \ \ keya{}else\symbol{}}425 \leftline{423:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ normal{}wasSlash\symbol{}=(\normal{}c\symbol{}==\normal{}comment_1b\symbol{});\}426 \leftline{424:\ \ \ $\}$\ \keya{}else\symbol{}}427 \leftline{425:\ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}c\symbol{}=='')\ $\{$}428 \leftline{426:\ \ \ \ \ \ \ if\ (i>=1)\ $\{$ }429 \leftline{427:\ \ \ \ \ \ \ \ \ s[i]=0;}430 \leftline{428:\ \ \ \ \ \ \ \ \ return\ type;}431 \leftline{429:\ \ \ \ \ \ \ $\}$}432 \leftline{430:\ \ \ \ \ \ \ c=fgetc(file);}433 \leftline{431:\ \ \ \ \ \ \ while(c!='\symbol{}')\ $\{$ }434 \leftline{432:\ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{};}435 \leftline{433:\ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; }436 \leftline{434:\ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); }383 \keya{}\leftline{381:\ \ \ do\symbol{}$\{$ } 384 \keya{}\leftline{382:\ \ \ if\symbol{}\ (\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ $\{$ } 385 \leftline{383:\ \ \ \ \ \ \ \ \ \ \normal{}type\symbol{}=\normal{}SYMBOL\symbol{}; } 386 \leftline{384:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 387 \leftline{385:\ \ \ } 388 \leftline{386:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}wasSlash\symbol{})\ $\{$ } 389 \leftline{387:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}comment_1b\symbol{})\ \ \symbol{}/\ (\normal{}c\symbol{}==-\normal{}2\symbol{})\ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 390 \leftline{388:\ \ \ } 391 \keya{}\leftline{389:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}return\symbol{}\ \normal{}c\symbol{}; } 392 \leftline{390:\ \ \ } 393 \keya{}\leftline{391:\ \ \ do\symbol{}$\{$ } 394 \keya{}\leftline{392:\ \ \ if\symbol{}\ (\normal{}isSeparator\symbol{}(\normal{}c\symbol{}))\ $\{$ } 395 \leftline{393:\ \ \ \ \ \ \ \ \ \ \normal{}type\symbol{}=\normal{}SYMBOL\symbol{}; } 396 \leftline{394:\ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 397 \leftline{395:\ \ \ } 398 \leftline{396:\ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}wasSlash\symbol{})\ $\{$ } 399 \leftline{397:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}comment_1b\symbol{})\ \ \symbol{}/\normal{}ment\symbol{} } 400 \leftline{398:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$\ } 401 \leftline{399:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}i\symbol{}>\normal{}2\symbol{})\ $\{$\ \normal{}c\symbol{}=\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}];\ \normal{}fseek\symbol{}(\normal{}file\symbol{},-\normal{}1\symbol{},\normal{}SEEK_CUR\symbol{});\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]=\normal{}0\symbol{};\ } 402 \leftline{400:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}type\symbol{};\ $\}$ } 403 \leftline{401:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}fgets\symbol{}(\normal{}s\symbol{}+\normal{}i\symbol{},\normal{}S_LEN\symbol{},\normal{}file\symbol{});\ } 404 \leftline{402:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 405 \leftline{403:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}COMMENT\symbol{}; } 406 \leftline{404:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$ } 407 \leftline{405:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}else\symbol{} } 408 \leftline{406:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}comment_2b\symbol{})\ \ \symbol{}/\normal{}mment\symbol{} } 409 \leftline{407:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$\ } 410 \leftline{408:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}i\symbol{}>\normal{}2\symbol{})\ $\{$\ \normal{}c\symbol{}=\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}];\ \normal{}fseek\symbol{}(\normal{}file\symbol{},-\normal{}1\symbol{},\normal{}SEEK_CUR\symbol{});\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]=\normal{}0\symbol{};\ } 411 \leftline{409:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}type\symbol{};\ $\}$ } 412 \leftline{410:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 413 \leftline{411:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}!=\normal{}EOF\symbol{}) } 414 \leftline{412:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\{$ } 415 \leftline{413:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 416 \leftline{414:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}int\symbol{}\ \normal{}count\symbol{}=\normal{}1\symbol{}; } 417 \leftline{415:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}do\symbol{}$\{$ } 418 \leftline{416:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 419 \leftline{417:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}(\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{}; } 420 \leftline{418:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 421 \leftline{419:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]==\normal{}comment_1e\symbol{}\ \&\&\ \normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}1\symbol{}]==\normal{}comment_2e\symbol{})\ \normal{}count\symbol{}--; } 422 \leftline{420:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}2\symbol{}]==\normal{}comment_1b\symbol{}\ \&\&\normal{}s\symbol{}[\normal{}i\symbol{}-\normal{}1\symbol{}]==\normal{}comment_2b\symbol{})\ \normal{}count\symbol{}++; } 423 \leftline{421:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$\ \keya{}while\symbol{}(\normal{}count\symbol{}!=\normal{}0\symbol{}); } 424 \leftline{422:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$ } 425 \leftline{423:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; } 426 \leftline{424:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 427 \leftline{425:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}COMMENT\symbol{}; } 428 \leftline{426:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$ } 429 \leftline{427:\ \ \ \ \ \ \ \ \ \ \ \ \ \ $\}$ } 430 \leftline{428:\ \ \ \ \ \ \ \ \ \ \ \ \keya{}else\symbol{} } 431 \leftline{429:\ \ \ \ \ \ \ \ \ \ \ \ \ \ \normal{}wasSlash\symbol{}=(\normal{}c\symbol{}==\normal{}comment_1b\symbol{});\ } 432 \leftline{430:\ \ \ $\}$\ \keya{}else\symbol{} } 433 \leftline{431:\ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}=='')\ $\{$ } 434 \leftline{432:\ \ \ \ \ \ \ if\ (i>=1)\ $\{$ } 435 \leftline{433:\ \ \ \ \ \ \ \ \ s[i]=0; } 436 \leftline{434:\ \ \ \ \ \ \ \ \ return\ type; } 437 437 \leftline{435:\ \ \ \ \ \ \ $\}$ } 438 \leftline{436:\ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; }439 \leftline{437:\ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{});}440 \leftline{438:\ \ \ \ \ \ \ \ keya{}return\symbol{}\ \normal{}WORD\symbol{}; }441 \leftline{439:\ \ \ \ \ $\}$\ \keya{}else\symbol{}\ $\{$}442 \leftline{440:\ \ \ \ \ \ \ \ keya{}if\symbol{}\ (\normal{}type\symbol{}==\normal{}EOF\symbol{})\ \normal{}type\symbol{}=\normal{}WORD\symbol{}; }443 \leftline{441:\ \ \ \ \ \ \ \keya{}break\symbol{};}444 \leftline{442:\ \ \ \ \ $\}$}445 \leftline{443:\ \ \ $\}$\ \keya{}while\symbol{}((\normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}))!=\normal{}EOF\symbol{}); }446 \leftline{444:\ \ \ \ }447 \ keya{}\leftline{445:\ \ \ if\symbol{}\ (\normal{}c\symbol{}!=\normal{}EOF\symbol{})}448 \ keya{}\leftline{446:\ \ \ if\symbol{}\ (\normal{}type\symbol{}==\normal{}WORD\symbol{})}449 \leftline{447:\ \ \ $\{$}450 \ keya{}\leftline{448:\ \ \ do\symbol{}}451 \leftline{449:\ \ \ $\ {$}452 \ normal{}\leftline{450:\ \ \ s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{};}453 \ normal{}\leftline{451:\ \ \ c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{});}454 \keya{}\leftline{452:\ \ \ if\symbol{}\ (\normal{} c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{};}455 \leftline{453:\ \ \ $\ }$\ \keya{}while\symbol{}(!\normal{}isSeparator\symbol{}(\normal{}c\symbol{}));}456 \ leftline{454:\ \ \}457 \ normal{}\leftline{455:\ \ \ s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{};}458 \ keya{}\leftline{456:\ \ \ int\symbol{}\ \normal{}k\symbol{}=\normal{}isKey\symbol{}(\normal{}s\symbol{}); }459 \ keya{}\leftline{457:\ \ \ if\symbol{}\ (\normal{}k\symbol{}==\normal{}0\symbol{})\ \keya{}return\symbol{}\ \normal{}NORMAL\symbol{}; }460 \keya{}\leftline{458:\ \ \ return\symbol{}\ \normal{}k\symbol{}; }461 \leftline{459:\ \ \ $\}$ }438 \leftline{436:\ \ \ \ \ \ \ c=fgetc(file); } 439 \leftline{437:\ \ \ \ \ \ \ while(c!='\symbol{}')\ $\{$ } 440 \leftline{438:\ \ \ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{}; } 441 \leftline{439:\ \ \ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 442 \leftline{440:\ \ \ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 443 \leftline{441:\ \ \ \ \ \ \ $\}$ } 444 \leftline{442:\ \ \ \ \ \ \ \normal{}s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; } 445 \leftline{443:\ \ \ \ \ \ \ \normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 446 \leftline{444:\ \ \ \ \ \ \ \keya{}return\symbol{}\ \normal{}WORD\symbol{}; } 447 \leftline{445:\ \ \ \ \ $\}$\ \keya{}else\symbol{}\ $\{$ } 448 \leftline{446:\ \ \ \ \ \ \ \keya{}if\symbol{}\ (\normal{}type\symbol{}==\normal{}EOF\symbol{})\ \normal{}type\symbol{}=\normal{}WORD\symbol{}; } 449 \leftline{447:\ \ \ \ \ \ \ \keya{}break\symbol{}; } 450 \leftline{448:\ \ \ \ \ $\}$ } 451 \leftline{449:\ \ \ $\}$\ \keya{}while\symbol{}((\normal{}c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}))!=\normal{}EOF\symbol{}); } 452 \leftline{450:\ \ \ \ } 453 \keya{}\leftline{451:\ \ \ if\symbol{}\ (\normal{}c\symbol{}!=\normal{}EOF\symbol{}) } 454 \keya{}\leftline{452:\ \ \ if\symbol{}\ (\normal{}type\symbol{}==\normal{}WORD\symbol{}) } 455 \leftline{453:\ \ \ $\{$ } 456 \keya{}\leftline{454:\ \ \ do\symbol{} } 457 \leftline{455:\ \ \ $\{$ } 458 \normal{}\leftline{456:\ \ \ s\symbol{}[\normal{}i\symbol{}++]=\normal{}c\symbol{}; } 459 \normal{}\leftline{457:\ \ \ c\symbol{}=\normal{}fgetc\symbol{}(\normal{}file\symbol{}); } 460 \keya{}\leftline{458:\ \ \ if\symbol{}\ (\normal{}c\symbol{}==\normal{}EOF\symbol{})\ \keya{}break\symbol{}; } 461 \leftline{459:\ \ \ $\}$\ \keya{}while\symbol{}(!\normal{}isSeparator\symbol{}(\normal{}c\symbol{})); } 462 462 \leftline{460:\ \ \ } 463 463 \normal{}\leftline{461:\ \ \ s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; } 464 \keya{}\leftline{462:\ \ \ return\symbol{}\ \normal{}type\symbol{}; } 465 \leftline{463:\ \ \ } 466 \leftline{464:\ \ \ $\}$ } 467 \leftline{465:\ \ \ } 468 \keya{}\leftline{466:\ \ \ int\symbol{}\ \normal{}TexC\symbol{}::\normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}) } 469 \leftline{467:\ \ \ $\{$ } 470 \normal{}\leftline{468:\ \ \ file\symbol{}=\normal{}fopen\symbol{}(\normal{}filename\symbol{},"\normal{}wt\symbol{}"); } 471 \normal{}\leftline{469:\ \ \ fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}input\symbol{}\ \normal{}default.mac\symbol{}\\normal{}n\symbol{}"); } 472 \keya{}\leftline{470:\ \ \ return\symbol{}\ \normal{}file\symbol{}!=\normal{}NULL\symbol{}; } 473 \leftline{471:\ \ \ $\}$ } 474 \leftline{472:\ \ \ } 475 \leftline{473:\ \ \ } 476 \keya{}\leftline{474:\ \ \ void\symbol{}\ \normal{}Help\symbol{}() } 477 \leftline{475:\ \ \ $\{$ } 478 \leftline{476:\ \ \ \ \ \normal{}printf\symbol{}("\normal{}Syntax\symbol{}\ :\ \normal{}c2tex\symbol{}\ \normal{}in_file\symbol{}\ [\normal{}out_file\symbol{}]\ [-\keya{}pascal\symbol{}]\ [-\normal{}numbers\symbol{}]\\normal{}n\symbol{}\\normal{}n\symbol{}"); } 479 \leftline{477:\ \ \ \ \ \normal{}printf\symbol{}("\normal{}Default\symbol{}\ \normal{}out_file\symbol{}\ \normal{}is\symbol{}\ \normal{}output.tex.\symbol{}\\normal{}n\symbol{}"); } 480 \leftline{478:\ \ \ \ \ \normal{}printf\symbol{}("-\keya{}pascal\symbol{}\ \ \ \ \ \normal{}use\symbol{}\ \keya{}pascal\symbol{}\ \normal{}comments\symbol{}\ (*\ *)\normal{}.\symbol{}\\normal{}n\symbol{}"); } 481 \leftline{479:\ \ \ \ \ \normal{}printf\symbol{}("-\normal{}numbers\symbol{}\ \ \ \ \normal{}print\symbol{}\ \normal{}line\symbol{}\ \normal{}numbers.\symbol{}\\normal{}n\symbol{}"); } 482 \leftline{480:\ \ \ \ \ \normal{}exit\symbol{}(\normal{}1\symbol{}); } 483 \leftline{481:\ \ \ $\}$ } 484 \leftline{482:\ \ \ } 485 \keya{}\leftline{483:\ \ \ int\symbol{}\ \normal{}main\symbol{}(\keya{}int\symbol{}\ \normal{}argc\symbol{},\ \keya{}char\symbol{}\ **\normal{}argv\symbol{}) } 486 \leftline{484:\ \ \ $\{$ } 487 \keya{}\leftline{485:\ \ \ char\symbol{}\ \ \ \normal{}s\symbol{}[\normal{}16384\symbol{}];\ \comment{}//\ docasny\ buffer } 488 \symbol{}\leftline{486:\ \ \ } 489 \normal{}\leftline{487:\ \ \ OptionsC\symbol{}\ \normal{}options\symbol{}(\normal{}argc\symbol{},\normal{}argv\symbol{}); } 490 \leftline{488:\ \ \ \ } 491 \leftline{489:\ \ \ \ \keya{}if\symbol{}\ (\normal{}argc\symbol{}<\normal{}2\symbol{})\ \normal{}Help\symbol{}(); } 492 \leftline{490:\ \ \ \ \keya{}if\symbol{}\ (\normal{}argc\symbol{}>=\normal{}3\symbol{}\ \&\&\ (*\normal{}argv\symbol{}[\normal{}2\symbol{}]!='-')\ ) } 493 \leftline{491:\ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}s\symbol{},\normal{}argv\symbol{}[\normal{}2\symbol{}]); } 494 \leftline{492:\ \ \ \ \keya{}else\symbol{} } 495 \leftline{493:\ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}s\symbol{},"\normal{}output.tex\symbol{}"); } 496 \leftline{494:\ \ \ \ } 497 \leftline{495:\ \ \ \ \keya{}if\symbol{}\ (\normal{}options.isOption\symbol{}("-\keya{}pascal\symbol{}"))\ $\{$ } 498 \leftline{496:\ \ \ \ \ \ \ \keya{}pascal\symbol{}=\normal{}1\symbol{}; } 499 \leftline{497:\ \ \ \ \ \ \ \normal{}comment_1b\symbol{}='('; } 500 \leftline{498:\ \ \ \ \ \ \ \normal{}comment_2b\symbol{}='*'; } 501 \leftline{499:\ \ \ \ \ \ \ \normal{}comment_1e\symbol{}='*'; } 502 \leftline{500:\ \ \ \ \ \ \ \normal{}comment_2e\symbol{}=')'; } 503 \leftline{501:\ \ \ \ $\}$ } 504 \leftline{502:\ \ \ } 505 \leftline{503:\ \ \ \ \keya{}int\symbol{}\ \normal{}numbers\symbol{}; } 506 \leftline{504:\ \ \ \ } 507 \leftline{505:\ \ \ \ \normal{}numbers\symbol{}\ =\ \normal{}options.isOption\symbol{}("-\normal{}numbers\symbol{}"); } 508 \leftline{506:\ \ \ \ } 509 \leftline{507:\ \ \ \ } 510 \leftline{508:\ \ \ \ \ \normal{}LexanC\symbol{}\ \ \ \ \ \ \ \normal{}lexan\symbol{}; } 511 \leftline{509:\ \ \ \ \ \normal{}TexC\symbol{}\ \normal{}tex\symbol{}(\normal{}numbers\symbol{},\ \normal{}s\symbol{}); } 512 \leftline{510:\ \ \ \ \ \normal{}lexan.open\symbol{}(\normal{}argv\symbol{}[\normal{}1\symbol{}]); } 513 \leftline{511:\ \ \ } 514 \leftline{512:\ \ \ \ \ \keya{}int\symbol{}\ \ \normal{}t\symbol{}; } 515 \leftline{513:\ \ \ \ \ \normal{}cout\symbol{}<<\normal{}tex.numbers\symbol{}; } 516 \leftline{514:\ \ \ } 517 \leftline{515:\ \ \ \ \ } 518 \leftline{516:\ \ \ \ \ \keya{}while\symbol{}((\normal{}t\symbol{}=\normal{}lexan.read\symbol{}(\normal{}s\symbol{}))!=\normal{}EOF\symbol{}) } 519 \leftline{517:\ \ \ \ \ \ \ $\{$ } 520 \leftline{518:\ \ \ \ \ \ \ \ \ \comment{}//printf("Type\ :\ \%d\ -\ \%s\n",t,s); } 521 \symbol{}\leftline{519:\ \ \ \ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}\%s\symbol{}",\normal{}s\symbol{}); } 522 \leftline{520:\ \ \ \ \ \ \ \ \ \normal{}tex.write\symbol{}(\normal{}t\symbol{},\normal{}s\symbol{}); } 523 \leftline{521:\ \ \ \ \ \ \ \ \ \comment{}//getchar(); } 524 \symbol{}\leftline{522:\ \ \ \ \ \ \ $\}$ } 525 \leftline{523:\ \ \ } 526 \keya{}\leftline{524:\ \ \ return\symbol{}\ \normal{}0\symbol{}; } 527 \leftline{525:\ \ \ $\}$ } 528 \leftline{526:\ \ \ } 529 \leftline{527:\ \ \ } 530 \leftline{528:\ \ \ } 531 \leftline{529:\ \ \ } 532 \leftline{530:\ \ \ } 464 \keya{}\leftline{462:\ \ \ int\symbol{}\ \normal{}k\symbol{}=\normal{}isKey\symbol{}(\normal{}s\symbol{}); } 465 \keya{}\leftline{463:\ \ \ if\symbol{}\ (\normal{}k\symbol{}==\normal{}0\symbol{})\ \keya{}return\symbol{}\ \normal{}NORMAL\symbol{}; } 466 \keya{}\leftline{464:\ \ \ return\symbol{}\ \normal{}k\symbol{}; } 467 \leftline{465:\ \ \ $\}$ } 468 \leftline{466:\ \ \ } 469 \normal{}\leftline{467:\ \ \ s\symbol{}[\normal{}i\symbol{}]=\normal{}0\symbol{}; } 470 \keya{}\leftline{468:\ \ \ return\symbol{}\ \normal{}type\symbol{}; } 471 \leftline{469:\ \ \ } 472 \leftline{470:\ \ \ $\}$ } 473 \leftline{471:\ \ \ } 474 \keya{}\leftline{472:\ \ \ int\symbol{}\ \normal{}TexC\symbol{}::\normal{}init\symbol{}(\keya{}const\symbol{}\ \keya{}char\symbol{}\ *\normal{}filename\symbol{}) } 475 \leftline{473:\ \ \ $\{$ } 476 \normal{}\leftline{474:\ \ \ file\symbol{}=\normal{}fopen\symbol{}(\normal{}filename\symbol{},"\normal{}wt\symbol{}"); } 477 \normal{}\leftline{475:\ \ \ fprintf\symbol{}(\normal{}file\symbol{},"\\\normal{}input\symbol{}\ \normal{}default.mac\symbol{}\\normal{}n\symbol{}"); } 478 \keya{}\leftline{476:\ \ \ return\symbol{}\ \normal{}file\symbol{}!=\normal{}NULL\symbol{}; } 479 \leftline{477:\ \ \ $\}$ } 480 \leftline{478:\ \ \ } 481 \leftline{479:\ \ \ } 482 \keya{}\leftline{480:\ \ \ void\symbol{}\ \normal{}Help\symbol{}() } 483 \leftline{481:\ \ \ $\{$ } 484 \leftline{482:\ \ \ \ \ \normal{}printf\symbol{}("\normal{}Syntax\symbol{}\ :\ \normal{}c2tex\symbol{}\ \normal{}in_file\symbol{}\ [\normal{}out_file\symbol{}]\ [-\normal{}usePascal\symbol{}]\ [-\normal{}numbers\symbol{}]\\normal{}n\symbol{}\\normal{}n\symbol{}"); } 485 \leftline{483:\ \ \ \ \ \normal{}printf\symbol{}("\normal{}Default\symbol{}\ \normal{}out_file\symbol{}\ \normal{}is\symbol{}\ \normal{}output.tex.\symbol{}\\normal{}n\symbol{}"); } 486 \leftline{484:\ \ \ \ \ \normal{}printf\symbol{}("-\normal{}usePascal\symbol{}\ \ \ \ \ \normal{}use\symbol{}\ \normal{}usePascal\symbol{}\ \normal{}comments\symbol{}\ (*\ *)\normal{}.\symbol{}\\normal{}n\symbol{}"); } 487 \leftline{485:\ \ \ \ \ \normal{}printf\symbol{}("-\normal{}numbers\symbol{}\ \ \ \ \normal{}print\symbol{}\ \normal{}line\symbol{}\ \normal{}numbers.\symbol{}\\normal{}n\symbol{}"); } 488 \leftline{486:\ \ \ \ \ \normal{}exit\symbol{}(\normal{}1\symbol{}); } 489 \leftline{487:\ \ \ $\}$ } 490 \leftline{488:\ \ \ } 491 \keya{}\leftline{489:\ \ \ int\symbol{}\ \normal{}main\symbol{}(\keya{}int\symbol{}\ \normal{}argc\symbol{},\ \keya{}char\symbol{}\ **\normal{}argv\symbol{}) } 492 \leftline{490:\ \ \ $\{$ } 493 \keya{}\leftline{491:\ \ \ char\symbol{}\ \ \ \normal{}s\symbol{}[\normal{}16384\symbol{}];\ \symbol{}/\normal{}main\symbol{}(\keya{}int\symbol{}\ \normal{}argc\symbol{},\ \keya{}char\symbol{}\ **\normal{}argv\symbol{}) } 494 \leftline{492:\ \ \ $\{$ } 495 \keya{}\leftline{493:\ \ \ char\symbol{}\ \ \ \normal{}s\symbol{}[\normal{}16384\symbol{}];\ \symbol{}/\normal{}docasny\symbol{}\ \normal{}buffer\symbol{} } 496 \leftline{494:\ \ \ } 497 \normal{}\leftline{495:\ \ \ OptionsC\symbol{}\ \normal{}options\symbol{}(\normal{}argc\symbol{},\normal{}argv\symbol{}); } 498 \leftline{496:\ \ \ \ } 499 \leftline{497:\ \ \ \ \keya{}if\symbol{}\ (\normal{}argc\symbol{}<\normal{}2\symbol{})\ \normal{}Help\symbol{}(); } 500 \leftline{498:\ \ \ \ \keya{}if\symbol{}\ (\normal{}argc\symbol{}>=\normal{}3\symbol{}\ \&\&\ (*\normal{}argv\symbol{}[\normal{}2\symbol{}]!='-')\ ) } 501 \leftline{499:\ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}s\symbol{},\normal{}argv\symbol{}[\normal{}2\symbol{}]); } 502 \leftline{500:\ \ \ \ \keya{}else\symbol{} } 503 \leftline{501:\ \ \ \ \ \ \normal{}strcpy\symbol{}(\normal{}s\symbol{},"\normal{}output.tex\symbol{}"); } 504 \leftline{502:\ \ \ \ } 505 \leftline{503:\ \ \ \ \keya{}if\symbol{}\ (\normal{}options.isOption\symbol{}("-\normal{}usePascal\symbol{}"))\ $\{$ } 506 \leftline{504:\ \ \ \ \ \ \ \normal{}usePascal\symbol{}=\normal{}1\symbol{}; } 507 \leftline{505:\ \ \ \ \ \ \ \normal{}comment_1b\symbol{}='('; } 508 \leftline{506:\ \ \ \ \ \ \ \normal{}comment_2b\symbol{}='*'; } 509 \leftline{507:\ \ \ \ \ \ \ \normal{}comment_1e\symbol{}='*'; } 510 \leftline{508:\ \ \ \ \ \ \ \normal{}comment_2e\symbol{}=')'; } 511 \leftline{509:\ \ \ \ $\}$ } 512 \leftline{510:\ \ \ } 513 \leftline{511:\ \ \ \ \keya{}int\symbol{}\ \normal{}numbers\symbol{}; } 514 \leftline{512:\ \ \ \ } 515 \leftline{513:\ \ \ \ \normal{}numbers\symbol{}\ =\ \normal{}options.isOption\symbol{}("-\normal{}numbers\symbol{}"); } 516 \leftline{514:\ \ \ \ } 517 \leftline{515:\ \ \ \ } 518 \leftline{516:\ \ \ \ \ \normal{}LexanC\symbol{}\ \ \ \ \ \ \ \normal{}lexan\symbol{}; } 519 \leftline{517:\ \ \ \ \ \normal{}TexC\symbol{}\ \normal{}tex\symbol{}(\normal{}numbers\symbol{},\ \normal{}s\symbol{}); } 520 \leftline{518:\ \ \ \ \ \normal{}lexan.open\symbol{}(\normal{}argv\symbol{}[\normal{}1\symbol{}]); } 521 \leftline{519:\ \ \ } 522 \leftline{520:\ \ \ \ \ \keya{}int\symbol{}\ \ \normal{}t\symbol{}; } 523 \leftline{521:\ \ \ \ \ \normal{}cout\symbol{}<<\normal{}tex.numbers\symbol{}; } 524 \leftline{522:\ \ \ } 525 \leftline{523:\ \ \ \ \ } 526 \leftline{524:\ \ \ \ \ \keya{}while\symbol{}((\normal{}t\symbol{}=\normal{}lexan.read\symbol{}(\normal{}s\symbol{}))!=\normal{}EOF\symbol{}) } 527 \leftline{525:\ \ \ \ \ \ \ $\{$ } 528 \leftline{526:\ \ \ \ \ \ \ \ \ \symbol{}/\ \ \ \ \ \ \normal{}printf\symbol{}("\normal{}\%s\symbol{}",\normal{}s\symbol{}); } 529 \leftline{527:\ \ \ \ \ \ \ \ \ \normal{}tex.write\symbol{}(\normal{}t\symbol{},\normal{}s\symbol{}); } 530 \leftline{528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 531 \leftline{529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 532 \leftline{530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 533 \leftline{531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 534 \leftline{532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 535 \leftline{533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 536 \leftline{534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 537 \leftline{535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 538 \leftline{536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 539 \leftline{537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 540 \leftline{538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 541 \leftline{539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 542 \leftline{540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 543 \leftline{541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 544 \leftline{542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 545 \leftline{543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 546 \leftline{544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 547 \leftline{545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 548 \leftline{546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 549 \leftline{547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 550 \leftline{548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 551 \leftline{549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 552 \leftline{550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 553 \leftline{551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 554 \leftline{552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 555 \leftline{553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 556 \leftline{554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 557 \leftline{555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 558 \leftline{556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 559 \leftline{557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 560 \leftline{558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 561 \leftline{559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 562 \leftline{560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 563 \leftline{561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 564 \leftline{562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 565 \leftline{563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 566 \leftline{564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 567 \leftline{565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 568 \leftline{566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 569 \leftline{567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 570 \leftline{568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 571 \leftline{569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 572 \leftline{570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 573 \leftline{571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 574 \leftline{572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 575 \leftline{573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 576 \leftline{574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 577 \leftline{575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 578 \leftline{576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 579 \leftline{577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 580 \leftline{578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 581 \leftline{579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 582 \leftline{580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 583 \leftline{581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 584 \leftline{582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 585 \leftline{583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 586 \leftline{584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 587 \leftline{585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 588 \leftline{586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 589 \leftline{587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 590 \leftline{588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 591 \leftline{589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 592 \leftline{590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 593 \leftline{591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 594 \leftline{592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 595 \leftline{593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 596 \leftline{594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 597 \leftline{595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 598 \leftline{596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 599 \leftline{597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 600 \leftline{598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 601 \leftline{599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 602 \leftline{600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 603 \leftline{601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 604 \leftline{602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 605 \leftline{603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 606 \leftline{604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 607 \leftline{605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 608 \leftline{606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 609 \leftline{607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 610 \leftline{608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 611 \leftline{609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 612 \leftline{610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 613 \leftline{611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 614 \leftline{612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 615 \leftline{613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 616 \leftline{614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 617 \leftline{615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 618 \leftline{616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 619 \leftline{617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 620 \leftline{618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 621 \leftline{619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 622 \leftline{620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 623 \leftline{621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 624 \leftline{622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 625 \leftline{623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 626 \leftline{624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 627 \leftline{625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 628 \leftline{626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 629 \leftline{627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 630 \leftline{628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 631 \leftline{629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 632 \leftline{630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 633 \leftline{631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 634 \leftline{632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 635 \leftline{633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 636 \leftline{634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 637 \leftline{635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 638 \leftline{636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 639 \leftline{637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 640 \leftline{638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 641 \leftline{639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 642 \leftline{640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 643 \leftline{641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 644 \leftline{642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 645 \leftline{643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 646 \leftline{644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 647 \leftline{645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 648 \leftline{646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 649 \leftline{647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 650 \leftline{648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 651 \leftline{649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 652 \leftline{650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 653 \leftline{651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 654 \leftline{652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 655 \leftline{653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 656 \leftline{654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 657 \leftline{655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 658 \leftline{656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 659 \leftline{657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 660 \leftline{658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 661 \leftline{659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 662 \leftline{660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 663 \leftline{661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 664 \leftline{662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 665 \leftline{663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 666 \leftline{664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 667 \leftline{665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 668 \leftline{666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 669 \leftline{667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 670 \leftline{668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 671 \leftline{669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 672 \leftline{670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 673 \leftline{671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 674 \leftline{672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 675 \leftline{673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 676 \leftline{674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 677 \leftline{675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 678 \leftline{676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 679 \leftline{677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 680 \leftline{678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 681 \leftline{679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 682 \leftline{680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 683 \leftline{681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 684 \leftline{682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 685 \leftline{683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 686 \leftline{684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 687 \leftline{685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 688 \leftline{686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 689 \leftline{687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 690 \leftline{688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 691 \leftline{689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 692 \leftline{690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 693 \leftline{691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 694 \leftline{692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 695 \leftline{693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 696 \leftline{694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 697 \leftline{695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 698 \leftline{696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 699 \leftline{697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 700 \leftline{698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 701 \leftline{699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 702 \leftline{700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 703 \leftline{701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 704 \leftline{702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 705 \leftline{703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 706 \leftline{704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 707 \leftline{705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 708 \leftline{706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 709 \leftline{707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 710 \leftline{708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 711 \leftline{709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 712 \leftline{710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 713 \leftline{711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 714 \leftline{712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 715 \leftline{713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 716 \leftline{714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 717 \leftline{715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 718 \leftline{716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 719 \leftline{717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 720 \leftline{718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 721 \leftline{719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 722 \leftline{720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 723 \leftline{721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 724 \leftline{722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 725 \leftline{723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 726 \leftline{724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 727 \leftline{725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 728 \leftline{726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 729 \leftline{727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 730 \leftline{728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 731 \leftline{729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 732 \leftline{730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 733 \leftline{731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 734 \leftline{732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 735 \leftline{733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 736 \leftline{734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 737 \leftline{735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 738 \leftline{736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 739 \leftline{737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 740 \leftline{738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 741 \leftline{739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 742 \leftline{740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 743 \leftline{741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 744 \leftline{742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 745 \leftline{743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 746 \leftline{744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 747 \leftline{745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 748 \leftline{746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 749 \leftline{747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 750 \leftline{748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 751 \leftline{749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 752 \leftline{750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 753 \leftline{751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 754 \leftline{752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 755 \leftline{753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 756 \leftline{754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 757 \leftline{755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 758 \leftline{756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 759 \leftline{757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 760 \leftline{758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 761 \leftline{759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 762 \leftline{760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 763 \leftline{761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 764 \leftline{762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 765 \leftline{763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 766 \leftline{764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 767 \leftline{765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 768 \leftline{766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 769 \leftline{767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 770 \leftline{768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 771 \leftline{769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 772 \leftline{770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 773 \leftline{771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 774 \leftline{772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 775 \leftline{773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 776 \leftline{774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 777 \leftline{775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 778 \leftline{776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 779 \leftline{777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 780 \leftline{778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 781 \leftline{779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 782 \leftline{780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 783 \leftline{781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 784 \leftline{782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 785 \leftline{783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 786 \leftline{784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 787 \leftline{785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 788 \leftline{786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 789 \leftline{787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 790 \leftline{788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 791 \leftline{789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 792 \leftline{790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 793 \leftline{791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 794 \leftline{792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 795 \leftline{793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 796 \leftline{794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 797 \leftline{795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 798 \leftline{796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 799 \leftline{797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 800 \leftline{798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 801 \leftline{799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 802 \leftline{800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 803 \leftline{801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 804 \leftline{802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 805 \leftline{803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 806 \leftline{804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 807 \leftline{805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 808 \leftline{806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 809 \leftline{807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 810 \leftline{808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 811 \leftline{809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 812 \leftline{810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 813 \leftline{811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 814 \leftline{812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 815 \leftline{813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 816 \leftline{814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 817 \leftline{815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 818 \leftline{816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 819 \leftline{817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 820 \leftline{818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 821 \leftline{819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 822 \leftline{820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 823 \leftline{821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 824 \leftline{822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 825 \leftline{823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 826 \leftline{824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 827 \leftline{825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 828 \leftline{826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 829 \leftline{827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 830 \leftline{828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 831 \leftline{829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 832 \leftline{830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 833 \leftline{831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 834 \leftline{832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 835 \leftline{833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 836 \leftline{834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 837 \leftline{835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 838 \leftline{836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 839 \leftline{837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 840 \leftline{838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 841 \leftline{839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 842 \leftline{840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 843 \leftline{841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 844 \leftline{842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 845 \leftline{843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 846 \leftline{844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 847 \leftline{845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 848 \leftline{846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 849 \leftline{847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 850 \leftline{848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 851 \leftline{849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 852 \leftline{850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 853 \leftline{851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 854 \leftline{852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 855 \leftline{853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 856 \leftline{854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 857 \leftline{855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 858 \leftline{856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 859 \leftline{857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 860 \leftline{858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 861 \leftline{859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 862 \leftline{860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 863 \leftline{861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 864 \leftline{862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 865 \leftline{863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 866 \leftline{864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 867 \leftline{865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 868 \leftline{866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 869 \leftline{867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 870 \leftline{868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 871 \leftline{869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 872 \leftline{870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 873 \leftline{871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 874 \leftline{872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 875 \leftline{873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 876 \leftline{874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 877 \leftline{875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 878 \leftline{876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 879 \leftline{877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 880 \leftline{878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 881 \leftline{879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 882 \leftline{880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 883 \leftline{881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 884 \leftline{882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 885 \leftline{883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 886 \leftline{884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 887 \leftline{885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 888 \leftline{886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 889 \leftline{887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 890 \leftline{888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 891 \leftline{889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 892 \leftline{890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 893 \leftline{891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 894 \leftline{892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 895 \leftline{893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 896 \leftline{894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 897 \leftline{895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 898 \leftline{896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 899 \leftline{897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 900 \leftline{898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 901 \leftline{899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 902 \leftline{900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 903 \leftline{901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 904 \leftline{902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 905 \leftline{903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 906 \leftline{904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 907 \leftline{905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 908 \leftline{906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 909 \leftline{907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 910 \leftline{908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 911 \leftline{909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 912 \leftline{910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 913 \leftline{911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 914 \leftline{912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 915 \leftline{913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 916 \leftline{914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 917 \leftline{915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 918 \leftline{916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 919 \leftline{917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 920 \leftline{918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 921 \leftline{919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 922 \leftline{920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 923 \leftline{921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 924 \leftline{922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 925 \leftline{923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 926 \leftline{924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 927 \leftline{925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 928 \leftline{926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 929 \leftline{927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 930 \leftline{928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 931 \leftline{929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 932 \leftline{930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 933 \leftline{931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 934 \leftline{932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 935 \leftline{933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 936 \leftline{934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 937 \leftline{935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 938 \leftline{936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 939 \leftline{937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 940 \leftline{938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 941 \leftline{939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 942 \leftline{940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 943 \leftline{941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 944 \leftline{942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 945 \leftline{943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 946 \leftline{944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 947 \leftline{945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 948 \leftline{946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 949 \leftline{947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 950 \leftline{948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 951 \leftline{949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 952 \leftline{950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 953 \leftline{951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 954 \leftline{952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 955 \leftline{953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 956 \leftline{954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 957 \leftline{955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 958 \leftline{956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 959 \leftline{957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 960 \leftline{958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 961 \leftline{959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 962 \leftline{960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 963 \leftline{961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 964 \leftline{962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 965 \leftline{963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 966 \leftline{964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 967 \leftline{965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 968 \leftline{966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 969 \leftline{967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 970 \leftline{968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 971 \leftline{969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 972 \leftline{970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 973 \leftline{971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 974 \leftline{972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 975 \leftline{973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 976 \leftline{974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 977 \leftline{975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 978 \leftline{976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 979 \leftline{977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 980 \leftline{978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 981 \leftline{979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 982 \leftline{980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 983 \leftline{981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 984 \leftline{982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 985 \leftline{983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 986 \leftline{984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 987 \leftline{985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 988 \leftline{986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 989 \leftline{987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 990 \leftline{988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 991 \leftline{989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 992 \leftline{990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 993 \leftline{991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 994 \leftline{992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 995 \leftline{993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 996 \leftline{994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 997 \leftline{995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 998 \leftline{996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 999 \leftline{997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1000 \leftline{998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1001 \leftline{999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1002 \leftline{1000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1003 \leftline{1001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1004 \leftline{1002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1005 \leftline{1003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1006 \leftline{1004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1007 \leftline{1005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1008 \leftline{1006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1009 \leftline{1007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1010 \leftline{1008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1011 \leftline{1009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1012 \leftline{1010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1013 \leftline{1011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1014 \leftline{1012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1015 \leftline{1013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1016 \leftline{1014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1017 \leftline{1015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1018 \leftline{1016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1019 \leftline{1017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1020 \leftline{1018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1021 \leftline{1019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1022 \leftline{1020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1023 \leftline{1021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1024 \leftline{1022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1025 \leftline{1023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1026 \leftline{1024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1027 \leftline{1025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1028 \leftline{1026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1029 \leftline{1027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1030 \leftline{1028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1031 \leftline{1029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1032 \leftline{1030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1033 \leftline{1031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1034 \leftline{1032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1035 \leftline{1033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1036 \leftline{1034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1037 \leftline{1035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1038 \leftline{1036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1039 \leftline{1037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1040 \leftline{1038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1041 \leftline{1039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1042 \leftline{1040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1043 \leftline{1041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1044 \leftline{1042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1045 \leftline{1043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1046 \leftline{1044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1047 \leftline{1045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1048 \leftline{1046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1049 \leftline{1047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1050 \leftline{1048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1051 \leftline{1049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1052 \leftline{1050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1053 \leftline{1051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1054 \leftline{1052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1055 \leftline{1053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1056 \leftline{1054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1057 \leftline{1055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1058 \leftline{1056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1059 \leftline{1057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1060 \leftline{1058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1061 \leftline{1059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1062 \leftline{1060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1063 \leftline{1061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1064 \leftline{1062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1065 \leftline{1063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1066 \leftline{1064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1067 \leftline{1065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1068 \leftline{1066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1069 \leftline{1067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1070 \leftline{1068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1071 \leftline{1069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1072 \leftline{1070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1073 \leftline{1071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1074 \leftline{1072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1075 \leftline{1073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1076 \leftline{1074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1077 \leftline{1075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1078 \leftline{1076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1079 \leftline{1077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1080 \leftline{1078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1081 \leftline{1079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1082 \leftline{1080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1083 \leftline{1081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1084 \leftline{1082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1085 \leftline{1083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1086 \leftline{1084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1087 \leftline{1085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1088 \leftline{1086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1089 \leftline{1087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1090 \leftline{1088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1091 \leftline{1089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1092 \leftline{1090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1093 \leftline{1091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1094 \leftline{1092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1095 \leftline{1093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1096 \leftline{1094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1097 \leftline{1095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1098 \leftline{1096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1099 \leftline{1097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1100 \leftline{1098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1101 \leftline{1099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1102 \leftline{1100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1103 \leftline{1101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1104 \leftline{1102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1105 \leftline{1103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1106 \leftline{1104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1107 \leftline{1105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1108 \leftline{1106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1109 \leftline{1107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1110 \leftline{1108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1111 \leftline{1109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1112 \leftline{1110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1113 \leftline{1111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1114 \leftline{1112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1115 \leftline{1113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1116 \leftline{1114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1117 \leftline{1115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1118 \leftline{1116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1119 \leftline{1117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1120 \leftline{1118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1121 \leftline{1119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1122 \leftline{1120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1123 \leftline{1121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1124 \leftline{1122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1125 \leftline{1123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1126 \leftline{1124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1127 \leftline{1125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1128 \leftline{1126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1129 \leftline{1127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1130 \leftline{1128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1131 \leftline{1129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1132 \leftline{1130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1133 \leftline{1131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1134 \leftline{1132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1135 \leftline{1133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1136 \leftline{1134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1137 \leftline{1135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1138 \leftline{1136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1139 \leftline{1137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1140 \leftline{1138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1141 \leftline{1139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1142 \leftline{1140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1143 \leftline{1141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1144 \leftline{1142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1145 \leftline{1143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1146 \leftline{1144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1147 \leftline{1145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1148 \leftline{1146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1149 \leftline{1147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1150 \leftline{1148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1151 \leftline{1149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1152 \leftline{1150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1153 \leftline{1151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1154 \leftline{1152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1155 \leftline{1153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1156 \leftline{1154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1157 \leftline{1155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1158 \leftline{1156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1159 \leftline{1157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1160 \leftline{1158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1161 \leftline{1159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1162 \leftline{1160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1163 \leftline{1161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1164 \leftline{1162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1165 \leftline{1163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1166 \leftline{1164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1167 \leftline{1165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1168 \leftline{1166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1169 \leftline{1167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1170 \leftline{1168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1171 \leftline{1169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1172 \leftline{1170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1173 \leftline{1171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1174 \leftline{1172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1175 \leftline{1173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1176 \leftline{1174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1177 \leftline{1175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1178 \leftline{1176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1179 \leftline{1177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1180 \leftline{1178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1181 \leftline{1179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1182 \leftline{1180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1183 \leftline{1181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1184 \leftline{1182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1185 \leftline{1183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1186 \leftline{1184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1187 \leftline{1185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1188 \leftline{1186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1189 \leftline{1187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1190 \leftline{1188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1191 \leftline{1189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1192 \leftline{1190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1193 \leftline{1191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1194 \leftline{1192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1195 \leftline{1193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1196 \leftline{1194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1197 \leftline{1195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1198 \leftline{1196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1199 \leftline{1197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1200 \leftline{1198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1201 \leftline{1199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1202 \leftline{1200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1203 \leftline{1201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1204 \leftline{1202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1205 \leftline{1203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1206 \leftline{1204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1207 \leftline{1205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1208 \leftline{1206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1209 \leftline{1207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1210 \leftline{1208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1211 \leftline{1209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1212 \leftline{1210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1213 \leftline{1211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1214 \leftline{1212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1215 \leftline{1213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1216 \leftline{1214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1217 \leftline{1215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1218 \leftline{1216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1219 \leftline{1217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1220 \leftline{1218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1221 \leftline{1219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1222 \leftline{1220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1223 \leftline{1221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1224 \leftline{1222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1225 \leftline{1223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1226 \leftline{1224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1227 \leftline{1225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1228 \leftline{1226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1229 \leftline{1227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1230 \leftline{1228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1231 \leftline{1229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1232 \leftline{1230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1233 \leftline{1231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1234 \leftline{1232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1235 \leftline{1233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1236 \leftline{1234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1237 \leftline{1235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1238 \leftline{1236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1239 \leftline{1237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1240 \leftline{1238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1241 \leftline{1239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1242 \leftline{1240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1243 \leftline{1241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1244 \leftline{1242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1245 \leftline{1243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1246 \leftline{1244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1247 \leftline{1245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1248 \leftline{1246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1249 \leftline{1247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1250 \leftline{1248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1251 \leftline{1249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1252 \leftline{1250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1253 \leftline{1251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1254 \leftline{1252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1255 \leftline{1253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1256 \leftline{1254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1257 \leftline{1255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1258 \leftline{1256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1259 \leftline{1257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1260 \leftline{1258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1261 \leftline{1259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1262 \leftline{1260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1263 \leftline{1261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1264 \leftline{1262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1265 \leftline{1263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1266 \leftline{1264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1267 \leftline{1265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1268 \leftline{1266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1269 \leftline{1267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1270 \leftline{1268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1271 \leftline{1269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1272 \leftline{1270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1273 \leftline{1271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1274 \leftline{1272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1275 \leftline{1273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1276 \leftline{1274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1277 \leftline{1275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1278 \leftline{1276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1279 \leftline{1277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1280 \leftline{1278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1281 \leftline{1279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1282 \leftline{1280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1283 \leftline{1281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1284 \leftline{1282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1285 \leftline{1283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1286 \leftline{1284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1287 \leftline{1285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1288 \leftline{1286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1289 \leftline{1287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1290 \leftline{1288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1291 \leftline{1289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1292 \leftline{1290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1293 \leftline{1291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1294 \leftline{1292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1295 \leftline{1293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1296 \leftline{1294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1297 \leftline{1295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1298 \leftline{1296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1299 \leftline{1297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1300 \leftline{1298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1301 \leftline{1299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1302 \leftline{1300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1303 \leftline{1301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1304 \leftline{1302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1305 \leftline{1303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1306 \leftline{1304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1307 \leftline{1305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1308 \leftline{1306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1309 \leftline{1307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1310 \leftline{1308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1311 \leftline{1309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1312 \leftline{1310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1313 \leftline{1311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1314 \leftline{1312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1315 \leftline{1313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1316 \leftline{1314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1317 \leftline{1315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1318 \leftline{1316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1319 \leftline{1317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1320 \leftline{1318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1321 \leftline{1319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1322 \leftline{1320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1323 \leftline{1321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1324 \leftline{1322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1325 \leftline{1323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1326 \leftline{1324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1327 \leftline{1325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1328 \leftline{1326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1329 \leftline{1327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1330 \leftline{1328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1331 \leftline{1329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1332 \leftline{1330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1333 \leftline{1331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1334 \leftline{1332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1335 \leftline{1333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1336 \leftline{1334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1337 \leftline{1335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1338 \leftline{1336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1339 \leftline{1337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1340 \leftline{1338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1341 \leftline{1339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1342 \leftline{1340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1343 \leftline{1341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1344 \leftline{1342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1345 \leftline{1343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1346 \leftline{1344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1347 \leftline{1345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1348 \leftline{1346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1349 \leftline{1347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1350 \leftline{1348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1351 \leftline{1349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1352 \leftline{1350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1353 \leftline{1351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1354 \leftline{1352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1355 \leftline{1353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1356 \leftline{1354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1357 \leftline{1355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1358 \leftline{1356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1359 \leftline{1357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1360 \leftline{1358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1361 \leftline{1359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1362 \leftline{1360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1363 \leftline{1361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1364 \leftline{1362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1365 \leftline{1363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1366 \leftline{1364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1367 \leftline{1365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1368 \leftline{1366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1369 \leftline{1367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1370 \leftline{1368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1371 \leftline{1369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1372 \leftline{1370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1373 \leftline{1371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1374 \leftline{1372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1375 \leftline{1373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1376 \leftline{1374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1377 \leftline{1375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1378 \leftline{1376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1379 \leftline{1377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1380 \leftline{1378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1381 \leftline{1379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1382 \leftline{1380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1383 \leftline{1381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1384 \leftline{1382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1385 \leftline{1383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1386 \leftline{1384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1387 \leftline{1385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1388 \leftline{1386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1389 \leftline{1387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1390 \leftline{1388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1391 \leftline{1389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1392 \leftline{1390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1393 \leftline{1391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1394 \leftline{1392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1395 \leftline{1393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1396 \leftline{1394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1397 \leftline{1395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1398 \leftline{1396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1399 \leftline{1397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1400 \leftline{1398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1401 \leftline{1399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1402 \leftline{1400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1403 \leftline{1401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1404 \leftline{1402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1405 \leftline{1403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1406 \leftline{1404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1407 \leftline{1405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1408 \leftline{1406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1409 \leftline{1407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1410 \leftline{1408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1411 \leftline{1409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1412 \leftline{1410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1413 \leftline{1411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1414 \leftline{1412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1415 \leftline{1413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1416 \leftline{1414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1417 \leftline{1415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1418 \leftline{1416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1419 \leftline{1417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1420 \leftline{1418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1421 \leftline{1419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1422 \leftline{1420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1423 \leftline{1421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1424 \leftline{1422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1425 \leftline{1423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1426 \leftline{1424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1427 \leftline{1425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1428 \leftline{1426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1429 \leftline{1427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1430 \leftline{1428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1431 \leftline{1429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1432 \leftline{1430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1433 \leftline{1431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1434 \leftline{1432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1435 \leftline{1433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1436 \leftline{1434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1437 \leftline{1435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1438 \leftline{1436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1439 \leftline{1437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1440 \leftline{1438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1441 \leftline{1439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1442 \leftline{1440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1443 \leftline{1441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1444 \leftline{1442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1445 \leftline{1443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1446 \leftline{1444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1447 \leftline{1445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1448 \leftline{1446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1449 \leftline{1447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1450 \leftline{1448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1451 \leftline{1449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1452 \leftline{1450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1453 \leftline{1451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1454 \leftline{1452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1455 \leftline{1453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1456 \leftline{1454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1457 \leftline{1455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1458 \leftline{1456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1459 \leftline{1457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1460 \leftline{1458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1461 \leftline{1459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1462 \leftline{1460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1463 \leftline{1461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1464 \leftline{1462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1465 \leftline{1463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1466 \leftline{1464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1467 \leftline{1465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1468 \leftline{1466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1469 \leftline{1467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1470 \leftline{1468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1471 \leftline{1469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1472 \leftline{1470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1473 \leftline{1471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1474 \leftline{1472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1475 \leftline{1473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1476 \leftline{1474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1477 \leftline{1475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1478 \leftline{1476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1479 \leftline{1477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1480 \leftline{1478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1481 \leftline{1479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1482 \leftline{1480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1483 \leftline{1481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1484 \leftline{1482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1485 \leftline{1483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1486 \leftline{1484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1487 \leftline{1485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1488 \leftline{1486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1489 \leftline{1487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1490 \leftline{1488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1491 \leftline{1489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1492 \leftline{1490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1493 \leftline{1491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1494 \leftline{1492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1495 \leftline{1493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1496 \leftline{1494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1497 \leftline{1495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1498 \leftline{1496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1499 \leftline{1497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1500 \leftline{1498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1501 \leftline{1499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1502 \leftline{1500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1503 \leftline{1501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1504 \leftline{1502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1505 \leftline{1503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1506 \leftline{1504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1507 \leftline{1505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1508 \leftline{1506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1509 \leftline{1507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1510 \leftline{1508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1511 \leftline{1509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1512 \leftline{1510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1513 \leftline{1511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1514 \leftline{1512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1515 \leftline{1513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1516 \leftline{1514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1517 \leftline{1515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1518 \leftline{1516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1519 \leftline{1517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1520 \leftline{1518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1521 \leftline{1519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1522 \leftline{1520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1523 \leftline{1521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1524 \leftline{1522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1525 \leftline{1523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1526 \leftline{1524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1527 \leftline{1525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1528 \leftline{1526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1529 \leftline{1527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1530 \leftline{1528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1531 \leftline{1529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1532 \leftline{1530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1533 \leftline{1531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1534 \leftline{1532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1535 \leftline{1533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1536 \leftline{1534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1537 \leftline{1535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1538 \leftline{1536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1539 \leftline{1537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1540 \leftline{1538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1541 \leftline{1539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1542 \leftline{1540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1543 \leftline{1541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1544 \leftline{1542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1545 \leftline{1543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1546 \leftline{1544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1547 \leftline{1545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1548 \leftline{1546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1549 \leftline{1547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1550 \leftline{1548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1551 \leftline{1549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1552 \leftline{1550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1553 \leftline{1551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1554 \leftline{1552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1555 \leftline{1553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1556 \leftline{1554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1557 \leftline{1555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1558 \leftline{1556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1559 \leftline{1557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1560 \leftline{1558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1561 \leftline{1559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1562 \leftline{1560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1563 \leftline{1561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1564 \leftline{1562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1565 \leftline{1563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1566 \leftline{1564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1567 \leftline{1565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1568 \leftline{1566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1569 \leftline{1567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1570 \leftline{1568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1571 \leftline{1569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1572 \leftline{1570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1573 \leftline{1571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1574 \leftline{1572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1575 \leftline{1573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1576 \leftline{1574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1577 \leftline{1575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1578 \leftline{1576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1579 \leftline{1577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1580 \leftline{1578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1581 \leftline{1579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1582 \leftline{1580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1583 \leftline{1581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1584 \leftline{1582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1585 \leftline{1583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1586 \leftline{1584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1587 \leftline{1585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1588 \leftline{1586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1589 \leftline{1587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1590 \leftline{1588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1591 \leftline{1589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1592 \leftline{1590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1593 \leftline{1591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1594 \leftline{1592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1595 \leftline{1593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1596 \leftline{1594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1597 \leftline{1595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1598 \leftline{1596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1599 \leftline{1597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1600 \leftline{1598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1601 \leftline{1599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1602 \leftline{1600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1603 \leftline{1601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1604 \leftline{1602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1605 \leftline{1603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1606 \leftline{1604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1607 \leftline{1605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1608 \leftline{1606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1609 \leftline{1607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1610 \leftline{1608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1611 \leftline{1609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1612 \leftline{1610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1613 \leftline{1611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1614 \leftline{1612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1615 \leftline{1613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1616 \leftline{1614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1617 \leftline{1615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1618 \leftline{1616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1619 \leftline{1617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1620 \leftline{1618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1621 \leftline{1619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1622 \leftline{1620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1623 \leftline{1621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1624 \leftline{1622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1625 \leftline{1623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1626 \leftline{1624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1627 \leftline{1625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1628 \leftline{1626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1629 \leftline{1627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1630 \leftline{1628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1631 \leftline{1629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1632 \leftline{1630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1633 \leftline{1631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1634 \leftline{1632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1635 \leftline{1633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1636 \leftline{1634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1637 \leftline{1635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1638 \leftline{1636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1639 \leftline{1637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1640 \leftline{1638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1641 \leftline{1639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1642 \leftline{1640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1643 \leftline{1641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1644 \leftline{1642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1645 \leftline{1643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1646 \leftline{1644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1647 \leftline{1645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1648 \leftline{1646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1649 \leftline{1647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1650 \leftline{1648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1651 \leftline{1649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1652 \leftline{1650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1653 \leftline{1651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1654 \leftline{1652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1655 \leftline{1653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1656 \leftline{1654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1657 \leftline{1655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1658 \leftline{1656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1659 \leftline{1657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1660 \leftline{1658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1661 \leftline{1659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1662 \leftline{1660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1663 \leftline{1661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1664 \leftline{1662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1665 \leftline{1663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1666 \leftline{1664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1667 \leftline{1665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1668 \leftline{1666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1669 \leftline{1667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1670 \leftline{1668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1671 \leftline{1669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1672 \leftline{1670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1673 \leftline{1671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1674 \leftline{1672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1675 \leftline{1673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1676 \leftline{1674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1677 \leftline{1675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1678 \leftline{1676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1679 \leftline{1677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1680 \leftline{1678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1681 \leftline{1679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1682 \leftline{1680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1683 \leftline{1681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1684 \leftline{1682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1685 \leftline{1683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1686 \leftline{1684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1687 \leftline{1685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1688 \leftline{1686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1689 \leftline{1687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1690 \leftline{1688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1691 \leftline{1689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1692 \leftline{1690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1693 \leftline{1691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1694 \leftline{1692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1695 \leftline{1693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1696 \leftline{1694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1697 \leftline{1695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1698 \leftline{1696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1699 \leftline{1697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1700 \leftline{1698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1701 \leftline{1699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1702 \leftline{1700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1703 \leftline{1701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1704 \leftline{1702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1705 \leftline{1703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1706 \leftline{1704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1707 \leftline{1705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1708 \leftline{1706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1709 \leftline{1707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1710 \leftline{1708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1711 \leftline{1709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1712 \leftline{1710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1713 \leftline{1711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1714 \leftline{1712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1715 \leftline{1713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1716 \leftline{1714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1717 \leftline{1715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1718 \leftline{1716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1719 \leftline{1717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1720 \leftline{1718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1721 \leftline{1719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1722 \leftline{1720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1723 \leftline{1721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1724 \leftline{1722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1725 \leftline{1723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1726 \leftline{1724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1727 \leftline{1725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1728 \leftline{1726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1729 \leftline{1727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1730 \leftline{1728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1731 \leftline{1729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1732 \leftline{1730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1733 \leftline{1731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1734 \leftline{1732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1735 \leftline{1733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1736 \leftline{1734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1737 \leftline{1735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1738 \leftline{1736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1739 \leftline{1737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1740 \leftline{1738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1741 \leftline{1739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1742 \leftline{1740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1743 \leftline{1741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1744 \leftline{1742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1745 \leftline{1743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1746 \leftline{1744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1747 \leftline{1745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1748 \leftline{1746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1749 \leftline{1747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1750 \leftline{1748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1751 \leftline{1749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1752 \leftline{1750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1753 \leftline{1751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1754 \leftline{1752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1755 \leftline{1753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1756 \leftline{1754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1757 \leftline{1755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1758 \leftline{1756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1759 \leftline{1757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1760 \leftline{1758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1761 \leftline{1759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1762 \leftline{1760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1763 \leftline{1761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1764 \leftline{1762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1765 \leftline{1763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1766 \leftline{1764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1767 \leftline{1765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1768 \leftline{1766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1769 \leftline{1767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1770 \leftline{1768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1771 \leftline{1769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1772 \leftline{1770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1773 \leftline{1771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1774 \leftline{1772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1775 \leftline{1773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1776 \leftline{1774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1777 \leftline{1775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1778 \leftline{1776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1779 \leftline{1777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1780 \leftline{1778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1781 \leftline{1779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1782 \leftline{1780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1783 \leftline{1781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1784 \leftline{1782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1785 \leftline{1783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1786 \leftline{1784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1787 \leftline{1785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1788 \leftline{1786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1789 \leftline{1787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1790 \leftline{1788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1791 \leftline{1789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1792 \leftline{1790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1793 \leftline{1791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1794 \leftline{1792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1795 \leftline{1793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1796 \leftline{1794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1797 \leftline{1795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1798 \leftline{1796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1799 \leftline{1797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1800 \leftline{1798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1801 \leftline{1799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1802 \leftline{1800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1803 \leftline{1801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1804 \leftline{1802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1805 \leftline{1803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1806 \leftline{1804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1807 \leftline{1805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1808 \leftline{1806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1809 \leftline{1807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1810 \leftline{1808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1811 \leftline{1809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1812 \leftline{1810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1813 \leftline{1811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1814 \leftline{1812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1815 \leftline{1813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1816 \leftline{1814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1817 \leftline{1815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1818 \leftline{1816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1819 \leftline{1817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1820 \leftline{1818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1821 \leftline{1819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1822 \leftline{1820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1823 \leftline{1821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1824 \leftline{1822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1825 \leftline{1823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1826 \leftline{1824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1827 \leftline{1825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1828 \leftline{1826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1829 \leftline{1827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1830 \leftline{1828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1831 \leftline{1829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1832 \leftline{1830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1833 \leftline{1831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1834 \leftline{1832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1835 \leftline{1833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1836 \leftline{1834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1837 \leftline{1835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1838 \leftline{1836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1839 \leftline{1837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1840 \leftline{1838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1841 \leftline{1839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1842 \leftline{1840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1843 \leftline{1841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1844 \leftline{1842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1845 \leftline{1843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1846 \leftline{1844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1847 \leftline{1845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1848 \leftline{1846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1849 \leftline{1847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1850 \leftline{1848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1851 \leftline{1849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1852 \leftline{1850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1853 \leftline{1851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1854 \leftline{1852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1855 \leftline{1853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1856 \leftline{1854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1857 \leftline{1855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1858 \leftline{1856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1859 \leftline{1857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1860 \leftline{1858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1861 \leftline{1859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1862 \leftline{1860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1863 \leftline{1861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1864 \leftline{1862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1865 \leftline{1863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1866 \leftline{1864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1867 \leftline{1865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1868 \leftline{1866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1869 \leftline{1867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1870 \leftline{1868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1871 \leftline{1869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1872 \leftline{1870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1873 \leftline{1871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1874 \leftline{1872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1875 \leftline{1873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1876 \leftline{1874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1877 \leftline{1875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1878 \leftline{1876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1879 \leftline{1877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1880 \leftline{1878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1881 \leftline{1879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1882 \leftline{1880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1883 \leftline{1881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1884 \leftline{1882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1885 \leftline{1883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1886 \leftline{1884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1887 \leftline{1885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1888 \leftline{1886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1889 \leftline{1887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1890 \leftline{1888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1891 \leftline{1889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1892 \leftline{1890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1893 \leftline{1891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1894 \leftline{1892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1895 \leftline{1893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1896 \leftline{1894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1897 \leftline{1895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1898 \leftline{1896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1899 \leftline{1897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1900 \leftline{1898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1901 \leftline{1899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1902 \leftline{1900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1903 \leftline{1901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1904 \leftline{1902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1905 \leftline{1903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1906 \leftline{1904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1907 \leftline{1905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1908 \leftline{1906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1909 \leftline{1907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1910 \leftline{1908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1911 \leftline{1909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1912 \leftline{1910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1913 \leftline{1911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1914 \leftline{1912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1915 \leftline{1913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1916 \leftline{1914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1917 \leftline{1915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1918 \leftline{1916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1919 \leftline{1917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1920 \leftline{1918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1921 \leftline{1919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1922 \leftline{1920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1923 \leftline{1921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1924 \leftline{1922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1925 \leftline{1923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1926 \leftline{1924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1927 \leftline{1925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1928 \leftline{1926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1929 \leftline{1927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1930 \leftline{1928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1931 \leftline{1929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1932 \leftline{1930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1933 \leftline{1931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1934 \leftline{1932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1935 \leftline{1933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1936 \leftline{1934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1937 \leftline{1935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1938 \leftline{1936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1939 \leftline{1937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1940 \leftline{1938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1941 \leftline{1939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1942 \leftline{1940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1943 \leftline{1941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1944 \leftline{1942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1945 \leftline{1943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1946 \leftline{1944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1947 \leftline{1945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1948 \leftline{1946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1949 \leftline{1947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1950 \leftline{1948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1951 \leftline{1949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1952 \leftline{1950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1953 \leftline{1951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1954 \leftline{1952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1955 \leftline{1953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1956 \leftline{1954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1957 \leftline{1955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1958 \leftline{1956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1959 \leftline{1957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1960 \leftline{1958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1961 \leftline{1959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1962 \leftline{1960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1963 \leftline{1961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1964 \leftline{1962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1965 \leftline{1963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1966 \leftline{1964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1967 \leftline{1965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1968 \leftline{1966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1969 \leftline{1967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1970 \leftline{1968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1971 \leftline{1969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1972 \leftline{1970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1973 \leftline{1971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1974 \leftline{1972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1975 \leftline{1973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1976 \leftline{1974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1977 \leftline{1975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1978 \leftline{1976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1979 \leftline{1977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1980 \leftline{1978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1981 \leftline{1979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1982 \leftline{1980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1983 \leftline{1981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1984 \leftline{1982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1985 \leftline{1983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1986 \leftline{1984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1987 \leftline{1985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1988 \leftline{1986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1989 \leftline{1987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1990 \leftline{1988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1991 \leftline{1989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1992 \leftline{1990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1993 \leftline{1991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1994 \leftline{1992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1995 \leftline{1993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1996 \leftline{1994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1997 \leftline{1995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 1998 \leftline{1996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 1999 \leftline{1997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2000 \leftline{1998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2001 \leftline{1999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2002 \leftline{2000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2003 \leftline{2001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2004 \leftline{2002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2005 \leftline{2003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2006 \leftline{2004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2007 \leftline{2005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2008 \leftline{2006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2009 \leftline{2007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2010 \leftline{2008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2011 \leftline{2009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2012 \leftline{2010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2013 \leftline{2011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2014 \leftline{2012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2015 \leftline{2013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2016 \leftline{2014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2017 \leftline{2015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2018 \leftline{2016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2019 \leftline{2017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2020 \leftline{2018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2021 \leftline{2019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2022 \leftline{2020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2023 \leftline{2021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2024 \leftline{2022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2025 \leftline{2023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2026 \leftline{2024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2027 \leftline{2025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2028 \leftline{2026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2029 \leftline{2027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2030 \leftline{2028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2031 \leftline{2029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2032 \leftline{2030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2033 \leftline{2031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2034 \leftline{2032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2035 \leftline{2033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2036 \leftline{2034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2037 \leftline{2035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2038 \leftline{2036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2039 \leftline{2037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2040 \leftline{2038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2041 \leftline{2039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2042 \leftline{2040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2043 \leftline{2041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2044 \leftline{2042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2045 \leftline{2043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2046 \leftline{2044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2047 \leftline{2045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2048 \leftline{2046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2049 \leftline{2047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2050 \leftline{2048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2051 \leftline{2049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2052 \leftline{2050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2053 \leftline{2051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2054 \leftline{2052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2055 \leftline{2053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2056 \leftline{2054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2057 \leftline{2055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2058 \leftline{2056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2059 \leftline{2057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2060 \leftline{2058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2061 \leftline{2059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2062 \leftline{2060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2063 \leftline{2061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2064 \leftline{2062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2065 \leftline{2063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2066 \leftline{2064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2067 \leftline{2065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2068 \leftline{2066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2069 \leftline{2067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2070 \leftline{2068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2071 \leftline{2069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2072 \leftline{2070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2073 \leftline{2071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2074 \leftline{2072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2075 \leftline{2073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2076 \leftline{2074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2077 \leftline{2075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2078 \leftline{2076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2079 \leftline{2077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2080 \leftline{2078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2081 \leftline{2079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2082 \leftline{2080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2083 \leftline{2081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2084 \leftline{2082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2085 \leftline{2083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2086 \leftline{2084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2087 \leftline{2085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2088 \leftline{2086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2089 \leftline{2087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2090 \leftline{2088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2091 \leftline{2089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2092 \leftline{2090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2093 \leftline{2091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2094 \leftline{2092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2095 \leftline{2093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2096 \leftline{2094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2097 \leftline{2095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2098 \leftline{2096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2099 \leftline{2097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2100 \leftline{2098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2101 \leftline{2099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2102 \leftline{2100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2103 \leftline{2101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2104 \leftline{2102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2105 \leftline{2103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2106 \leftline{2104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2107 \leftline{2105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2108 \leftline{2106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2109 \leftline{2107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2110 \leftline{2108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2111 \leftline{2109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2112 \leftline{2110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2113 \leftline{2111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2114 \leftline{2112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2115 \leftline{2113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2116 \leftline{2114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2117 \leftline{2115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2118 \leftline{2116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2119 \leftline{2117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2120 \leftline{2118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2121 \leftline{2119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2122 \leftline{2120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2123 \leftline{2121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2124 \leftline{2122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2125 \leftline{2123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2126 \leftline{2124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2127 \leftline{2125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2128 \leftline{2126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2129 \leftline{2127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2130 \leftline{2128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2131 \leftline{2129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2132 \leftline{2130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2133 \leftline{2131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2134 \leftline{2132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2135 \leftline{2133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2136 \leftline{2134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2137 \leftline{2135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2138 \leftline{2136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2139 \leftline{2137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2140 \leftline{2138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2141 \leftline{2139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2142 \leftline{2140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2143 \leftline{2141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2144 \leftline{2142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2145 \leftline{2143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2146 \leftline{2144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2147 \leftline{2145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2148 \leftline{2146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2149 \leftline{2147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2150 \leftline{2148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2151 \leftline{2149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2152 \leftline{2150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2153 \leftline{2151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2154 \leftline{2152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2155 \leftline{2153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2156 \leftline{2154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2157 \leftline{2155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2158 \leftline{2156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2159 \leftline{2157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2160 \leftline{2158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2161 \leftline{2159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2162 \leftline{2160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2163 \leftline{2161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2164 \leftline{2162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2165 \leftline{2163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2166 \leftline{2164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2167 \leftline{2165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2168 \leftline{2166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2169 \leftline{2167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2170 \leftline{2168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2171 \leftline{2169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2172 \leftline{2170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2173 \leftline{2171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2174 \leftline{2172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2175 \leftline{2173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2176 \leftline{2174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2177 \leftline{2175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2178 \leftline{2176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2179 \leftline{2177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2180 \leftline{2178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2181 \leftline{2179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2182 \leftline{2180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2183 \leftline{2181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2184 \leftline{2182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2185 \leftline{2183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2186 \leftline{2184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2187 \leftline{2185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2188 \leftline{2186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2189 \leftline{2187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2190 \leftline{2188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2191 \leftline{2189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2192 \leftline{2190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2193 \leftline{2191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2194 \leftline{2192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2195 \leftline{2193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2196 \leftline{2194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2197 \leftline{2195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2198 \leftline{2196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2199 \leftline{2197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2200 \leftline{2198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2201 \leftline{2199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2202 \leftline{2200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2203 \leftline{2201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2204 \leftline{2202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2205 \leftline{2203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2206 \leftline{2204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2207 \leftline{2205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2208 \leftline{2206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2209 \leftline{2207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2210 \leftline{2208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2211 \leftline{2209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2212 \leftline{2210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2213 \leftline{2211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2214 \leftline{2212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2215 \leftline{2213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2216 \leftline{2214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2217 \leftline{2215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2218 \leftline{2216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2219 \leftline{2217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2220 \leftline{2218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2221 \leftline{2219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2222 \leftline{2220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2223 \leftline{2221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2224 \leftline{2222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2225 \leftline{2223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2226 \leftline{2224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2227 \leftline{2225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2228 \leftline{2226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2229 \leftline{2227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2230 \leftline{2228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2231 \leftline{2229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2232 \leftline{2230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2233 \leftline{2231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2234 \leftline{2232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2235 \leftline{2233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2236 \leftline{2234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2237 \leftline{2235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2238 \leftline{2236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2239 \leftline{2237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2240 \leftline{2238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2241 \leftline{2239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2242 \leftline{2240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2243 \leftline{2241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2244 \leftline{2242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2245 \leftline{2243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2246 \leftline{2244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2247 \leftline{2245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2248 \leftline{2246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2249 \leftline{2247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2250 \leftline{2248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2251 \leftline{2249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2252 \leftline{2250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2253 \leftline{2251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2254 \leftline{2252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2255 \leftline{2253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2256 \leftline{2254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2257 \leftline{2255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2258 \leftline{2256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2259 \leftline{2257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2260 \leftline{2258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2261 \leftline{2259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2262 \leftline{2260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2263 \leftline{2261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2264 \leftline{2262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2265 \leftline{2263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2266 \leftline{2264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2267 \leftline{2265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2268 \leftline{2266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2269 \leftline{2267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2270 \leftline{2268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2271 \leftline{2269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2272 \leftline{2270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2273 \leftline{2271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2274 \leftline{2272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2275 \leftline{2273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2276 \leftline{2274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2277 \leftline{2275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2278 \leftline{2276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2279 \leftline{2277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2280 \leftline{2278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2281 \leftline{2279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2282 \leftline{2280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2283 \leftline{2281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2284 \leftline{2282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2285 \leftline{2283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2286 \leftline{2284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2287 \leftline{2285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2288 \leftline{2286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2289 \leftline{2287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2290 \leftline{2288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2291 \leftline{2289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2292 \leftline{2290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2293 \leftline{2291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2294 \leftline{2292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2295 \leftline{2293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2296 \leftline{2294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2297 \leftline{2295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2298 \leftline{2296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2299 \leftline{2297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2300 \leftline{2298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2301 \leftline{2299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2302 \leftline{2300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2303 \leftline{2301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2304 \leftline{2302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2305 \leftline{2303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2306 \leftline{2304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2307 \leftline{2305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2308 \leftline{2306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2309 \leftline{2307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2310 \leftline{2308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2311 \leftline{2309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2312 \leftline{2310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2313 \leftline{2311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2314 \leftline{2312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2315 \leftline{2313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2316 \leftline{2314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2317 \leftline{2315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2318 \leftline{2316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2319 \leftline{2317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2320 \leftline{2318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2321 \leftline{2319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2322 \leftline{2320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2323 \leftline{2321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2324 \leftline{2322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2325 \leftline{2323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2326 \leftline{2324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2327 \leftline{2325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2328 \leftline{2326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2329 \leftline{2327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2330 \leftline{2328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2331 \leftline{2329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2332 \leftline{2330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2333 \leftline{2331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2334 \leftline{2332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2335 \leftline{2333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2336 \leftline{2334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2337 \leftline{2335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2338 \leftline{2336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2339 \leftline{2337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2340 \leftline{2338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2341 \leftline{2339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2342 \leftline{2340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2343 \leftline{2341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2344 \leftline{2342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2345 \leftline{2343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2346 \leftline{2344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2347 \leftline{2345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2348 \leftline{2346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2349 \leftline{2347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2350 \leftline{2348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2351 \leftline{2349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2352 \leftline{2350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2353 \leftline{2351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2354 \leftline{2352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2355 \leftline{2353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2356 \leftline{2354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2357 \leftline{2355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2358 \leftline{2356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2359 \leftline{2357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2360 \leftline{2358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2361 \leftline{2359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2362 \leftline{2360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2363 \leftline{2361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2364 \leftline{2362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2365 \leftline{2363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2366 \leftline{2364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2367 \leftline{2365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2368 \leftline{2366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2369 \leftline{2367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2370 \leftline{2368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2371 \leftline{2369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2372 \leftline{2370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2373 \leftline{2371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2374 \leftline{2372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2375 \leftline{2373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2376 \leftline{2374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2377 \leftline{2375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2378 \leftline{2376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2379 \leftline{2377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2380 \leftline{2378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2381 \leftline{2379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2382 \leftline{2380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2383 \leftline{2381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2384 \leftline{2382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2385 \leftline{2383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2386 \leftline{2384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2387 \leftline{2385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2388 \leftline{2386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2389 \leftline{2387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2390 \leftline{2388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2391 \leftline{2389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2392 \leftline{2390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2393 \leftline{2391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2394 \leftline{2392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2395 \leftline{2393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2396 \leftline{2394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2397 \leftline{2395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2398 \leftline{2396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2399 \leftline{2397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2400 \leftline{2398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2401 \leftline{2399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2402 \leftline{2400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2403 \leftline{2401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2404 \leftline{2402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2405 \leftline{2403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2406 \leftline{2404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2407 \leftline{2405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2408 \leftline{2406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2409 \leftline{2407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2410 \leftline{2408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2411 \leftline{2409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2412 \leftline{2410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2413 \leftline{2411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2414 \leftline{2412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2415 \leftline{2413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2416 \leftline{2414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2417 \leftline{2415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2418 \leftline{2416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2419 \leftline{2417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2420 \leftline{2418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2421 \leftline{2419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2422 \leftline{2420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2423 \leftline{2421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2424 \leftline{2422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2425 \leftline{2423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2426 \leftline{2424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2427 \leftline{2425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2428 \leftline{2426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2429 \leftline{2427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2430 \leftline{2428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2431 \leftline{2429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2432 \leftline{2430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2433 \leftline{2431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2434 \leftline{2432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2435 \leftline{2433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2436 \leftline{2434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2437 \leftline{2435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2438 \leftline{2436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2439 \leftline{2437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2440 \leftline{2438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2441 \leftline{2439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2442 \leftline{2440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2443 \leftline{2441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2444 \leftline{2442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2445 \leftline{2443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2446 \leftline{2444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2447 \leftline{2445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2448 \leftline{2446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2449 \leftline{2447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2450 \leftline{2448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2451 \leftline{2449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2452 \leftline{2450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2453 \leftline{2451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2454 \leftline{2452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2455 \leftline{2453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2456 \leftline{2454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2457 \leftline{2455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2458 \leftline{2456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2459 \leftline{2457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2460 \leftline{2458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2461 \leftline{2459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2462 \leftline{2460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2463 \leftline{2461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2464 \leftline{2462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2465 \leftline{2463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2466 \leftline{2464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2467 \leftline{2465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2468 \leftline{2466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2469 \leftline{2467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2470 \leftline{2468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2471 \leftline{2469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2472 \leftline{2470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2473 \leftline{2471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2474 \leftline{2472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2475 \leftline{2473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2476 \leftline{2474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2477 \leftline{2475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2478 \leftline{2476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2479 \leftline{2477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2480 \leftline{2478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2481 \leftline{2479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2482 \leftline{2480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2483 \leftline{2481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2484 \leftline{2482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2485 \leftline{2483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2486 \leftline{2484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2487 \leftline{2485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2488 \leftline{2486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2489 \leftline{2487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2490 \leftline{2488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2491 \leftline{2489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2492 \leftline{2490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2493 \leftline{2491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2494 \leftline{2492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2495 \leftline{2493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2496 \leftline{2494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2497 \leftline{2495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2498 \leftline{2496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2499 \leftline{2497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2500 \leftline{2498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2501 \leftline{2499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2502 \leftline{2500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2503 \leftline{2501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2504 \leftline{2502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2505 \leftline{2503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2506 \leftline{2504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2507 \leftline{2505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2508 \leftline{2506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2509 \leftline{2507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2510 \leftline{2508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2511 \leftline{2509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2512 \leftline{2510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2513 \leftline{2511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2514 \leftline{2512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2515 \leftline{2513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2516 \leftline{2514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2517 \leftline{2515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2518 \leftline{2516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2519 \leftline{2517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2520 \leftline{2518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2521 \leftline{2519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2522 \leftline{2520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2523 \leftline{2521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2524 \leftline{2522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2525 \leftline{2523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2526 \leftline{2524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2527 \leftline{2525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2528 \leftline{2526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2529 \leftline{2527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2530 \leftline{2528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2531 \leftline{2529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2532 \leftline{2530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2533 \leftline{2531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2534 \leftline{2532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2535 \leftline{2533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2536 \leftline{2534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2537 \leftline{2535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2538 \leftline{2536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2539 \leftline{2537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2540 \leftline{2538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2541 \leftline{2539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2542 \leftline{2540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2543 \leftline{2541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2544 \leftline{2542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2545 \leftline{2543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2546 \leftline{2544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2547 \leftline{2545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2548 \leftline{2546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2549 \leftline{2547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2550 \leftline{2548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2551 \leftline{2549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2552 \leftline{2550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2553 \leftline{2551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2554 \leftline{2552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2555 \leftline{2553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2556 \leftline{2554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2557 \leftline{2555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2558 \leftline{2556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2559 \leftline{2557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2560 \leftline{2558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2561 \leftline{2559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2562 \leftline{2560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2563 \leftline{2561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2564 \leftline{2562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2565 \leftline{2563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2566 \leftline{2564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2567 \leftline{2565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2568 \leftline{2566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2569 \leftline{2567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2570 \leftline{2568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2571 \leftline{2569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2572 \leftline{2570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2573 \leftline{2571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2574 \leftline{2572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2575 \leftline{2573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2576 \leftline{2574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2577 \leftline{2575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2578 \leftline{2576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2579 \leftline{2577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2580 \leftline{2578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2581 \leftline{2579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2582 \leftline{2580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2583 \leftline{2581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2584 \leftline{2582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2585 \leftline{2583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2586 \leftline{2584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2587 \leftline{2585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2588 \leftline{2586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2589 \leftline{2587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2590 \leftline{2588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2591 \leftline{2589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2592 \leftline{2590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2593 \leftline{2591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2594 \leftline{2592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2595 \leftline{2593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2596 \leftline{2594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2597 \leftline{2595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2598 \leftline{2596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2599 \leftline{2597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2600 \leftline{2598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2601 \leftline{2599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2602 \leftline{2600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2603 \leftline{2601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2604 \leftline{2602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2605 \leftline{2603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2606 \leftline{2604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2607 \leftline{2605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2608 \leftline{2606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2609 \leftline{2607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2610 \leftline{2608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2611 \leftline{2609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2612 \leftline{2610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2613 \leftline{2611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2614 \leftline{2612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2615 \leftline{2613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2616 \leftline{2614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2617 \leftline{2615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2618 \leftline{2616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2619 \leftline{2617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2620 \leftline{2618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2621 \leftline{2619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2622 \leftline{2620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2623 \leftline{2621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2624 \leftline{2622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2625 \leftline{2623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2626 \leftline{2624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2627 \leftline{2625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2628 \leftline{2626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2629 \leftline{2627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2630 \leftline{2628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2631 \leftline{2629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2632 \leftline{2630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2633 \leftline{2631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2634 \leftline{2632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2635 \leftline{2633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2636 \leftline{2634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2637 \leftline{2635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2638 \leftline{2636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2639 \leftline{2637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2640 \leftline{2638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2641 \leftline{2639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2642 \leftline{2640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2643 \leftline{2641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2644 \leftline{2642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2645 \leftline{2643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2646 \leftline{2644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2647 \leftline{2645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2648 \leftline{2646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2649 \leftline{2647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2650 \leftline{2648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2651 \leftline{2649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2652 \leftline{2650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2653 \leftline{2651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2654 \leftline{2652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2655 \leftline{2653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2656 \leftline{2654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2657 \leftline{2655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2658 \leftline{2656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2659 \leftline{2657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2660 \leftline{2658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2661 \leftline{2659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2662 \leftline{2660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2663 \leftline{2661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2664 \leftline{2662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2665 \leftline{2663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2666 \leftline{2664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2667 \leftline{2665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2668 \leftline{2666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2669 \leftline{2667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2670 \leftline{2668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2671 \leftline{2669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2672 \leftline{2670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2673 \leftline{2671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2674 \leftline{2672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2675 \leftline{2673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2676 \leftline{2674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2677 \leftline{2675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2678 \leftline{2676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2679 \leftline{2677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2680 \leftline{2678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2681 \leftline{2679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2682 \leftline{2680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2683 \leftline{2681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2684 \leftline{2682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2685 \leftline{2683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2686 \leftline{2684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2687 \leftline{2685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2688 \leftline{2686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2689 \leftline{2687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2690 \leftline{2688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2691 \leftline{2689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2692 \leftline{2690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2693 \leftline{2691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2694 \leftline{2692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2695 \leftline{2693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2696 \leftline{2694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2697 \leftline{2695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2698 \leftline{2696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2699 \leftline{2697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2700 \leftline{2698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2701 \leftline{2699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2702 \leftline{2700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2703 \leftline{2701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2704 \leftline{2702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2705 \leftline{2703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2706 \leftline{2704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2707 \leftline{2705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2708 \leftline{2706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2709 \leftline{2707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2710 \leftline{2708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2711 \leftline{2709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2712 \leftline{2710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2713 \leftline{2711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2714 \leftline{2712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2715 \leftline{2713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2716 \leftline{2714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2717 \leftline{2715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2718 \leftline{2716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2719 \leftline{2717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2720 \leftline{2718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2721 \leftline{2719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2722 \leftline{2720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2723 \leftline{2721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2724 \leftline{2722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2725 \leftline{2723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2726 \leftline{2724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2727 \leftline{2725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2728 \leftline{2726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2729 \leftline{2727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2730 \leftline{2728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2731 \leftline{2729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2732 \leftline{2730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2733 \leftline{2731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2734 \leftline{2732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2735 \leftline{2733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2736 \leftline{2734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2737 \leftline{2735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2738 \leftline{2736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2739 \leftline{2737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2740 \leftline{2738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2741 \leftline{2739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2742 \leftline{2740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2743 \leftline{2741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2744 \leftline{2742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2745 \leftline{2743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2746 \leftline{2744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2747 \leftline{2745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2748 \leftline{2746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2749 \leftline{2747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2750 \leftline{2748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2751 \leftline{2749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2752 \leftline{2750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2753 \leftline{2751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2754 \leftline{2752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2755 \leftline{2753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2756 \leftline{2754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2757 \leftline{2755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2758 \leftline{2756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2759 \leftline{2757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2760 \leftline{2758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2761 \leftline{2759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2762 \leftline{2760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2763 \leftline{2761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2764 \leftline{2762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2765 \leftline{2763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2766 \leftline{2764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2767 \leftline{2765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2768 \leftline{2766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2769 \leftline{2767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2770 \leftline{2768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2771 \leftline{2769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2772 \leftline{2770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2773 \leftline{2771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2774 \leftline{2772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2775 \leftline{2773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2776 \leftline{2774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2777 \leftline{2775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2778 \leftline{2776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2779 \leftline{2777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2780 \leftline{2778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2781 \leftline{2779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2782 \leftline{2780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2783 \leftline{2781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2784 \leftline{2782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2785 \leftline{2783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2786 \leftline{2784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2787 \leftline{2785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2788 \leftline{2786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2789 \leftline{2787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2790 \leftline{2788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2791 \leftline{2789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2792 \leftline{2790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2793 \leftline{2791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2794 \leftline{2792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2795 \leftline{2793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2796 \leftline{2794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2797 \leftline{2795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2798 \leftline{2796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2799 \leftline{2797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2800 \leftline{2798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2801 \leftline{2799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2802 \leftline{2800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2803 \leftline{2801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2804 \leftline{2802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2805 \leftline{2803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2806 \leftline{2804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2807 \leftline{2805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2808 \leftline{2806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2809 \leftline{2807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2810 \leftline{2808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2811 \leftline{2809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2812 \leftline{2810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2813 \leftline{2811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2814 \leftline{2812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2815 \leftline{2813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2816 \leftline{2814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2817 \leftline{2815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2818 \leftline{2816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2819 \leftline{2817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2820 \leftline{2818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2821 \leftline{2819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2822 \leftline{2820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2823 \leftline{2821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2824 \leftline{2822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2825 \leftline{2823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2826 \leftline{2824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2827 \leftline{2825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2828 \leftline{2826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2829 \leftline{2827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2830 \leftline{2828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2831 \leftline{2829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2832 \leftline{2830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2833 \leftline{2831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2834 \leftline{2832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2835 \leftline{2833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2836 \leftline{2834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2837 \leftline{2835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2838 \leftline{2836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2839 \leftline{2837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2840 \leftline{2838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2841 \leftline{2839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2842 \leftline{2840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2843 \leftline{2841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2844 \leftline{2842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2845 \leftline{2843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2846 \leftline{2844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2847 \leftline{2845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2848 \leftline{2846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2849 \leftline{2847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2850 \leftline{2848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2851 \leftline{2849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2852 \leftline{2850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2853 \leftline{2851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2854 \leftline{2852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2855 \leftline{2853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2856 \leftline{2854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2857 \leftline{2855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2858 \leftline{2856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2859 \leftline{2857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2860 \leftline{2858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2861 \leftline{2859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2862 \leftline{2860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2863 \leftline{2861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2864 \leftline{2862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2865 \leftline{2863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2866 \leftline{2864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2867 \leftline{2865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2868 \leftline{2866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2869 \leftline{2867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2870 \leftline{2868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2871 \leftline{2869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2872 \leftline{2870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2873 \leftline{2871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2874 \leftline{2872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2875 \leftline{2873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2876 \leftline{2874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2877 \leftline{2875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2878 \leftline{2876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2879 \leftline{2877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2880 \leftline{2878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2881 \leftline{2879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2882 \leftline{2880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2883 \leftline{2881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2884 \leftline{2882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2885 \leftline{2883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2886 \leftline{2884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2887 \leftline{2885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2888 \leftline{2886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2889 \leftline{2887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2890 \leftline{2888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2891 \leftline{2889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2892 \leftline{2890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2893 \leftline{2891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2894 \leftline{2892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2895 \leftline{2893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2896 \leftline{2894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2897 \leftline{2895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2898 \leftline{2896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2899 \leftline{2897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2900 \leftline{2898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2901 \leftline{2899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2902 \leftline{2900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2903 \leftline{2901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2904 \leftline{2902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2905 \leftline{2903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2906 \leftline{2904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2907 \leftline{2905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2908 \leftline{2906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2909 \leftline{2907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2910 \leftline{2908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2911 \leftline{2909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2912 \leftline{2910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2913 \leftline{2911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2914 \leftline{2912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2915 \leftline{2913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2916 \leftline{2914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2917 \leftline{2915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2918 \leftline{2916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2919 \leftline{2917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2920 \leftline{2918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2921 \leftline{2919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2922 \leftline{2920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2923 \leftline{2921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2924 \leftline{2922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2925 \leftline{2923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2926 \leftline{2924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2927 \leftline{2925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2928 \leftline{2926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2929 \leftline{2927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2930 \leftline{2928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2931 \leftline{2929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2932 \leftline{2930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2933 \leftline{2931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2934 \leftline{2932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2935 \leftline{2933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2936 \leftline{2934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2937 \leftline{2935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2938 \leftline{2936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2939 \leftline{2937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2940 \leftline{2938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2941 \leftline{2939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2942 \leftline{2940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2943 \leftline{2941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2944 \leftline{2942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2945 \leftline{2943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2946 \leftline{2944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2947 \leftline{2945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2948 \leftline{2946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2949 \leftline{2947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2950 \leftline{2948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2951 \leftline{2949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2952 \leftline{2950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2953 \leftline{2951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2954 \leftline{2952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2955 \leftline{2953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2956 \leftline{2954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2957 \leftline{2955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2958 \leftline{2956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2959 \leftline{2957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2960 \leftline{2958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2961 \leftline{2959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2962 \leftline{2960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2963 \leftline{2961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2964 \leftline{2962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2965 \leftline{2963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2966 \leftline{2964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2967 \leftline{2965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2968 \leftline{2966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2969 \leftline{2967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2970 \leftline{2968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2971 \leftline{2969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2972 \leftline{2970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2973 \leftline{2971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2974 \leftline{2972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2975 \leftline{2973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2976 \leftline{2974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2977 \leftline{2975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2978 \leftline{2976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2979 \leftline{2977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2980 \leftline{2978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2981 \leftline{2979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2982 \leftline{2980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2983 \leftline{2981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2984 \leftline{2982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2985 \leftline{2983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2986 \leftline{2984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2987 \leftline{2985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2988 \leftline{2986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2989 \leftline{2987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2990 \leftline{2988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2991 \leftline{2989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2992 \leftline{2990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2993 \leftline{2991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2994 \leftline{2992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2995 \leftline{2993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2996 \leftline{2994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2997 \leftline{2995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 2998 \leftline{2996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 2999 \leftline{2997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3000 \leftline{2998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3001 \leftline{2999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3002 \leftline{3000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3003 \leftline{3001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3004 \leftline{3002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3005 \leftline{3003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3006 \leftline{3004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3007 \leftline{3005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3008 \leftline{3006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3009 \leftline{3007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3010 \leftline{3008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3011 \leftline{3009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3012 \leftline{3010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3013 \leftline{3011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3014 \leftline{3012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3015 \leftline{3013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3016 \leftline{3014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3017 \leftline{3015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3018 \leftline{3016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3019 \leftline{3017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3020 \leftline{3018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3021 \leftline{3019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3022 \leftline{3020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3023 \leftline{3021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3024 \leftline{3022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3025 \leftline{3023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3026 \leftline{3024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3027 \leftline{3025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3028 \leftline{3026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3029 \leftline{3027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3030 \leftline{3028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3031 \leftline{3029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3032 \leftline{3030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3033 \leftline{3031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3034 \leftline{3032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3035 \leftline{3033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3036 \leftline{3034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3037 \leftline{3035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3038 \leftline{3036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3039 \leftline{3037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3040 \leftline{3038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3041 \leftline{3039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3042 \leftline{3040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3043 \leftline{3041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3044 \leftline{3042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3045 \leftline{3043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3046 \leftline{3044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3047 \leftline{3045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3048 \leftline{3046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3049 \leftline{3047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3050 \leftline{3048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3051 \leftline{3049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3052 \leftline{3050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3053 \leftline{3051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3054 \leftline{3052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3055 \leftline{3053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3056 \leftline{3054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3057 \leftline{3055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3058 \leftline{3056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3059 \leftline{3057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3060 \leftline{3058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3061 \leftline{3059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3062 \leftline{3060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3063 \leftline{3061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3064 \leftline{3062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3065 \leftline{3063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3066 \leftline{3064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3067 \leftline{3065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3068 \leftline{3066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3069 \leftline{3067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3070 \leftline{3068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3071 \leftline{3069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3072 \leftline{3070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3073 \leftline{3071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3074 \leftline{3072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3075 \leftline{3073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3076 \leftline{3074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3077 \leftline{3075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3078 \leftline{3076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3079 \leftline{3077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3080 \leftline{3078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3081 \leftline{3079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3082 \leftline{3080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3083 \leftline{3081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3084 \leftline{3082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3085 \leftline{3083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3086 \leftline{3084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3087 \leftline{3085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3088 \leftline{3086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3089 \leftline{3087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3090 \leftline{3088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3091 \leftline{3089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3092 \leftline{3090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3093 \leftline{3091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3094 \leftline{3092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3095 \leftline{3093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3096 \leftline{3094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3097 \leftline{3095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3098 \leftline{3096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3099 \leftline{3097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3100 \leftline{3098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3101 \leftline{3099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3102 \leftline{3100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3103 \leftline{3101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3104 \leftline{3102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3105 \leftline{3103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3106 \leftline{3104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3107 \leftline{3105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3108 \leftline{3106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3109 \leftline{3107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3110 \leftline{3108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3111 \leftline{3109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3112 \leftline{3110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3113 \leftline{3111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3114 \leftline{3112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3115 \leftline{3113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3116 \leftline{3114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3117 \leftline{3115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3118 \leftline{3116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3119 \leftline{3117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3120 \leftline{3118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3121 \leftline{3119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3122 \leftline{3120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3123 \leftline{3121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3124 \leftline{3122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3125 \leftline{3123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3126 \leftline{3124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3127 \leftline{3125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3128 \leftline{3126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3129 \leftline{3127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3130 \leftline{3128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3131 \leftline{3129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3132 \leftline{3130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3133 \leftline{3131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3134 \leftline{3132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3135 \leftline{3133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3136 \leftline{3134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3137 \leftline{3135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3138 \leftline{3136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3139 \leftline{3137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3140 \leftline{3138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3141 \leftline{3139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3142 \leftline{3140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3143 \leftline{3141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3144 \leftline{3142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3145 \leftline{3143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3146 \leftline{3144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3147 \leftline{3145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3148 \leftline{3146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3149 \leftline{3147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3150 \leftline{3148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3151 \leftline{3149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3152 \leftline{3150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3153 \leftline{3151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3154 \leftline{3152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3155 \leftline{3153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3156 \leftline{3154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3157 \leftline{3155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3158 \leftline{3156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3159 \leftline{3157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3160 \leftline{3158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3161 \leftline{3159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3162 \leftline{3160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3163 \leftline{3161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3164 \leftline{3162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3165 \leftline{3163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3166 \leftline{3164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3167 \leftline{3165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3168 \leftline{3166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3169 \leftline{3167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3170 \leftline{3168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3171 \leftline{3169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3172 \leftline{3170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3173 \leftline{3171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3174 \leftline{3172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3175 \leftline{3173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3176 \leftline{3174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3177 \leftline{3175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3178 \leftline{3176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3179 \leftline{3177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3180 \leftline{3178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3181 \leftline{3179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3182 \leftline{3180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3183 \leftline{3181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3184 \leftline{3182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3185 \leftline{3183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3186 \leftline{3184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3187 \leftline{3185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3188 \leftline{3186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3189 \leftline{3187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3190 \leftline{3188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3191 \leftline{3189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3192 \leftline{3190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3193 \leftline{3191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3194 \leftline{3192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3195 \leftline{3193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3196 \leftline{3194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3197 \leftline{3195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3198 \leftline{3196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3199 \leftline{3197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3200 \leftline{3198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3201 \leftline{3199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3202 \leftline{3200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3203 \leftline{3201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3204 \leftline{3202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3205 \leftline{3203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3206 \leftline{3204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3207 \leftline{3205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3208 \leftline{3206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3209 \leftline{3207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3210 \leftline{3208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3211 \leftline{3209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3212 \leftline{3210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3213 \leftline{3211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3214 \leftline{3212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3215 \leftline{3213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3216 \leftline{3214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3217 \leftline{3215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3218 \leftline{3216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3219 \leftline{3217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3220 \leftline{3218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3221 \leftline{3219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3222 \leftline{3220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3223 \leftline{3221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3224 \leftline{3222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3225 \leftline{3223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3226 \leftline{3224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3227 \leftline{3225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3228 \leftline{3226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3229 \leftline{3227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3230 \leftline{3228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3231 \leftline{3229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3232 \leftline{3230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3233 \leftline{3231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3234 \leftline{3232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3235 \leftline{3233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3236 \leftline{3234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3237 \leftline{3235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3238 \leftline{3236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3239 \leftline{3237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3240 \leftline{3238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3241 \leftline{3239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3242 \leftline{3240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3243 \leftline{3241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3244 \leftline{3242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3245 \leftline{3243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3246 \leftline{3244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3247 \leftline{3245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3248 \leftline{3246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3249 \leftline{3247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3250 \leftline{3248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3251 \leftline{3249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3252 \leftline{3250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3253 \leftline{3251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3254 \leftline{3252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3255 \leftline{3253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3256 \leftline{3254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3257 \leftline{3255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3258 \leftline{3256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3259 \leftline{3257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3260 \leftline{3258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3261 \leftline{3259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3262 \leftline{3260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3263 \leftline{3261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3264 \leftline{3262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3265 \leftline{3263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3266 \leftline{3264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3267 \leftline{3265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3268 \leftline{3266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3269 \leftline{3267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3270 \leftline{3268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3271 \leftline{3269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3272 \leftline{3270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3273 \leftline{3271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3274 \leftline{3272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3275 \leftline{3273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3276 \leftline{3274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3277 \leftline{3275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3278 \leftline{3276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3279 \leftline{3277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3280 \leftline{3278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3281 \leftline{3279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3282 \leftline{3280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3283 \leftline{3281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3284 \leftline{3282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3285 \leftline{3283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3286 \leftline{3284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3287 \leftline{3285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3288 \leftline{3286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3289 \leftline{3287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3290 \leftline{3288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3291 \leftline{3289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3292 \leftline{3290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3293 \leftline{3291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3294 \leftline{3292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3295 \leftline{3293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3296 \leftline{3294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3297 \leftline{3295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3298 \leftline{3296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3299 \leftline{3297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3300 \leftline{3298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3301 \leftline{3299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3302 \leftline{3300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3303 \leftline{3301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3304 \leftline{3302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3305 \leftline{3303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3306 \leftline{3304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3307 \leftline{3305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3308 \leftline{3306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3309 \leftline{3307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3310 \leftline{3308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3311 \leftline{3309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3312 \leftline{3310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3313 \leftline{3311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3314 \leftline{3312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3315 \leftline{3313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3316 \leftline{3314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3317 \leftline{3315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3318 \leftline{3316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3319 \leftline{3317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3320 \leftline{3318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3321 \leftline{3319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3322 \leftline{3320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3323 \leftline{3321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3324 \leftline{3322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3325 \leftline{3323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3326 \leftline{3324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3327 \leftline{3325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3328 \leftline{3326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3329 \leftline{3327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3330 \leftline{3328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3331 \leftline{3329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3332 \leftline{3330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3333 \leftline{3331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3334 \leftline{3332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3335 \leftline{3333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3336 \leftline{3334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3337 \leftline{3335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3338 \leftline{3336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3339 \leftline{3337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3340 \leftline{3338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3341 \leftline{3339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3342 \leftline{3340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3343 \leftline{3341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3344 \leftline{3342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3345 \leftline{3343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3346 \leftline{3344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3347 \leftline{3345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3348 \leftline{3346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3349 \leftline{3347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3350 \leftline{3348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3351 \leftline{3349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3352 \leftline{3350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3353 \leftline{3351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3354 \leftline{3352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3355 \leftline{3353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3356 \leftline{3354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3357 \leftline{3355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3358 \leftline{3356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3359 \leftline{3357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3360 \leftline{3358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3361 \leftline{3359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3362 \leftline{3360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3363 \leftline{3361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3364 \leftline{3362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3365 \leftline{3363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3366 \leftline{3364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3367 \leftline{3365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3368 \leftline{3366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3369 \leftline{3367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3370 \leftline{3368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3371 \leftline{3369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3372 \leftline{3370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3373 \leftline{3371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3374 \leftline{3372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3375 \leftline{3373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3376 \leftline{3374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3377 \leftline{3375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3378 \leftline{3376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3379 \leftline{3377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3380 \leftline{3378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3381 \leftline{3379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3382 \leftline{3380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3383 \leftline{3381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3384 \leftline{3382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3385 \leftline{3383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3386 \leftline{3384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3387 \leftline{3385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3388 \leftline{3386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3389 \leftline{3387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3390 \leftline{3388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3391 \leftline{3389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3392 \leftline{3390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3393 \leftline{3391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3394 \leftline{3392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3395 \leftline{3393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3396 \leftline{3394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3397 \leftline{3395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3398 \leftline{3396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3399 \leftline{3397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3400 \leftline{3398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3401 \leftline{3399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3402 \leftline{3400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3403 \leftline{3401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3404 \leftline{3402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3405 \leftline{3403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3406 \leftline{3404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3407 \leftline{3405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3408 \leftline{3406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3409 \leftline{3407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3410 \leftline{3408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3411 \leftline{3409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3412 \leftline{3410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3413 \leftline{3411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3414 \leftline{3412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3415 \leftline{3413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3416 \leftline{3414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3417 \leftline{3415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3418 \leftline{3416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3419 \leftline{3417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3420 \leftline{3418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3421 \leftline{3419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3422 \leftline{3420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3423 \leftline{3421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3424 \leftline{3422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3425 \leftline{3423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3426 \leftline{3424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3427 \leftline{3425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3428 \leftline{3426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3429 \leftline{3427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3430 \leftline{3428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3431 \leftline{3429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3432 \leftline{3430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3433 \leftline{3431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3434 \leftline{3432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3435 \leftline{3433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3436 \leftline{3434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3437 \leftline{3435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3438 \leftline{3436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3439 \leftline{3437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3440 \leftline{3438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3441 \leftline{3439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3442 \leftline{3440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3443 \leftline{3441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3444 \leftline{3442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3445 \leftline{3443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3446 \leftline{3444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3447 \leftline{3445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3448 \leftline{3446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3449 \leftline{3447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3450 \leftline{3448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3451 \leftline{3449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3452 \leftline{3450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3453 \leftline{3451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3454 \leftline{3452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3455 \leftline{3453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3456 \leftline{3454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3457 \leftline{3455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3458 \leftline{3456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3459 \leftline{3457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3460 \leftline{3458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3461 \leftline{3459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3462 \leftline{3460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3463 \leftline{3461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3464 \leftline{3462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3465 \leftline{3463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3466 \leftline{3464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3467 \leftline{3465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3468 \leftline{3466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3469 \leftline{3467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3470 \leftline{3468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3471 \leftline{3469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3472 \leftline{3470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3473 \leftline{3471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3474 \leftline{3472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3475 \leftline{3473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3476 \leftline{3474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3477 \leftline{3475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3478 \leftline{3476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3479 \leftline{3477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3480 \leftline{3478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3481 \leftline{3479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3482 \leftline{3480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3483 \leftline{3481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3484 \leftline{3482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3485 \leftline{3483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3486 \leftline{3484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3487 \leftline{3485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3488 \leftline{3486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3489 \leftline{3487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3490 \leftline{3488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3491 \leftline{3489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3492 \leftline{3490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3493 \leftline{3491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3494 \leftline{3492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3495 \leftline{3493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3496 \leftline{3494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3497 \leftline{3495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3498 \leftline{3496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3499 \leftline{3497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3500 \leftline{3498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3501 \leftline{3499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3502 \leftline{3500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3503 \leftline{3501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3504 \leftline{3502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3505 \leftline{3503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3506 \leftline{3504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3507 \leftline{3505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3508 \leftline{3506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3509 \leftline{3507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3510 \leftline{3508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3511 \leftline{3509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3512 \leftline{3510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3513 \leftline{3511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3514 \leftline{3512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3515 \leftline{3513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3516 \leftline{3514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3517 \leftline{3515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3518 \leftline{3516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3519 \leftline{3517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3520 \leftline{3518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3521 \leftline{3519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3522 \leftline{3520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3523 \leftline{3521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3524 \leftline{3522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3525 \leftline{3523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3526 \leftline{3524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3527 \leftline{3525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3528 \leftline{3526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3529 \leftline{3527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3530 \leftline{3528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3531 \leftline{3529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3532 \leftline{3530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3533 \leftline{3531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3534 \leftline{3532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3535 \leftline{3533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3536 \leftline{3534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3537 \leftline{3535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3538 \leftline{3536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3539 \leftline{3537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3540 \leftline{3538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3541 \leftline{3539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3542 \leftline{3540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3543 \leftline{3541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3544 \leftline{3542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3545 \leftline{3543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3546 \leftline{3544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3547 \leftline{3545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3548 \leftline{3546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3549 \leftline{3547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3550 \leftline{3548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3551 \leftline{3549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3552 \leftline{3550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3553 \leftline{3551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3554 \leftline{3552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3555 \leftline{3553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3556 \leftline{3554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3557 \leftline{3555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3558 \leftline{3556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3559 \leftline{3557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3560 \leftline{3558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3561 \leftline{3559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3562 \leftline{3560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3563 \leftline{3561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3564 \leftline{3562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3565 \leftline{3563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3566 \leftline{3564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3567 \leftline{3565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3568 \leftline{3566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3569 \leftline{3567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3570 \leftline{3568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3571 \leftline{3569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3572 \leftline{3570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3573 \leftline{3571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3574 \leftline{3572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3575 \leftline{3573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3576 \leftline{3574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3577 \leftline{3575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3578 \leftline{3576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3579 \leftline{3577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3580 \leftline{3578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3581 \leftline{3579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3582 \leftline{3580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3583 \leftline{3581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3584 \leftline{3582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3585 \leftline{3583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3586 \leftline{3584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3587 \leftline{3585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3588 \leftline{3586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3589 \leftline{3587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3590 \leftline{3588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3591 \leftline{3589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3592 \leftline{3590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3593 \leftline{3591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3594 \leftline{3592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3595 \leftline{3593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3596 \leftline{3594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3597 \leftline{3595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3598 \leftline{3596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3599 \leftline{3597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3600 \leftline{3598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3601 \leftline{3599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3602 \leftline{3600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3603 \leftline{3601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3604 \leftline{3602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3605 \leftline{3603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3606 \leftline{3604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3607 \leftline{3605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3608 \leftline{3606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3609 \leftline{3607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3610 \leftline{3608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3611 \leftline{3609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3612 \leftline{3610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3613 \leftline{3611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3614 \leftline{3612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3615 \leftline{3613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3616 \leftline{3614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3617 \leftline{3615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3618 \leftline{3616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3619 \leftline{3617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3620 \leftline{3618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3621 \leftline{3619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3622 \leftline{3620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3623 \leftline{3621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3624 \leftline{3622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3625 \leftline{3623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3626 \leftline{3624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3627 \leftline{3625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3628 \leftline{3626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3629 \leftline{3627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3630 \leftline{3628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3631 \leftline{3629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3632 \leftline{3630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3633 \leftline{3631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3634 \leftline{3632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3635 \leftline{3633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3636 \leftline{3634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3637 \leftline{3635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3638 \leftline{3636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3639 \leftline{3637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3640 \leftline{3638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3641 \leftline{3639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3642 \leftline{3640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3643 \leftline{3641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3644 \leftline{3642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3645 \leftline{3643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3646 \leftline{3644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3647 \leftline{3645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3648 \leftline{3646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3649 \leftline{3647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3650 \leftline{3648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3651 \leftline{3649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3652 \leftline{3650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3653 \leftline{3651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3654 \leftline{3652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3655 \leftline{3653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3656 \leftline{3654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3657 \leftline{3655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3658 \leftline{3656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3659 \leftline{3657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3660 \leftline{3658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3661 \leftline{3659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3662 \leftline{3660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3663 \leftline{3661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3664 \leftline{3662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3665 \leftline{3663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3666 \leftline{3664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3667 \leftline{3665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3668 \leftline{3666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3669 \leftline{3667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3670 \leftline{3668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3671 \leftline{3669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3672 \leftline{3670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3673 \leftline{3671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3674 \leftline{3672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3675 \leftline{3673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3676 \leftline{3674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3677 \leftline{3675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3678 \leftline{3676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3679 \leftline{3677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3680 \leftline{3678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3681 \leftline{3679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3682 \leftline{3680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3683 \leftline{3681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3684 \leftline{3682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3685 \leftline{3683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3686 \leftline{3684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3687 \leftline{3685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3688 \leftline{3686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3689 \leftline{3687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3690 \leftline{3688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3691 \leftline{3689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3692 \leftline{3690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3693 \leftline{3691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3694 \leftline{3692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3695 \leftline{3693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3696 \leftline{3694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3697 \leftline{3695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3698 \leftline{3696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3699 \leftline{3697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3700 \leftline{3698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3701 \leftline{3699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3702 \leftline{3700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3703 \leftline{3701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3704 \leftline{3702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3705 \leftline{3703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3706 \leftline{3704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3707 \leftline{3705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3708 \leftline{3706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3709 \leftline{3707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3710 \leftline{3708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3711 \leftline{3709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3712 \leftline{3710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3713 \leftline{3711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3714 \leftline{3712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3715 \leftline{3713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3716 \leftline{3714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3717 \leftline{3715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3718 \leftline{3716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3719 \leftline{3717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3720 \leftline{3718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3721 \leftline{3719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3722 \leftline{3720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3723 \leftline{3721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3724 \leftline{3722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3725 \leftline{3723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3726 \leftline{3724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3727 \leftline{3725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3728 \leftline{3726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3729 \leftline{3727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3730 \leftline{3728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3731 \leftline{3729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3732 \leftline{3730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3733 \leftline{3731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3734 \leftline{3732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3735 \leftline{3733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3736 \leftline{3734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3737 \leftline{3735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3738 \leftline{3736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3739 \leftline{3737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3740 \leftline{3738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3741 \leftline{3739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3742 \leftline{3740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3743 \leftline{3741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3744 \leftline{3742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3745 \leftline{3743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3746 \leftline{3744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3747 \leftline{3745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3748 \leftline{3746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3749 \leftline{3747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3750 \leftline{3748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3751 \leftline{3749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3752 \leftline{3750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3753 \leftline{3751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3754 \leftline{3752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3755 \leftline{3753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3756 \leftline{3754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3757 \leftline{3755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3758 \leftline{3756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3759 \leftline{3757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3760 \leftline{3758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3761 \leftline{3759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3762 \leftline{3760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3763 \leftline{3761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3764 \leftline{3762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3765 \leftline{3763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3766 \leftline{3764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3767 \leftline{3765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3768 \leftline{3766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3769 \leftline{3767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3770 \leftline{3768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3771 \leftline{3769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3772 \leftline{3770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3773 \leftline{3771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3774 \leftline{3772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3775 \leftline{3773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3776 \leftline{3774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3777 \leftline{3775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3778 \leftline{3776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3779 \leftline{3777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3780 \leftline{3778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3781 \leftline{3779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3782 \leftline{3780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3783 \leftline{3781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3784 \leftline{3782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3785 \leftline{3783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3786 \leftline{3784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3787 \leftline{3785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3788 \leftline{3786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3789 \leftline{3787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3790 \leftline{3788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3791 \leftline{3789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3792 \leftline{3790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3793 \leftline{3791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3794 \leftline{3792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3795 \leftline{3793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3796 \leftline{3794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3797 \leftline{3795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3798 \leftline{3796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3799 \leftline{3797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3800 \leftline{3798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3801 \leftline{3799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3802 \leftline{3800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3803 \leftline{3801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3804 \leftline{3802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3805 \leftline{3803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3806 \leftline{3804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3807 \leftline{3805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3808 \leftline{3806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3809 \leftline{3807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3810 \leftline{3808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3811 \leftline{3809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3812 \leftline{3810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3813 \leftline{3811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3814 \leftline{3812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3815 \leftline{3813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3816 \leftline{3814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3817 \leftline{3815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3818 \leftline{3816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3819 \leftline{3817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3820 \leftline{3818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3821 \leftline{3819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3822 \leftline{3820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3823 \leftline{3821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3824 \leftline{3822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3825 \leftline{3823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3826 \leftline{3824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3827 \leftline{3825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3828 \leftline{3826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3829 \leftline{3827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3830 \leftline{3828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3831 \leftline{3829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3832 \leftline{3830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3833 \leftline{3831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3834 \leftline{3832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3835 \leftline{3833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3836 \leftline{3834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3837 \leftline{3835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3838 \leftline{3836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3839 \leftline{3837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3840 \leftline{3838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3841 \leftline{3839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3842 \leftline{3840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3843 \leftline{3841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3844 \leftline{3842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3845 \leftline{3843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3846 \leftline{3844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3847 \leftline{3845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3848 \leftline{3846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3849 \leftline{3847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3850 \leftline{3848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3851 \leftline{3849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3852 \leftline{3850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3853 \leftline{3851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3854 \leftline{3852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3855 \leftline{3853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3856 \leftline{3854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3857 \leftline{3855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3858 \leftline{3856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3859 \leftline{3857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3860 \leftline{3858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3861 \leftline{3859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3862 \leftline{3860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3863 \leftline{3861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3864 \leftline{3862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3865 \leftline{3863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3866 \leftline{3864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3867 \leftline{3865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3868 \leftline{3866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3869 \leftline{3867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3870 \leftline{3868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3871 \leftline{3869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3872 \leftline{3870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3873 \leftline{3871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3874 \leftline{3872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3875 \leftline{3873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3876 \leftline{3874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3877 \leftline{3875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3878 \leftline{3876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3879 \leftline{3877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3880 \leftline{3878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3881 \leftline{3879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3882 \leftline{3880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3883 \leftline{3881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3884 \leftline{3882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3885 \leftline{3883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3886 \leftline{3884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3887 \leftline{3885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3888 \leftline{3886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3889 \leftline{3887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3890 \leftline{3888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3891 \leftline{3889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3892 \leftline{3890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3893 \leftline{3891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3894 \leftline{3892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3895 \leftline{3893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3896 \leftline{3894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3897 \leftline{3895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3898 \leftline{3896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3899 \leftline{3897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3900 \leftline{3898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3901 \leftline{3899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3902 \leftline{3900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3903 \leftline{3901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3904 \leftline{3902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3905 \leftline{3903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3906 \leftline{3904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3907 \leftline{3905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3908 \leftline{3906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3909 \leftline{3907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3910 \leftline{3908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3911 \leftline{3909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3912 \leftline{3910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3913 \leftline{3911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3914 \leftline{3912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3915 \leftline{3913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3916 \leftline{3914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3917 \leftline{3915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3918 \leftline{3916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3919 \leftline{3917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3920 \leftline{3918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3921 \leftline{3919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3922 \leftline{3920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3923 \leftline{3921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3924 \leftline{3922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3925 \leftline{3923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3926 \leftline{3924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3927 \leftline{3925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3928 \leftline{3926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3929 \leftline{3927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3930 \leftline{3928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3931 \leftline{3929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3932 \leftline{3930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3933 \leftline{3931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3934 \leftline{3932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3935 \leftline{3933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3936 \leftline{3934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3937 \leftline{3935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3938 \leftline{3936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3939 \leftline{3937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3940 \leftline{3938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3941 \leftline{3939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3942 \leftline{3940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3943 \leftline{3941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3944 \leftline{3942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3945 \leftline{3943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3946 \leftline{3944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3947 \leftline{3945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3948 \leftline{3946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3949 \leftline{3947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3950 \leftline{3948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3951 \leftline{3949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3952 \leftline{3950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3953 \leftline{3951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3954 \leftline{3952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3955 \leftline{3953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3956 \leftline{3954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3957 \leftline{3955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3958 \leftline{3956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3959 \leftline{3957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3960 \leftline{3958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3961 \leftline{3959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3962 \leftline{3960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3963 \leftline{3961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3964 \leftline{3962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3965 \leftline{3963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3966 \leftline{3964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3967 \leftline{3965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3968 \leftline{3966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3969 \leftline{3967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3970 \leftline{3968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3971 \leftline{3969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3972 \leftline{3970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3973 \leftline{3971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3974 \leftline{3972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3975 \leftline{3973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3976 \leftline{3974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3977 \leftline{3975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3978 \leftline{3976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3979 \leftline{3977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3980 \leftline{3978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3981 \leftline{3979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3982 \leftline{3980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3983 \leftline{3981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3984 \leftline{3982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3985 \leftline{3983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3986 \leftline{3984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3987 \leftline{3985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3988 \leftline{3986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3989 \leftline{3987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3990 \leftline{3988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3991 \leftline{3989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3992 \leftline{3990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3993 \leftline{3991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3994 \leftline{3992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3995 \leftline{3993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3996 \leftline{3994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3997 \leftline{3995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 3998 \leftline{3996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 3999 \leftline{3997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4000 \leftline{3998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4001 \leftline{3999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4002 \leftline{4000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4003 \leftline{4001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4004 \leftline{4002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4005 \leftline{4003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4006 \leftline{4004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4007 \leftline{4005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4008 \leftline{4006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4009 \leftline{4007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4010 \leftline{4008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4011 \leftline{4009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4012 \leftline{4010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4013 \leftline{4011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4014 \leftline{4012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4015 \leftline{4013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4016 \leftline{4014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4017 \leftline{4015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4018 \leftline{4016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4019 \leftline{4017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4020 \leftline{4018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4021 \leftline{4019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4022 \leftline{4020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4023 \leftline{4021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4024 \leftline{4022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4025 \leftline{4023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4026 \leftline{4024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4027 \leftline{4025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4028 \leftline{4026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4029 \leftline{4027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4030 \leftline{4028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4031 \leftline{4029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4032 \leftline{4030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4033 \leftline{4031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4034 \leftline{4032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4035 \leftline{4033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4036 \leftline{4034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4037 \leftline{4035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4038 \leftline{4036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4039 \leftline{4037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4040 \leftline{4038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4041 \leftline{4039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4042 \leftline{4040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4043 \leftline{4041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4044 \leftline{4042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4045 \leftline{4043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4046 \leftline{4044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4047 \leftline{4045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4048 \leftline{4046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4049 \leftline{4047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4050 \leftline{4048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4051 \leftline{4049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4052 \leftline{4050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4053 \leftline{4051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4054 \leftline{4052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4055 \leftline{4053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4056 \leftline{4054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4057 \leftline{4055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4058 \leftline{4056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4059 \leftline{4057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4060 \leftline{4058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4061 \leftline{4059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4062 \leftline{4060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4063 \leftline{4061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4064 \leftline{4062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4065 \leftline{4063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4066 \leftline{4064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4067 \leftline{4065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4068 \leftline{4066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4069 \leftline{4067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4070 \leftline{4068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4071 \leftline{4069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4072 \leftline{4070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4073 \leftline{4071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4074 \leftline{4072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4075 \leftline{4073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4076 \leftline{4074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4077 \leftline{4075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4078 \leftline{4076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4079 \leftline{4077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4080 \leftline{4078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4081 \leftline{4079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4082 \leftline{4080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4083 \leftline{4081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4084 \leftline{4082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4085 \leftline{4083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4086 \leftline{4084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4087 \leftline{4085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4088 \leftline{4086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4089 \leftline{4087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4090 \leftline{4088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4091 \leftline{4089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4092 \leftline{4090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4093 \leftline{4091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4094 \leftline{4092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4095 \leftline{4093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4096 \leftline{4094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4097 \leftline{4095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4098 \leftline{4096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4099 \leftline{4097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4100 \leftline{4098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4101 \leftline{4099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4102 \leftline{4100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4103 \leftline{4101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4104 \leftline{4102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4105 \leftline{4103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4106 \leftline{4104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4107 \leftline{4105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4108 \leftline{4106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4109 \leftline{4107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4110 \leftline{4108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4111 \leftline{4109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4112 \leftline{4110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4113 \leftline{4111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4114 \leftline{4112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4115 \leftline{4113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4116 \leftline{4114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4117 \leftline{4115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4118 \leftline{4116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4119 \leftline{4117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4120 \leftline{4118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4121 \leftline{4119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4122 \leftline{4120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4123 \leftline{4121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4124 \leftline{4122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4125 \leftline{4123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4126 \leftline{4124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4127 \leftline{4125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4128 \leftline{4126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4129 \leftline{4127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4130 \leftline{4128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4131 \leftline{4129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4132 \leftline{4130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4133 \leftline{4131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4134 \leftline{4132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4135 \leftline{4133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4136 \leftline{4134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4137 \leftline{4135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4138 \leftline{4136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4139 \leftline{4137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4140 \leftline{4138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4141 \leftline{4139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4142 \leftline{4140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4143 \leftline{4141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4144 \leftline{4142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4145 \leftline{4143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4146 \leftline{4144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4147 \leftline{4145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4148 \leftline{4146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4149 \leftline{4147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4150 \leftline{4148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4151 \leftline{4149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4152 \leftline{4150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4153 \leftline{4151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4154 \leftline{4152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4155 \leftline{4153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4156 \leftline{4154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4157 \leftline{4155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4158 \leftline{4156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4159 \leftline{4157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4160 \leftline{4158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4161 \leftline{4159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4162 \leftline{4160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4163 \leftline{4161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4164 \leftline{4162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4165 \leftline{4163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4166 \leftline{4164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4167 \leftline{4165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4168 \leftline{4166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4169 \leftline{4167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4170 \leftline{4168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4171 \leftline{4169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4172 \leftline{4170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4173 \leftline{4171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4174 \leftline{4172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4175 \leftline{4173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4176 \leftline{4174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4177 \leftline{4175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4178 \leftline{4176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4179 \leftline{4177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4180 \leftline{4178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4181 \leftline{4179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4182 \leftline{4180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4183 \leftline{4181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4184 \leftline{4182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4185 \leftline{4183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4186 \leftline{4184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4187 \leftline{4185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4188 \leftline{4186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4189 \leftline{4187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4190 \leftline{4188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4191 \leftline{4189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4192 \leftline{4190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4193 \leftline{4191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4194 \leftline{4192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4195 \leftline{4193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4196 \leftline{4194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4197 \leftline{4195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4198 \leftline{4196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4199 \leftline{4197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4200 \leftline{4198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4201 \leftline{4199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4202 \leftline{4200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4203 \leftline{4201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4204 \leftline{4202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4205 \leftline{4203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4206 \leftline{4204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4207 \leftline{4205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4208 \leftline{4206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4209 \leftline{4207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4210 \leftline{4208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4211 \leftline{4209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4212 \leftline{4210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4213 \leftline{4211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4214 \leftline{4212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4215 \leftline{4213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4216 \leftline{4214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4217 \leftline{4215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4218 \leftline{4216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4219 \leftline{4217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4220 \leftline{4218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4221 \leftline{4219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4222 \leftline{4220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4223 \leftline{4221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4224 \leftline{4222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4225 \leftline{4223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4226 \leftline{4224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4227 \leftline{4225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4228 \leftline{4226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4229 \leftline{4227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4230 \leftline{4228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4231 \leftline{4229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4232 \leftline{4230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4233 \leftline{4231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4234 \leftline{4232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4235 \leftline{4233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4236 \leftline{4234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4237 \leftline{4235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4238 \leftline{4236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4239 \leftline{4237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4240 \leftline{4238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4241 \leftline{4239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4242 \leftline{4240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4243 \leftline{4241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4244 \leftline{4242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4245 \leftline{4243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4246 \leftline{4244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4247 \leftline{4245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4248 \leftline{4246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4249 \leftline{4247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4250 \leftline{4248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4251 \leftline{4249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4252 \leftline{4250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4253 \leftline{4251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4254 \leftline{4252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4255 \leftline{4253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4256 \leftline{4254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4257 \leftline{4255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4258 \leftline{4256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4259 \leftline{4257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4260 \leftline{4258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4261 \leftline{4259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4262 \leftline{4260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4263 \leftline{4261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4264 \leftline{4262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4265 \leftline{4263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4266 \leftline{4264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4267 \leftline{4265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4268 \leftline{4266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4269 \leftline{4267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4270 \leftline{4268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4271 \leftline{4269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4272 \leftline{4270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4273 \leftline{4271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4274 \leftline{4272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4275 \leftline{4273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4276 \leftline{4274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4277 \leftline{4275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4278 \leftline{4276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4279 \leftline{4277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4280 \leftline{4278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4281 \leftline{4279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4282 \leftline{4280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4283 \leftline{4281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4284 \leftline{4282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4285 \leftline{4283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4286 \leftline{4284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4287 \leftline{4285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4288 \leftline{4286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4289 \leftline{4287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4290 \leftline{4288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4291 \leftline{4289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4292 \leftline{4290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4293 \leftline{4291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4294 \leftline{4292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4295 \leftline{4293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4296 \leftline{4294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4297 \leftline{4295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4298 \leftline{4296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4299 \leftline{4297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4300 \leftline{4298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4301 \leftline{4299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4302 \leftline{4300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4303 \leftline{4301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4304 \leftline{4302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4305 \leftline{4303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4306 \leftline{4304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4307 \leftline{4305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4308 \leftline{4306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4309 \leftline{4307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4310 \leftline{4308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4311 \leftline{4309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4312 \leftline{4310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4313 \leftline{4311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4314 \leftline{4312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4315 \leftline{4313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4316 \leftline{4314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4317 \leftline{4315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4318 \leftline{4316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4319 \leftline{4317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4320 \leftline{4318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4321 \leftline{4319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4322 \leftline{4320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4323 \leftline{4321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4324 \leftline{4322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4325 \leftline{4323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4326 \leftline{4324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4327 \leftline{4325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4328 \leftline{4326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4329 \leftline{4327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4330 \leftline{4328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4331 \leftline{4329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4332 \leftline{4330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4333 \leftline{4331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4334 \leftline{4332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4335 \leftline{4333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4336 \leftline{4334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4337 \leftline{4335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4338 \leftline{4336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4339 \leftline{4337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4340 \leftline{4338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4341 \leftline{4339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4342 \leftline{4340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4343 \leftline{4341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4344 \leftline{4342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4345 \leftline{4343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4346 \leftline{4344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4347 \leftline{4345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4348 \leftline{4346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4349 \leftline{4347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4350 \leftline{4348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4351 \leftline{4349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4352 \leftline{4350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4353 \leftline{4351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4354 \leftline{4352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4355 \leftline{4353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4356 \leftline{4354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4357 \leftline{4355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4358 \leftline{4356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4359 \leftline{4357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4360 \leftline{4358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4361 \leftline{4359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4362 \leftline{4360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4363 \leftline{4361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4364 \leftline{4362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4365 \leftline{4363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4366 \leftline{4364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4367 \leftline{4365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4368 \leftline{4366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4369 \leftline{4367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4370 \leftline{4368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4371 \leftline{4369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4372 \leftline{4370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4373 \leftline{4371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4374 \leftline{4372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4375 \leftline{4373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4376 \leftline{4374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4377 \leftline{4375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4378 \leftline{4376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4379 \leftline{4377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4380 \leftline{4378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4381 \leftline{4379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4382 \leftline{4380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4383 \leftline{4381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4384 \leftline{4382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4385 \leftline{4383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4386 \leftline{4384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4387 \leftline{4385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4388 \leftline{4386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4389 \leftline{4387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4390 \leftline{4388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4391 \leftline{4389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4392 \leftline{4390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4393 \leftline{4391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4394 \leftline{4392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4395 \leftline{4393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4396 \leftline{4394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4397 \leftline{4395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4398 \leftline{4396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4399 \leftline{4397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4400 \leftline{4398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4401 \leftline{4399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4402 \leftline{4400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4403 \leftline{4401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4404 \leftline{4402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4405 \leftline{4403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4406 \leftline{4404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4407 \leftline{4405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4408 \leftline{4406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4409 \leftline{4407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4410 \leftline{4408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4411 \leftline{4409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4412 \leftline{4410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4413 \leftline{4411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4414 \leftline{4412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4415 \leftline{4413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4416 \leftline{4414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4417 \leftline{4415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4418 \leftline{4416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4419 \leftline{4417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4420 \leftline{4418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4421 \leftline{4419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4422 \leftline{4420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4423 \leftline{4421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4424 \leftline{4422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4425 \leftline{4423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4426 \leftline{4424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4427 \leftline{4425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4428 \leftline{4426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4429 \leftline{4427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4430 \leftline{4428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4431 \leftline{4429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4432 \leftline{4430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4433 \leftline{4431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4434 \leftline{4432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4435 \leftline{4433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4436 \leftline{4434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4437 \leftline{4435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4438 \leftline{4436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4439 \leftline{4437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4440 \leftline{4438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4441 \leftline{4439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4442 \leftline{4440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4443 \leftline{4441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4444 \leftline{4442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4445 \leftline{4443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4446 \leftline{4444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4447 \leftline{4445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4448 \leftline{4446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4449 \leftline{4447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4450 \leftline{4448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4451 \leftline{4449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4452 \leftline{4450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4453 \leftline{4451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4454 \leftline{4452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4455 \leftline{4453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4456 \leftline{4454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4457 \leftline{4455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4458 \leftline{4456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4459 \leftline{4457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4460 \leftline{4458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4461 \leftline{4459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4462 \leftline{4460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4463 \leftline{4461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4464 \leftline{4462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4465 \leftline{4463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4466 \leftline{4464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4467 \leftline{4465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4468 \leftline{4466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4469 \leftline{4467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4470 \leftline{4468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4471 \leftline{4469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4472 \leftline{4470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4473 \leftline{4471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4474 \leftline{4472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4475 \leftline{4473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4476 \leftline{4474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4477 \leftline{4475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4478 \leftline{4476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4479 \leftline{4477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4480 \leftline{4478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4481 \leftline{4479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4482 \leftline{4480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4483 \leftline{4481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4484 \leftline{4482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4485 \leftline{4483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4486 \leftline{4484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4487 \leftline{4485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4488 \leftline{4486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4489 \leftline{4487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4490 \leftline{4488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4491 \leftline{4489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4492 \leftline{4490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4493 \leftline{4491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4494 \leftline{4492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4495 \leftline{4493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4496 \leftline{4494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4497 \leftline{4495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4498 \leftline{4496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4499 \leftline{4497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4500 \leftline{4498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4501 \leftline{4499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4502 \leftline{4500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4503 \leftline{4501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4504 \leftline{4502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4505 \leftline{4503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4506 \leftline{4504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4507 \leftline{4505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4508 \leftline{4506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4509 \leftline{4507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4510 \leftline{4508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4511 \leftline{4509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4512 \leftline{4510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4513 \leftline{4511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4514 \leftline{4512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4515 \leftline{4513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4516 \leftline{4514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4517 \leftline{4515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4518 \leftline{4516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4519 \leftline{4517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4520 \leftline{4518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4521 \leftline{4519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4522 \leftline{4520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4523 \leftline{4521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4524 \leftline{4522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4525 \leftline{4523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4526 \leftline{4524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4527 \leftline{4525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4528 \leftline{4526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4529 \leftline{4527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4530 \leftline{4528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4531 \leftline{4529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4532 \leftline{4530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4533 \leftline{4531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4534 \leftline{4532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4535 \leftline{4533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4536 \leftline{4534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4537 \leftline{4535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4538 \leftline{4536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4539 \leftline{4537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4540 \leftline{4538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4541 \leftline{4539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4542 \leftline{4540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4543 \leftline{4541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4544 \leftline{4542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4545 \leftline{4543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4546 \leftline{4544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4547 \leftline{4545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4548 \leftline{4546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4549 \leftline{4547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4550 \leftline{4548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4551 \leftline{4549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4552 \leftline{4550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4553 \leftline{4551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4554 \leftline{4552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4555 \leftline{4553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4556 \leftline{4554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4557 \leftline{4555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4558 \leftline{4556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4559 \leftline{4557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4560 \leftline{4558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4561 \leftline{4559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4562 \leftline{4560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4563 \leftline{4561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4564 \leftline{4562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4565 \leftline{4563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4566 \leftline{4564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4567 \leftline{4565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4568 \leftline{4566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4569 \leftline{4567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4570 \leftline{4568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4571 \leftline{4569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4572 \leftline{4570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4573 \leftline{4571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4574 \leftline{4572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4575 \leftline{4573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4576 \leftline{4574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4577 \leftline{4575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4578 \leftline{4576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4579 \leftline{4577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4580 \leftline{4578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4581 \leftline{4579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4582 \leftline{4580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4583 \leftline{4581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4584 \leftline{4582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4585 \leftline{4583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4586 \leftline{4584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4587 \leftline{4585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4588 \leftline{4586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4589 \leftline{4587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4590 \leftline{4588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4591 \leftline{4589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4592 \leftline{4590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4593 \leftline{4591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4594 \leftline{4592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4595 \leftline{4593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4596 \leftline{4594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4597 \leftline{4595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4598 \leftline{4596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4599 \leftline{4597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4600 \leftline{4598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4601 \leftline{4599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4602 \leftline{4600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4603 \leftline{4601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4604 \leftline{4602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4605 \leftline{4603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4606 \leftline{4604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4607 \leftline{4605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4608 \leftline{4606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4609 \leftline{4607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4610 \leftline{4608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4611 \leftline{4609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4612 \leftline{4610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4613 \leftline{4611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4614 \leftline{4612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4615 \leftline{4613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4616 \leftline{4614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4617 \leftline{4615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4618 \leftline{4616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4619 \leftline{4617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4620 \leftline{4618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4621 \leftline{4619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4622 \leftline{4620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4623 \leftline{4621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4624 \leftline{4622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4625 \leftline{4623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4626 \leftline{4624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4627 \leftline{4625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4628 \leftline{4626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4629 \leftline{4627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4630 \leftline{4628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4631 \leftline{4629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4632 \leftline{4630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4633 \leftline{4631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4634 \leftline{4632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4635 \leftline{4633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4636 \leftline{4634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4637 \leftline{4635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4638 \leftline{4636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4639 \leftline{4637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4640 \leftline{4638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4641 \leftline{4639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4642 \leftline{4640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4643 \leftline{4641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4644 \leftline{4642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4645 \leftline{4643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4646 \leftline{4644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4647 \leftline{4645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4648 \leftline{4646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4649 \leftline{4647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4650 \leftline{4648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4651 \leftline{4649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4652 \leftline{4650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4653 \leftline{4651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4654 \leftline{4652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4655 \leftline{4653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4656 \leftline{4654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4657 \leftline{4655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4658 \leftline{4656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4659 \leftline{4657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4660 \leftline{4658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4661 \leftline{4659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4662 \leftline{4660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4663 \leftline{4661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4664 \leftline{4662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4665 \leftline{4663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4666 \leftline{4664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4667 \leftline{4665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4668 \leftline{4666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4669 \leftline{4667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4670 \leftline{4668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4671 \leftline{4669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4672 \leftline{4670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4673 \leftline{4671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4674 \leftline{4672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4675 \leftline{4673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4676 \leftline{4674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4677 \leftline{4675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4678 \leftline{4676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4679 \leftline{4677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4680 \leftline{4678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4681 \leftline{4679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4682 \leftline{4680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4683 \leftline{4681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4684 \leftline{4682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4685 \leftline{4683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4686 \leftline{4684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4687 \leftline{4685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4688 \leftline{4686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4689 \leftline{4687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4690 \leftline{4688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4691 \leftline{4689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4692 \leftline{4690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4693 \leftline{4691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4694 \leftline{4692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4695 \leftline{4693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4696 \leftline{4694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4697 \leftline{4695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4698 \leftline{4696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4699 \leftline{4697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4700 \leftline{4698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4701 \leftline{4699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4702 \leftline{4700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4703 \leftline{4701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4704 \leftline{4702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4705 \leftline{4703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4706 \leftline{4704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4707 \leftline{4705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4708 \leftline{4706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4709 \leftline{4707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4710 \leftline{4708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4711 \leftline{4709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4712 \leftline{4710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4713 \leftline{4711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4714 \leftline{4712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4715 \leftline{4713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4716 \leftline{4714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4717 \leftline{4715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4718 \leftline{4716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4719 \leftline{4717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4720 \leftline{4718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4721 \leftline{4719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4722 \leftline{4720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4723 \leftline{4721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4724 \leftline{4722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4725 \leftline{4723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4726 \leftline{4724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4727 \leftline{4725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4728 \leftline{4726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4729 \leftline{4727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4730 \leftline{4728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4731 \leftline{4729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4732 \leftline{4730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4733 \leftline{4731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4734 \leftline{4732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4735 \leftline{4733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4736 \leftline{4734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4737 \leftline{4735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4738 \leftline{4736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4739 \leftline{4737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4740 \leftline{4738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4741 \leftline{4739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4742 \leftline{4740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4743 \leftline{4741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4744 \leftline{4742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4745 \leftline{4743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4746 \leftline{4744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4747 \leftline{4745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4748 \leftline{4746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4749 \leftline{4747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4750 \leftline{4748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4751 \leftline{4749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4752 \leftline{4750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4753 \leftline{4751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4754 \leftline{4752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4755 \leftline{4753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4756 \leftline{4754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4757 \leftline{4755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4758 \leftline{4756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4759 \leftline{4757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4760 \leftline{4758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4761 \leftline{4759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4762 \leftline{4760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4763 \leftline{4761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4764 \leftline{4762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4765 \leftline{4763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4766 \leftline{4764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4767 \leftline{4765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4768 \leftline{4766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4769 \leftline{4767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4770 \leftline{4768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4771 \leftline{4769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4772 \leftline{4770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4773 \leftline{4771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4774 \leftline{4772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4775 \leftline{4773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4776 \leftline{4774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4777 \leftline{4775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4778 \leftline{4776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4779 \leftline{4777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4780 \leftline{4778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4781 \leftline{4779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4782 \leftline{4780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4783 \leftline{4781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4784 \leftline{4782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4785 \leftline{4783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4786 \leftline{4784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4787 \leftline{4785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4788 \leftline{4786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4789 \leftline{4787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4790 \leftline{4788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4791 \leftline{4789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4792 \leftline{4790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4793 \leftline{4791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4794 \leftline{4792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4795 \leftline{4793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4796 \leftline{4794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4797 \leftline{4795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4798 \leftline{4796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4799 \leftline{4797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4800 \leftline{4798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4801 \leftline{4799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4802 \leftline{4800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4803 \leftline{4801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4804 \leftline{4802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4805 \leftline{4803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4806 \leftline{4804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4807 \leftline{4805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4808 \leftline{4806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4809 \leftline{4807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4810 \leftline{4808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4811 \leftline{4809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4812 \leftline{4810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4813 \leftline{4811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4814 \leftline{4812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4815 \leftline{4813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4816 \leftline{4814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4817 \leftline{4815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4818 \leftline{4816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4819 \leftline{4817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4820 \leftline{4818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4821 \leftline{4819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4822 \leftline{4820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4823 \leftline{4821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4824 \leftline{4822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4825 \leftline{4823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4826 \leftline{4824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4827 \leftline{4825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4828 \leftline{4826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4829 \leftline{4827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4830 \leftline{4828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4831 \leftline{4829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4832 \leftline{4830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4833 \leftline{4831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4834 \leftline{4832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4835 \leftline{4833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4836 \leftline{4834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4837 \leftline{4835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4838 \leftline{4836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4839 \leftline{4837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4840 \leftline{4838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4841 \leftline{4839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4842 \leftline{4840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4843 \leftline{4841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4844 \leftline{4842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4845 \leftline{4843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4846 \leftline{4844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4847 \leftline{4845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4848 \leftline{4846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4849 \leftline{4847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4850 \leftline{4848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4851 \leftline{4849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4852 \leftline{4850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4853 \leftline{4851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4854 \leftline{4852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4855 \leftline{4853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4856 \leftline{4854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4857 \leftline{4855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4858 \leftline{4856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4859 \leftline{4857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4860 \leftline{4858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4861 \leftline{4859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4862 \leftline{4860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4863 \leftline{4861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4864 \leftline{4862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4865 \leftline{4863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4866 \leftline{4864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4867 \leftline{4865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4868 \leftline{4866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4869 \leftline{4867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4870 \leftline{4868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4871 \leftline{4869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4872 \leftline{4870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4873 \leftline{4871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4874 \leftline{4872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4875 \leftline{4873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4876 \leftline{4874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4877 \leftline{4875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4878 \leftline{4876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4879 \leftline{4877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4880 \leftline{4878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4881 \leftline{4879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4882 \leftline{4880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4883 \leftline{4881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4884 \leftline{4882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4885 \leftline{4883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4886 \leftline{4884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4887 \leftline{4885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4888 \leftline{4886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4889 \leftline{4887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4890 \leftline{4888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4891 \leftline{4889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4892 \leftline{4890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4893 \leftline{4891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4894 \leftline{4892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4895 \leftline{4893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4896 \leftline{4894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4897 \leftline{4895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4898 \leftline{4896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4899 \leftline{4897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4900 \leftline{4898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4901 \leftline{4899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4902 \leftline{4900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4903 \leftline{4901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4904 \leftline{4902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4905 \leftline{4903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4906 \leftline{4904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4907 \leftline{4905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4908 \leftline{4906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4909 \leftline{4907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4910 \leftline{4908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4911 \leftline{4909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4912 \leftline{4910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4913 \leftline{4911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4914 \leftline{4912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4915 \leftline{4913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4916 \leftline{4914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4917 \leftline{4915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4918 \leftline{4916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4919 \leftline{4917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4920 \leftline{4918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4921 \leftline{4919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4922 \leftline{4920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4923 \leftline{4921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4924 \leftline{4922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4925 \leftline{4923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4926 \leftline{4924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4927 \leftline{4925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4928 \leftline{4926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4929 \leftline{4927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4930 \leftline{4928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4931 \leftline{4929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4932 \leftline{4930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4933 \leftline{4931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4934 \leftline{4932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4935 \leftline{4933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4936 \leftline{4934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4937 \leftline{4935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4938 \leftline{4936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4939 \leftline{4937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4940 \leftline{4938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4941 \leftline{4939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4942 \leftline{4940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4943 \leftline{4941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4944 \leftline{4942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4945 \leftline{4943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4946 \leftline{4944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4947 \leftline{4945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4948 \leftline{4946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4949 \leftline{4947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4950 \leftline{4948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4951 \leftline{4949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4952 \leftline{4950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4953 \leftline{4951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4954 \leftline{4952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4955 \leftline{4953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4956 \leftline{4954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4957 \leftline{4955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4958 \leftline{4956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4959 \leftline{4957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4960 \leftline{4958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4961 \leftline{4959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4962 \leftline{4960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4963 \leftline{4961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4964 \leftline{4962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4965 \leftline{4963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4966 \leftline{4964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4967 \leftline{4965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4968 \leftline{4966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4969 \leftline{4967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4970 \leftline{4968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4971 \leftline{4969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4972 \leftline{4970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4973 \leftline{4971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4974 \leftline{4972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4975 \leftline{4973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4976 \leftline{4974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4977 \leftline{4975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4978 \leftline{4976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4979 \leftline{4977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4980 \leftline{4978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4981 \leftline{4979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4982 \leftline{4980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4983 \leftline{4981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4984 \leftline{4982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4985 \leftline{4983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4986 \leftline{4984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4987 \leftline{4985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4988 \leftline{4986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4989 \leftline{4987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4990 \leftline{4988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4991 \leftline{4989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4992 \leftline{4990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4993 \leftline{4991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4994 \leftline{4992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4995 \leftline{4993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4996 \leftline{4994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4997 \leftline{4995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 4998 \leftline{4996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 4999 \leftline{4997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5000 \leftline{4998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5001 \leftline{4999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5002 \leftline{5000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5003 \leftline{5001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5004 \leftline{5002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5005 \leftline{5003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5006 \leftline{5004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5007 \leftline{5005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5008 \leftline{5006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5009 \leftline{5007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5010 \leftline{5008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5011 \leftline{5009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5012 \leftline{5010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5013 \leftline{5011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5014 \leftline{5012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5015 \leftline{5013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5016 \leftline{5014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5017 \leftline{5015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5018 \leftline{5016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5019 \leftline{5017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5020 \leftline{5018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5021 \leftline{5019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5022 \leftline{5020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5023 \leftline{5021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5024 \leftline{5022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5025 \leftline{5023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5026 \leftline{5024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5027 \leftline{5025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5028 \leftline{5026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5029 \leftline{5027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5030 \leftline{5028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5031 \leftline{5029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5032 \leftline{5030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5033 \leftline{5031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5034 \leftline{5032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5035 \leftline{5033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5036 \leftline{5034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5037 \leftline{5035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5038 \leftline{5036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5039 \leftline{5037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5040 \leftline{5038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5041 \leftline{5039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5042 \leftline{5040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5043 \leftline{5041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5044 \leftline{5042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5045 \leftline{5043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5046 \leftline{5044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5047 \leftline{5045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5048 \leftline{5046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5049 \leftline{5047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5050 \leftline{5048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5051 \leftline{5049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5052 \leftline{5050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5053 \leftline{5051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5054 \leftline{5052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5055 \leftline{5053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5056 \leftline{5054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5057 \leftline{5055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5058 \leftline{5056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5059 \leftline{5057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5060 \leftline{5058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5061 \leftline{5059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5062 \leftline{5060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5063 \leftline{5061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5064 \leftline{5062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5065 \leftline{5063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5066 \leftline{5064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5067 \leftline{5065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5068 \leftline{5066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5069 \leftline{5067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5070 \leftline{5068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5071 \leftline{5069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5072 \leftline{5070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5073 \leftline{5071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5074 \leftline{5072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5075 \leftline{5073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5076 \leftline{5074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5077 \leftline{5075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5078 \leftline{5076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5079 \leftline{5077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5080 \leftline{5078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5081 \leftline{5079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5082 \leftline{5080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5083 \leftline{5081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5084 \leftline{5082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5085 \leftline{5083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5086 \leftline{5084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5087 \leftline{5085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5088 \leftline{5086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5089 \leftline{5087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5090 \leftline{5088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5091 \leftline{5089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5092 \leftline{5090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5093 \leftline{5091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5094 \leftline{5092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5095 \leftline{5093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5096 \leftline{5094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5097 \leftline{5095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5098 \leftline{5096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5099 \leftline{5097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5100 \leftline{5098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5101 \leftline{5099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5102 \leftline{5100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5103 \leftline{5101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5104 \leftline{5102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5105 \leftline{5103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5106 \leftline{5104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5107 \leftline{5105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5108 \leftline{5106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5109 \leftline{5107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5110 \leftline{5108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5111 \leftline{5109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5112 \leftline{5110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5113 \leftline{5111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5114 \leftline{5112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5115 \leftline{5113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5116 \leftline{5114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5117 \leftline{5115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5118 \leftline{5116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5119 \leftline{5117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5120 \leftline{5118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5121 \leftline{5119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5122 \leftline{5120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5123 \leftline{5121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5124 \leftline{5122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5125 \leftline{5123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5126 \leftline{5124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5127 \leftline{5125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5128 \leftline{5126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5129 \leftline{5127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5130 \leftline{5128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5131 \leftline{5129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5132 \leftline{5130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5133 \leftline{5131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5134 \leftline{5132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5135 \leftline{5133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5136 \leftline{5134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5137 \leftline{5135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5138 \leftline{5136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5139 \leftline{5137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5140 \leftline{5138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5141 \leftline{5139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5142 \leftline{5140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5143 \leftline{5141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5144 \leftline{5142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5145 \leftline{5143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5146 \leftline{5144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5147 \leftline{5145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5148 \leftline{5146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5149 \leftline{5147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5150 \leftline{5148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5151 \leftline{5149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5152 \leftline{5150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5153 \leftline{5151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5154 \leftline{5152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5155 \leftline{5153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5156 \leftline{5154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5157 \leftline{5155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5158 \leftline{5156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5159 \leftline{5157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5160 \leftline{5158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5161 \leftline{5159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5162 \leftline{5160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5163 \leftline{5161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5164 \leftline{5162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5165 \leftline{5163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5166 \leftline{5164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5167 \leftline{5165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5168 \leftline{5166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5169 \leftline{5167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5170 \leftline{5168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5171 \leftline{5169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5172 \leftline{5170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5173 \leftline{5171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5174 \leftline{5172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5175 \leftline{5173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5176 \leftline{5174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5177 \leftline{5175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5178 \leftline{5176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5179 \leftline{5177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5180 \leftline{5178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5181 \leftline{5179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5182 \leftline{5180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5183 \leftline{5181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5184 \leftline{5182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5185 \leftline{5183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5186 \leftline{5184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5187 \leftline{5185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5188 \leftline{5186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5189 \leftline{5187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5190 \leftline{5188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5191 \leftline{5189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5192 \leftline{5190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5193 \leftline{5191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5194 \leftline{5192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5195 \leftline{5193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5196 \leftline{5194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5197 \leftline{5195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5198 \leftline{5196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5199 \leftline{5197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5200 \leftline{5198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5201 \leftline{5199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5202 \leftline{5200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5203 \leftline{5201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5204 \leftline{5202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5205 \leftline{5203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5206 \leftline{5204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5207 \leftline{5205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5208 \leftline{5206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5209 \leftline{5207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5210 \leftline{5208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5211 \leftline{5209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5212 \leftline{5210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5213 \leftline{5211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5214 \leftline{5212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5215 \leftline{5213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5216 \leftline{5214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5217 \leftline{5215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5218 \leftline{5216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5219 \leftline{5217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5220 \leftline{5218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5221 \leftline{5219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5222 \leftline{5220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5223 \leftline{5221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5224 \leftline{5222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5225 \leftline{5223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5226 \leftline{5224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5227 \leftline{5225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5228 \leftline{5226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5229 \leftline{5227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5230 \leftline{5228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5231 \leftline{5229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5232 \leftline{5230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5233 \leftline{5231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5234 \leftline{5232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5235 \leftline{5233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5236 \leftline{5234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5237 \leftline{5235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5238 \leftline{5236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5239 \leftline{5237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5240 \leftline{5238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5241 \leftline{5239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5242 \leftline{5240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5243 \leftline{5241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5244 \leftline{5242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5245 \leftline{5243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5246 \leftline{5244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5247 \leftline{5245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5248 \leftline{5246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5249 \leftline{5247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5250 \leftline{5248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5251 \leftline{5249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5252 \leftline{5250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5253 \leftline{5251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5254 \leftline{5252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5255 \leftline{5253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5256 \leftline{5254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5257 \leftline{5255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5258 \leftline{5256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5259 \leftline{5257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5260 \leftline{5258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5261 \leftline{5259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5262 \leftline{5260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5263 \leftline{5261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5264 \leftline{5262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5265 \leftline{5263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5266 \leftline{5264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5267 \leftline{5265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5268 \leftline{5266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5269 \leftline{5267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5270 \leftline{5268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5271 \leftline{5269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5272 \leftline{5270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5273 \leftline{5271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5274 \leftline{5272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5275 \leftline{5273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5276 \leftline{5274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5277 \leftline{5275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5278 \leftline{5276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5279 \leftline{5277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5280 \leftline{5278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5281 \leftline{5279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5282 \leftline{5280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5283 \leftline{5281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5284 \leftline{5282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5285 \leftline{5283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5286 \leftline{5284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5287 \leftline{5285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5288 \leftline{5286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5289 \leftline{5287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5290 \leftline{5288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5291 \leftline{5289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5292 \leftline{5290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5293 \leftline{5291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5294 \leftline{5292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5295 \leftline{5293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5296 \leftline{5294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5297 \leftline{5295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5298 \leftline{5296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5299 \leftline{5297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5300 \leftline{5298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5301 \leftline{5299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5302 \leftline{5300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5303 \leftline{5301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5304 \leftline{5302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5305 \leftline{5303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5306 \leftline{5304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5307 \leftline{5305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5308 \leftline{5306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5309 \leftline{5307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5310 \leftline{5308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5311 \leftline{5309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5312 \leftline{5310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5313 \leftline{5311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5314 \leftline{5312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5315 \leftline{5313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5316 \leftline{5314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5317 \leftline{5315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5318 \leftline{5316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5319 \leftline{5317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5320 \leftline{5318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5321 \leftline{5319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5322 \leftline{5320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5323 \leftline{5321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5324 \leftline{5322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5325 \leftline{5323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5326 \leftline{5324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5327 \leftline{5325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5328 \leftline{5326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5329 \leftline{5327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5330 \leftline{5328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5331 \leftline{5329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5332 \leftline{5330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5333 \leftline{5331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5334 \leftline{5332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5335 \leftline{5333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5336 \leftline{5334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5337 \leftline{5335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5338 \leftline{5336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5339 \leftline{5337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5340 \leftline{5338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5341 \leftline{5339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5342 \leftline{5340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5343 \leftline{5341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5344 \leftline{5342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5345 \leftline{5343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5346 \leftline{5344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5347 \leftline{5345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5348 \leftline{5346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5349 \leftline{5347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5350 \leftline{5348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5351 \leftline{5349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5352 \leftline{5350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5353 \leftline{5351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5354 \leftline{5352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5355 \leftline{5353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5356 \leftline{5354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5357 \leftline{5355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5358 \leftline{5356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5359 \leftline{5357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5360 \leftline{5358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5361 \leftline{5359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5362 \leftline{5360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5363 \leftline{5361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5364 \leftline{5362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5365 \leftline{5363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5366 \leftline{5364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5367 \leftline{5365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5368 \leftline{5366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5369 \leftline{5367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5370 \leftline{5368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5371 \leftline{5369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5372 \leftline{5370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5373 \leftline{5371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5374 \leftline{5372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5375 \leftline{5373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5376 \leftline{5374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5377 \leftline{5375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5378 \leftline{5376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5379 \leftline{5377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5380 \leftline{5378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5381 \leftline{5379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5382 \leftline{5380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5383 \leftline{5381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5384 \leftline{5382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5385 \leftline{5383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5386 \leftline{5384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5387 \leftline{5385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5388 \leftline{5386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5389 \leftline{5387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5390 \leftline{5388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5391 \leftline{5389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5392 \leftline{5390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5393 \leftline{5391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5394 \leftline{5392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5395 \leftline{5393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5396 \leftline{5394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5397 \leftline{5395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5398 \leftline{5396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5399 \leftline{5397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5400 \leftline{5398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5401 \leftline{5399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5402 \leftline{5400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5403 \leftline{5401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5404 \leftline{5402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5405 \leftline{5403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5406 \leftline{5404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5407 \leftline{5405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5408 \leftline{5406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5409 \leftline{5407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5410 \leftline{5408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5411 \leftline{5409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5412 \leftline{5410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5413 \leftline{5411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5414 \leftline{5412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5415 \leftline{5413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5416 \leftline{5414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5417 \leftline{5415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5418 \leftline{5416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5419 \leftline{5417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5420 \leftline{5418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5421 \leftline{5419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5422 \leftline{5420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5423 \leftline{5421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5424 \leftline{5422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5425 \leftline{5423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5426 \leftline{5424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5427 \leftline{5425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5428 \leftline{5426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5429 \leftline{5427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5430 \leftline{5428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5431 \leftline{5429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5432 \leftline{5430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5433 \leftline{5431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5434 \leftline{5432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5435 \leftline{5433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5436 \leftline{5434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5437 \leftline{5435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5438 \leftline{5436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5439 \leftline{5437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5440 \leftline{5438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5441 \leftline{5439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5442 \leftline{5440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5443 \leftline{5441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5444 \leftline{5442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5445 \leftline{5443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5446 \leftline{5444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5447 \leftline{5445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5448 \leftline{5446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5449 \leftline{5447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5450 \leftline{5448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5451 \leftline{5449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5452 \leftline{5450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5453 \leftline{5451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5454 \leftline{5452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5455 \leftline{5453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5456 \leftline{5454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5457 \leftline{5455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5458 \leftline{5456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5459 \leftline{5457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5460 \leftline{5458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5461 \leftline{5459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5462 \leftline{5460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5463 \leftline{5461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5464 \leftline{5462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5465 \leftline{5463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5466 \leftline{5464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5467 \leftline{5465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5468 \leftline{5466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5469 \leftline{5467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5470 \leftline{5468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5471 \leftline{5469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5472 \leftline{5470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5473 \leftline{5471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5474 \leftline{5472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5475 \leftline{5473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5476 \leftline{5474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5477 \leftline{5475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5478 \leftline{5476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5479 \leftline{5477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5480 \leftline{5478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5481 \leftline{5479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5482 \leftline{5480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5483 \leftline{5481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5484 \leftline{5482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5485 \leftline{5483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5486 \leftline{5484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5487 \leftline{5485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5488 \leftline{5486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5489 \leftline{5487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5490 \leftline{5488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5491 \leftline{5489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5492 \leftline{5490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5493 \leftline{5491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5494 \leftline{5492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5495 \leftline{5493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5496 \leftline{5494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5497 \leftline{5495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5498 \leftline{5496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5499 \leftline{5497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5500 \leftline{5498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5501 \leftline{5499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5502 \leftline{5500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5503 \leftline{5501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5504 \leftline{5502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5505 \leftline{5503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5506 \leftline{5504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5507 \leftline{5505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5508 \leftline{5506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5509 \leftline{5507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5510 \leftline{5508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5511 \leftline{5509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5512 \leftline{5510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5513 \leftline{5511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5514 \leftline{5512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5515 \leftline{5513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5516 \leftline{5514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5517 \leftline{5515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5518 \leftline{5516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5519 \leftline{5517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5520 \leftline{5518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5521 \leftline{5519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5522 \leftline{5520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5523 \leftline{5521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5524 \leftline{5522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5525 \leftline{5523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5526 \leftline{5524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5527 \leftline{5525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5528 \leftline{5526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5529 \leftline{5527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5530 \leftline{5528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5531 \leftline{5529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5532 \leftline{5530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5533 \leftline{5531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5534 \leftline{5532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5535 \leftline{5533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5536 \leftline{5534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5537 \leftline{5535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5538 \leftline{5536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5539 \leftline{5537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5540 \leftline{5538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5541 \leftline{5539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5542 \leftline{5540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5543 \leftline{5541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5544 \leftline{5542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5545 \leftline{5543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5546 \leftline{5544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5547 \leftline{5545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5548 \leftline{5546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5549 \leftline{5547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5550 \leftline{5548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5551 \leftline{5549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5552 \leftline{5550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5553 \leftline{5551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5554 \leftline{5552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5555 \leftline{5553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5556 \leftline{5554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5557 \leftline{5555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5558 \leftline{5556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5559 \leftline{5557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5560 \leftline{5558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5561 \leftline{5559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5562 \leftline{5560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5563 \leftline{5561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5564 \leftline{5562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5565 \leftline{5563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5566 \leftline{5564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5567 \leftline{5565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5568 \leftline{5566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5569 \leftline{5567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5570 \leftline{5568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5571 \leftline{5569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5572 \leftline{5570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5573 \leftline{5571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5574 \leftline{5572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5575 \leftline{5573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5576 \leftline{5574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5577 \leftline{5575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5578 \leftline{5576:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5579 \leftline{5577:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5580 \leftline{5578:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5581 \leftline{5579:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5582 \leftline{5580:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5583 \leftline{5581:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5584 \leftline{5582:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5585 \leftline{5583:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5586 \leftline{5584:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5587 \leftline{5585:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5588 \leftline{5586:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5589 \leftline{5587:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5590 \leftline{5588:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5591 \leftline{5589:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5592 \leftline{5590:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5593 \leftline{5591:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5594 \leftline{5592:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5595 \leftline{5593:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5596 \leftline{5594:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5597 \leftline{5595:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5598 \leftline{5596:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5599 \leftline{5597:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5600 \leftline{5598:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5601 \leftline{5599:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5602 \leftline{5600:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5603 \leftline{5601:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5604 \leftline{5602:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5605 \leftline{5603:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5606 \leftline{5604:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5607 \leftline{5605:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5608 \leftline{5606:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5609 \leftline{5607:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5610 \leftline{5608:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5611 \leftline{5609:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5612 \leftline{5610:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5613 \leftline{5611:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5614 \leftline{5612:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5615 \leftline{5613:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5616 \leftline{5614:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5617 \leftline{5615:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5618 \leftline{5616:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5619 \leftline{5617:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5620 \leftline{5618:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5621 \leftline{5619:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5622 \leftline{5620:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5623 \leftline{5621:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5624 \leftline{5622:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5625 \leftline{5623:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5626 \leftline{5624:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5627 \leftline{5625:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5628 \leftline{5626:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5629 \leftline{5627:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5630 \leftline{5628:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5631 \leftline{5629:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5632 \leftline{5630:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5633 \leftline{5631:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5634 \leftline{5632:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5635 \leftline{5633:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5636 \leftline{5634:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5637 \leftline{5635:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5638 \leftline{5636:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5639 \leftline{5637:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5640 \leftline{5638:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5641 \leftline{5639:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5642 \leftline{5640:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5643 \leftline{5641:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5644 \leftline{5642:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5645 \leftline{5643:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5646 \leftline{5644:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5647 \leftline{5645:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5648 \leftline{5646:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5649 \leftline{5647:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5650 \leftline{5648:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5651 \leftline{5649:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5652 \leftline{5650:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5653 \leftline{5651:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5654 \leftline{5652:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5655 \leftline{5653:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5656 \leftline{5654:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5657 \leftline{5655:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5658 \leftline{5656:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5659 \leftline{5657:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5660 \leftline{5658:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5661 \leftline{5659:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5662 \leftline{5660:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5663 \leftline{5661:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5664 \leftline{5662:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5665 \leftline{5663:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5666 \leftline{5664:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5667 \leftline{5665:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5668 \leftline{5666:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5669 \leftline{5667:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5670 \leftline{5668:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5671 \leftline{5669:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5672 \leftline{5670:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5673 \leftline{5671:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5674 \leftline{5672:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5675 \leftline{5673:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5676 \leftline{5674:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5677 \leftline{5675:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5678 \leftline{5676:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5679 \leftline{5677:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5680 \leftline{5678:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5681 \leftline{5679:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5682 \leftline{5680:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5683 \leftline{5681:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5684 \leftline{5682:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5685 \leftline{5683:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5686 \leftline{5684:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5687 \leftline{5685:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5688 \leftline{5686:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5689 \leftline{5687:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5690 \leftline{5688:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5691 \leftline{5689:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5692 \leftline{5690:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5693 \leftline{5691:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5694 \leftline{5692:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5695 \leftline{5693:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5696 \leftline{5694:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5697 \leftline{5695:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5698 \leftline{5696:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5699 \leftline{5697:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5700 \leftline{5698:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5701 \leftline{5699:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5702 \leftline{5700:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5703 \leftline{5701:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5704 \leftline{5702:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5705 \leftline{5703:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5706 \leftline{5704:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5707 \leftline{5705:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5708 \leftline{5706:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5709 \leftline{5707:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5710 \leftline{5708:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5711 \leftline{5709:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5712 \leftline{5710:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5713 \leftline{5711:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5714 \leftline{5712:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5715 \leftline{5713:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5716 \leftline{5714:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5717 \leftline{5715:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5718 \leftline{5716:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5719 \leftline{5717:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5720 \leftline{5718:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5721 \leftline{5719:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5722 \leftline{5720:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5723 \leftline{5721:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5724 \leftline{5722:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5725 \leftline{5723:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5726 \leftline{5724:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5727 \leftline{5725:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5728 \leftline{5726:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5729 \leftline{5727:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5730 \leftline{5728:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5731 \leftline{5729:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5732 \leftline{5730:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5733 \leftline{5731:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5734 \leftline{5732:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5735 \leftline{5733:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5736 \leftline{5734:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5737 \leftline{5735:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5738 \leftline{5736:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5739 \leftline{5737:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5740 \leftline{5738:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5741 \leftline{5739:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5742 \leftline{5740:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5743 \leftline{5741:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5744 \leftline{5742:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5745 \leftline{5743:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5746 \leftline{5744:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5747 \leftline{5745:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5748 \leftline{5746:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5749 \leftline{5747:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5750 \leftline{5748:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5751 \leftline{5749:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5752 \leftline{5750:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5753 \leftline{5751:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5754 \leftline{5752:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5755 \leftline{5753:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5756 \leftline{5754:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5757 \leftline{5755:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5758 \leftline{5756:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5759 \leftline{5757:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5760 \leftline{5758:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5761 \leftline{5759:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5762 \leftline{5760:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5763 \leftline{5761:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5764 \leftline{5762:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5765 \leftline{5763:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5766 \leftline{5764:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5767 \leftline{5765:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5768 \leftline{5766:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5769 \leftline{5767:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5770 \leftline{5768:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5771 \leftline{5769:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5772 \leftline{5770:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5773 \leftline{5771:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5774 \leftline{5772:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5775 \leftline{5773:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5776 \leftline{5774:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5777 \leftline{5775:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5778 \leftline{5776:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5779 \leftline{5777:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5780 \leftline{5778:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5781 \leftline{5779:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5782 \leftline{5780:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5783 \leftline{5781:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5784 \leftline{5782:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5785 \leftline{5783:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5786 \leftline{5784:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5787 \leftline{5785:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5788 \leftline{5786:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5789 \leftline{5787:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5790 \leftline{5788:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5791 \leftline{5789:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5792 \leftline{5790:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5793 \leftline{5791:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5794 \leftline{5792:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5795 \leftline{5793:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5796 \leftline{5794:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5797 \leftline{5795:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5798 \leftline{5796:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5799 \leftline{5797:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5800 \leftline{5798:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5801 \leftline{5799:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5802 \leftline{5800:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5803 \leftline{5801:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5804 \leftline{5802:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5805 \leftline{5803:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5806 \leftline{5804:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5807 \leftline{5805:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5808 \leftline{5806:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5809 \leftline{5807:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5810 \leftline{5808:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5811 \leftline{5809:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5812 \leftline{5810:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5813 \leftline{5811:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5814 \leftline{5812:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5815 \leftline{5813:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5816 \leftline{5814:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5817 \leftline{5815:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5818 \leftline{5816:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5819 \leftline{5817:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5820 \leftline{5818:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5821 \leftline{5819:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5822 \leftline{5820:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5823 \leftline{5821:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5824 \leftline{5822:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5825 \leftline{5823:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5826 \leftline{5824:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5827 \leftline{5825:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5828 \leftline{5826:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5829 \leftline{5827:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5830 \leftline{5828:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5831 \leftline{5829:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5832 \leftline{5830:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5833 \leftline{5831:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5834 \leftline{5832:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5835 \leftline{5833:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5836 \leftline{5834:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5837 \leftline{5835:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5838 \leftline{5836:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5839 \leftline{5837:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5840 \leftline{5838:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5841 \leftline{5839:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5842 \leftline{5840:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5843 \leftline{5841:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5844 \leftline{5842:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5845 \leftline{5843:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5846 \leftline{5844:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5847 \leftline{5845:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5848 \leftline{5846:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5849 \leftline{5847:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5850 \leftline{5848:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5851 \leftline{5849:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5852 \leftline{5850:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5853 \leftline{5851:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5854 \leftline{5852:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5855 \leftline{5853:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5856 \leftline{5854:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5857 \leftline{5855:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5858 \leftline{5856:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5859 \leftline{5857:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5860 \leftline{5858:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5861 \leftline{5859:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5862 \leftline{5860:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5863 \leftline{5861:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5864 \leftline{5862:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5865 \leftline{5863:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5866 \leftline{5864:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5867 \leftline{5865:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5868 \leftline{5866:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5869 \leftline{5867:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5870 \leftline{5868:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5871 \leftline{5869:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5872 \leftline{5870:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5873 \leftline{5871:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5874 \leftline{5872:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5875 \leftline{5873:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5876 \leftline{5874:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5877 \leftline{5875:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5878 \leftline{5876:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5879 \leftline{5877:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5880 \leftline{5878:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5881 \leftline{5879:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5882 \leftline{5880:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5883 \leftline{5881:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5884 \leftline{5882:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5885 \leftline{5883:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5886 \leftline{5884:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5887 \leftline{5885:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5888 \leftline{5886:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5889 \leftline{5887:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5890 \leftline{5888:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5891 \leftline{5889:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5892 \leftline{5890:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5893 \leftline{5891:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5894 \leftline{5892:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5895 \leftline{5893:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5896 \leftline{5894:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5897 \leftline{5895:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5898 \leftline{5896:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5899 \leftline{5897:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5900 \leftline{5898:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5901 \leftline{5899:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5902 \leftline{5900:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5903 \leftline{5901:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5904 \leftline{5902:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5905 \leftline{5903:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5906 \leftline{5904:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5907 \leftline{5905:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5908 \leftline{5906:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5909 \leftline{5907:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5910 \leftline{5908:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5911 \leftline{5909:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5912 \leftline{5910:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5913 \leftline{5911:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5914 \leftline{5912:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5915 \leftline{5913:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5916 \leftline{5914:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5917 \leftline{5915:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5918 \leftline{5916:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5919 \leftline{5917:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5920 \leftline{5918:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5921 \leftline{5919:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5922 \leftline{5920:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5923 \leftline{5921:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5924 \leftline{5922:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5925 \leftline{5923:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5926 \leftline{5924:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5927 \leftline{5925:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5928 \leftline{5926:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5929 \leftline{5927:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5930 \leftline{5928:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5931 \leftline{5929:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5932 \leftline{5930:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5933 \leftline{5931:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5934 \leftline{5932:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5935 \leftline{5933:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5936 \leftline{5934:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5937 \leftline{5935:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5938 \leftline{5936:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5939 \leftline{5937:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5940 \leftline{5938:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5941 \leftline{5939:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5942 \leftline{5940:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5943 \leftline{5941:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5944 \leftline{5942:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5945 \leftline{5943:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5946 \leftline{5944:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5947 \leftline{5945:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5948 \leftline{5946:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5949 \leftline{5947:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5950 \leftline{5948:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5951 \leftline{5949:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5952 \leftline{5950:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5953 \leftline{5951:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5954 \leftline{5952:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5955 \leftline{5953:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5956 \leftline{5954:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5957 \leftline{5955:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5958 \leftline{5956:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5959 \leftline{5957:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5960 \leftline{5958:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5961 \leftline{5959:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5962 \leftline{5960:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5963 \leftline{5961:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5964 \leftline{5962:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5965 \leftline{5963:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5966 \leftline{5964:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5967 \leftline{5965:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5968 \leftline{5966:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5969 \leftline{5967:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5970 \leftline{5968:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5971 \leftline{5969:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5972 \leftline{5970:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5973 \leftline{5971:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5974 \leftline{5972:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5975 \leftline{5973:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5976 \leftline{5974:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5977 \leftline{5975:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5978 \leftline{5976:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5979 \leftline{5977:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5980 \leftline{5978:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5981 \leftline{5979:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5982 \leftline{5980:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5983 \leftline{5981:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5984 \leftline{5982:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5985 \leftline{5983:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5986 \leftline{5984:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5987 \leftline{5985:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5988 \leftline{5986:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5989 \leftline{5987:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5990 \leftline{5988:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5991 \leftline{5989:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5992 \leftline{5990:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5993 \leftline{5991:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5994 \leftline{5992:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5995 \leftline{5993:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5996 \leftline{5994:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5997 \leftline{5995:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 5998 \leftline{5996:\ \ \ \ \ \ \ \ \ \symbol{}/); } 5999 \leftline{5997:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6000 \leftline{5998:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6001 \leftline{5999:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6002 \leftline{6000:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6003 \leftline{6001:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6004 \leftline{6002:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6005 \leftline{6003:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6006 \leftline{6004:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6007 \leftline{6005:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6008 \leftline{6006:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6009 \leftline{6007:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6010 \leftline{6008:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6011 \leftline{6009:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6012 \leftline{6010:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6013 \leftline{6011:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6014 \leftline{6012:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6015 \leftline{6013:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6016 \leftline{6014:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6017 \leftline{6015:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6018 \leftline{6016:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6019 \leftline{6017:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6020 \leftline{6018:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6021 \leftline{6019:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6022 \leftline{6020:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6023 \leftline{6021:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6024 \leftline{6022:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6025 \leftline{6023:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6026 \leftline{6024:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6027 \leftline{6025:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6028 \leftline{6026:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6029 \leftline{6027:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6030 \leftline{6028:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6031 \leftline{6029:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6032 \leftline{6030:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6033 \leftline{6031:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6034 \leftline{6032:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6035 \leftline{6033:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6036 \leftline{6034:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6037 \leftline{6035:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6038 \leftline{6036:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6039 \leftline{6037:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6040 \leftline{6038:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6041 \leftline{6039:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6042 \leftline{6040:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6043 \leftline{6041:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6044 \leftline{6042:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6045 \leftline{6043:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6046 \leftline{6044:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6047 \leftline{6045:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6048 \leftline{6046:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6049 \leftline{6047:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6050 \leftline{6048:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6051 \leftline{6049:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6052 \leftline{6050:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6053 \leftline{6051:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6054 \leftline{6052:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6055 \leftline{6053:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6056 \leftline{6054:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6057 \leftline{6055:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6058 \leftline{6056:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6059 \leftline{6057:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6060 \leftline{6058:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6061 \leftline{6059:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6062 \leftline{6060:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6063 \leftline{6061:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6064 \leftline{6062:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6065 \leftline{6063:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6066 \leftline{6064:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6067 \leftline{6065:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6068 \leftline{6066:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6069 \leftline{6067:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6070 \leftline{6068:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6071 \leftline{6069:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6072 \leftline{6070:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6073 \leftline{6071:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6074 \leftline{6072:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6075 \leftline{6073:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6076 \leftline{6074:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6077 \leftline{6075:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6078 \leftline{6076:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6079 \leftline{6077:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6080 \leftline{6078:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6081 \leftline{6079:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6082 \leftline{6080:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6083 \leftline{6081:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6084 \leftline{6082:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6085 \leftline{6083:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6086 \leftline{6084:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6087 \leftline{6085:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6088 \leftline{6086:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6089 \leftline{6087:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6090 \leftline{6088:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6091 \leftline{6089:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6092 \leftline{6090:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6093 \leftline{6091:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6094 \leftline{6092:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6095 \leftline{6093:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6096 \leftline{6094:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6097 \leftline{6095:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6098 \leftline{6096:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6099 \leftline{6097:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6100 \leftline{6098:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6101 \leftline{6099:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6102 \leftline{6100:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6103 \leftline{6101:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6104 \leftline{6102:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6105 \leftline{6103:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6106 \leftline{6104:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6107 \leftline{6105:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6108 \leftline{6106:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6109 \leftline{6107:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6110 \leftline{6108:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6111 \leftline{6109:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6112 \leftline{6110:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6113 \leftline{6111:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6114 \leftline{6112:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6115 \leftline{6113:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6116 \leftline{6114:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6117 \leftline{6115:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6118 \leftline{6116:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6119 \leftline{6117:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6120 \leftline{6118:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6121 \leftline{6119:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6122 \leftline{6120:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6123 \leftline{6121:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6124 \leftline{6122:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6125 \leftline{6123:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6126 \leftline{6124:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6127 \leftline{6125:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6128 \leftline{6126:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6129 \leftline{6127:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6130 \leftline{6128:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6131 \leftline{6129:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6132 \leftline{6130:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6133 \leftline{6131:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6134 \leftline{6132:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6135 \leftline{6133:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6136 \leftline{6134:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6137 \leftline{6135:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6138 \leftline{6136:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6139 \leftline{6137:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6140 \leftline{6138:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6141 \leftline{6139:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6142 \leftline{6140:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6143 \leftline{6141:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6144 \leftline{6142:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6145 \leftline{6143:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6146 \leftline{6144:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6147 \leftline{6145:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6148 \leftline{6146:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6149 \leftline{6147:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6150 \leftline{6148:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6151 \leftline{6149:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6152 \leftline{6150:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6153 \leftline{6151:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6154 \leftline{6152:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6155 \leftline{6153:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6156 \leftline{6154:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6157 \leftline{6155:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6158 \leftline{6156:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6159 \leftline{6157:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6160 \leftline{6158:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6161 \leftline{6159:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6162 \leftline{6160:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6163 \leftline{6161:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6164 \leftline{6162:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6165 \leftline{6163:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6166 \leftline{6164:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6167 \leftline{6165:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6168 \leftline{6166:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6169 \leftline{6167:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6170 \leftline{6168:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6171 \leftline{6169:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6172 \leftline{6170:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6173 \leftline{6171:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6174 \leftline{6172:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6175 \leftline{6173:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6176 \leftline{6174:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6177 \leftline{6175:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6178 \leftline{6176:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6179 \leftline{6177:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6180 \leftline{6178:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6181 \leftline{6179:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6182 \leftline{6180:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6183 \leftline{6181:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6184 \leftline{6182:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6185 \leftline{6183:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6186 \leftline{6184:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6187 \leftline{6185:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6188 \leftline{6186:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6189 \leftline{6187:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6190 \leftline{6188:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6191 \leftline{6189:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6192 \leftline{6190:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6193 \leftline{6191:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6194 \leftline{6192:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6195 \leftline{6193:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6196 \leftline{6194:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6197 \leftline{6195:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6198 \leftline{6196:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6199 \leftline{6197:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6200 \leftline{6198:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6201 \leftline{6199:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6202 \leftline{6200:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6203 \leftline{6201:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6204 \leftline{6202:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6205 \leftline{6203:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6206 \leftline{6204:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6207 \leftline{6205:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6208 \leftline{6206:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6209 \leftline{6207:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6210 \leftline{6208:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6211 \leftline{6209:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6212 \leftline{6210:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6213 \leftline{6211:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6214 \leftline{6212:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6215 \leftline{6213:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6216 \leftline{6214:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6217 \leftline{6215:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6218 \leftline{6216:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6219 \leftline{6217:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6220 \leftline{6218:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6221 \leftline{6219:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6222 \leftline{6220:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6223 \leftline{6221:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6224 \leftline{6222:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6225 \leftline{6223:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6226 \leftline{6224:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6227 \leftline{6225:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6228 \leftline{6226:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6229 \leftline{6227:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6230 \leftline{6228:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6231 \leftline{6229:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6232 \leftline{6230:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6233 \leftline{6231:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6234 \leftline{6232:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6235 \leftline{6233:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6236 \leftline{6234:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6237 \leftline{6235:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6238 \leftline{6236:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6239 \leftline{6237:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6240 \leftline{6238:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6241 \leftline{6239:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6242 \leftline{6240:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6243 \leftline{6241:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6244 \leftline{6242:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6245 \leftline{6243:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6246 \leftline{6244:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6247 \leftline{6245:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6248 \leftline{6246:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6249 \leftline{6247:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6250 \leftline{6248:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6251 \leftline{6249:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6252 \leftline{6250:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6253 \leftline{6251:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6254 \leftline{6252:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6255 \leftline{6253:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6256 \leftline{6254:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6257 \leftline{6255:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6258 \leftline{6256:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6259 \leftline{6257:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6260 \leftline{6258:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6261 \leftline{6259:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6262 \leftline{6260:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6263 \leftline{6261:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6264 \leftline{6262:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6265 \leftline{6263:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6266 \leftline{6264:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6267 \leftline{6265:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6268 \leftline{6266:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6269 \leftline{6267:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6270 \leftline{6268:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6271 \leftline{6269:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6272 \leftline{6270:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6273 \leftline{6271:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6274 \leftline{6272:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6275 \leftline{6273:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6276 \leftline{6274:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6277 \leftline{6275:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6278 \leftline{6276:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6279 \leftline{6277:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6280 \leftline{6278:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6281 \leftline{6279:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6282 \leftline{6280:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6283 \leftline{6281:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6284 \leftline{6282:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6285 \leftline{6283:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6286 \leftline{6284:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6287 \leftline{6285:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6288 \leftline{6286:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6289 \leftline{6287:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6290 \leftline{6288:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6291 \leftline{6289:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6292 \leftline{6290:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6293 \leftline{6291:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6294 \leftline{6292:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6295 \leftline{6293:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6296 \leftline{6294:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6297 \leftline{6295:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6298 \leftline{6296:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6299 \leftline{6297:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6300 \leftline{6298:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6301 \leftline{6299:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6302 \leftline{6300:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6303 \leftline{6301:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6304 \leftline{6302:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6305 \leftline{6303:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6306 \leftline{6304:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6307 \leftline{6305:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6308 \leftline{6306:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6309 \leftline{6307:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6310 \leftline{6308:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6311 \leftline{6309:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6312 \leftline{6310:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6313 \leftline{6311:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6314 \leftline{6312:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6315 \leftline{6313:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6316 \leftline{6314:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6317 \leftline{6315:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6318 \leftline{6316:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6319 \leftline{6317:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6320 \leftline{6318:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6321 \leftline{6319:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6322 \leftline{6320:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6323 \leftline{6321:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6324 \leftline{6322:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6325 \leftline{6323:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6326 \leftline{6324:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6327 \leftline{6325:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6328 \leftline{6326:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6329 \leftline{6327:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6330 \leftline{6328:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6331 \leftline{6329:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6332 \leftline{6330:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6333 \leftline{6331:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6334 \leftline{6332:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6335 \leftline{6333:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6336 \leftline{6334:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6337 \leftline{6335:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6338 \leftline{6336:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6339 \leftline{6337:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6340 \leftline{6338:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6341 \leftline{6339:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6342 \leftline{6340:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6343 \leftline{6341:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6344 \leftline{6342:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6345 \leftline{6343:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6346 \leftline{6344:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6347 \leftline{6345:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6348 \leftline{6346:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6349 \leftline{6347:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6350 \leftline{6348:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6351 \leftline{6349:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6352 \leftline{6350:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6353 \leftline{6351:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6354 \leftline{6352:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6355 \leftline{6353:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6356 \leftline{6354:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6357 \leftline{6355:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6358 \leftline{6356:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6359 \leftline{6357:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6360 \leftline{6358:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6361 \leftline{6359:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6362 \leftline{6360:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6363 \leftline{6361:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6364 \leftline{6362:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6365 \leftline{6363:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6366 \leftline{6364:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6367 \leftline{6365:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6368 \leftline{6366:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6369 \leftline{6367:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6370 \leftline{6368:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6371 \leftline{6369:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6372 \leftline{6370:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6373 \leftline{6371:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6374 \leftline{6372:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6375 \leftline{6373:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6376 \leftline{6374:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6377 \leftline{6375:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6378 \leftline{6376:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6379 \leftline{6377:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6380 \leftline{6378:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6381 \leftline{6379:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6382 \leftline{6380:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6383 \leftline{6381:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6384 \leftline{6382:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6385 \leftline{6383:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6386 \leftline{6384:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6387 \leftline{6385:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6388 \leftline{6386:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6389 \leftline{6387:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6390 \leftline{6388:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6391 \leftline{6389:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6392 \leftline{6390:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6393 \leftline{6391:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6394 \leftline{6392:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6395 \leftline{6393:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6396 \leftline{6394:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6397 \leftline{6395:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6398 \leftline{6396:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6399 \leftline{6397:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6400 \leftline{6398:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6401 \leftline{6399:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6402 \leftline{6400:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6403 \leftline{6401:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6404 \leftline{6402:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6405 \leftline{6403:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6406 \leftline{6404:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6407 \leftline{6405:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6408 \leftline{6406:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6409 \leftline{6407:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6410 \leftline{6408:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6411 \leftline{6409:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6412 \leftline{6410:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6413 \leftline{6411:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6414 \leftline{6412:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6415 \leftline{6413:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6416 \leftline{6414:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6417 \leftline{6415:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6418 \leftline{6416:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6419 \leftline{6417:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6420 \leftline{6418:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6421 \leftline{6419:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6422 \leftline{6420:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6423 \leftline{6421:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6424 \leftline{6422:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6425 \leftline{6423:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6426 \leftline{6424:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6427 \leftline{6425:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6428 \leftline{6426:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6429 \leftline{6427:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6430 \leftline{6428:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6431 \leftline{6429:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6432 \leftline{6430:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6433 \leftline{6431:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6434 \leftline{6432:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6435 \leftline{6433:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6436 \leftline{6434:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6437 \leftline{6435:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6438 \leftline{6436:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6439 \leftline{6437:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6440 \leftline{6438:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6441 \leftline{6439:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6442 \leftline{6440:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6443 \leftline{6441:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6444 \leftline{6442:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6445 \leftline{6443:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6446 \leftline{6444:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6447 \leftline{6445:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6448 \leftline{6446:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6449 \leftline{6447:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6450 \leftline{6448:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6451 \leftline{6449:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6452 \leftline{6450:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6453 \leftline{6451:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6454 \leftline{6452:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6455 \leftline{6453:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6456 \leftline{6454:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6457 \leftline{6455:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6458 \leftline{6456:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6459 \leftline{6457:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6460 \leftline{6458:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6461 \leftline{6459:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6462 \leftline{6460:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6463 \leftline{6461:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6464 \leftline{6462:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6465 \leftline{6463:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6466 \leftline{6464:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6467 \leftline{6465:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6468 \leftline{6466:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6469 \leftline{6467:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6470 \leftline{6468:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6471 \leftline{6469:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6472 \leftline{6470:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6473 \leftline{6471:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6474 \leftline{6472:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6475 \leftline{6473:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6476 \leftline{6474:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6477 \leftline{6475:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6478 \leftline{6476:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6479 \leftline{6477:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6480 \leftline{6478:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6481 \leftline{6479:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6482 \leftline{6480:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6483 \leftline{6481:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6484 \leftline{6482:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6485 \leftline{6483:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6486 \leftline{6484:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6487 \leftline{6485:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6488 \leftline{6486:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6489 \leftline{6487:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6490 \leftline{6488:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6491 \leftline{6489:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6492 \leftline{6490:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6493 \leftline{6491:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6494 \leftline{6492:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6495 \leftline{6493:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6496 \leftline{6494:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6497 \leftline{6495:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6498 \leftline{6496:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6499 \leftline{6497:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6500 \leftline{6498:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6501 \leftline{6499:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6502 \leftline{6500:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6503 \leftline{6501:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6504 \leftline{6502:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6505 \leftline{6503:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6506 \leftline{6504:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6507 \leftline{6505:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6508 \leftline{6506:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6509 \leftline{6507:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6510 \leftline{6508:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6511 \leftline{6509:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6512 \leftline{6510:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6513 \leftline{6511:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6514 \leftline{6512:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6515 \leftline{6513:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6516 \leftline{6514:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6517 \leftline{6515:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6518 \leftline{6516:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6519 \leftline{6517:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6520 \leftline{6518:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6521 \leftline{6519:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6522 \leftline{6520:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6523 \leftline{6521:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6524 \leftline{6522:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6525 \leftline{6523:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6526 \leftline{6524:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6527 \leftline{6525:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6528 \leftline{6526:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6529 \leftline{6527:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6530 \leftline{6528:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6531 \leftline{6529:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6532 \leftline{6530:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6533 \leftline{6531:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6534 \leftline{6532:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6535 \leftline{6533:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6536 \leftline{6534:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6537 \leftline{6535:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6538 \leftline{6536:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6539 \leftline{6537:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6540 \leftline{6538:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6541 \leftline{6539:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6542 \leftline{6540:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6543 \leftline{6541:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6544 \leftline{6542:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6545 \leftline{6543:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6546 \leftline{6544:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6547 \leftline{6545:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6548 \leftline{6546:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6549 \leftline{6547:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6550 \leftline{6548:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6551 \leftline{6549:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6552 \leftline{6550:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6553 \leftline{6551:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6554 \leftline{6552:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6555 \leftline{6553:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6556 \leftline{6554:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6557 \leftline{6555:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6558 \leftline{6556:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6559 \leftline{6557:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6560 \leftline{6558:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6561 \leftline{6559:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6562 \leftline{6560:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6563 \leftline{6561:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6564 \leftline{6562:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6565 \leftline{6563:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6566 \leftline{6564:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6567 \leftline{6565:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6568 \leftline{6566:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6569 \leftline{6567:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6570 \leftline{6568:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6571 \leftline{6569:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6572 \leftline{6570:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6573 \leftline{6571:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6574 \leftline{6572:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6575 \leftline{6573:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6576 \leftline{6574:\ \ \ \ \ \ \ \ \ \symbol{}/); } 6577 \leftline{6575:\ \ \ \ \ \ \ \ \symbol{}\ \normal{}s\symbol{}); } 6578 \leftline{6576:\ \ \ \ \ \ \ \ \ \sy -
trunk/VUT/doc/SciReport/code/makefile
r243 r255 5 5 TEX = ${PAS:.pas=.tex} ${CPP:.cpp=.tex} 6 6 7 C2TEX = ./c2tex 7 C2TEX = ./c2tex.exe 8 8 9 9 -
trunk/VUT/doc/SciReport/introduction.tex
r249 r255 1 \chapter{Introduction} 1 \chapter{Overview of visibility problems and algorithms}%\chapter 2 3 \label{chap:overview} 4 \label{chap:classes} 5 6 This chapter provides a taxonomy of visibility problems encountered 7 in computer graphics based on the {\em problem domain} and the {\em 8 type of the answer}. The taxonomy helps to understand the nature of a 9 particular visibility problem and provides a tool for grouping 10 problems of similar complexity independently of their target 11 application. We discuss typical visibility problems encountered in 12 computer graphics and identify their relation to the proposed 13 taxonomy. A visibility problem can be solved by means of various 14 visibility algorithms. We classify visibility algorithms according to 15 several important criteria and discuss important concepts in the 16 design of a visibility algorithm. The taxonomy and the discussion of 17 the algorithm design sums up ideas and concepts that are independent 18 of any specific algorithm. This can help algorithm designers to 19 transfer the existing algorithms to solve visibility problems in other 20 application areas. 21 22 23 24 %% summarize the state of the art 25 %% visibility algorithms and their relation to the proposed taxonomy of 26 %% visibility problems. The second part of the survey should serve as a 27 %% catalogue of visibility algorithms that is indexed by the proposed 28 %% taxonomy of visibility problems. 29 30 31 32 \subsection{Problem domain} 33 \label{sec:prob_domain} 34 35 Computer graphics deals with visibility problems in the context of 36 2D, \m25d, or 3D scenes. The actual problem domain is given by 37 restricting the set of rays for which visibility should be 38 determined. 39 40 Below we list common problem domains used and the corresponding domain 41 restrictions: 42 43 \begin{enumerate} 44 \item 45 {\em visibility along a line} 46 \begin{enumerate} 47 \item line 48 \item ray (origin + direction) 49 \end{enumerate} 50 \newpage 51 \item 52 {\em visibility from a point} ({\em from-point visibility}) 53 \begin{enumerate} 54 \item point 55 \item point + restricted set of rays 56 \begin{enumerate} 57 \item point + raster image (discrete form) 58 \item point + beam (continuous form) 59 \end{enumerate} 60 \end{enumerate} 61 62 63 \item 64 {\em visibility from a line segment} ({\em from-segment visibility}) 65 \begin{enumerate} 66 \item line segment 67 \item line segment + restricted set of rays 68 \end{enumerate} 69 70 \item 71 {\em visibility from a polygon} ({\em from-polygon visibility}) 72 \begin{enumerate} 73 \item polygon 74 \item polygon + restricted set of rays 75 \end{enumerate} 76 77 \item 78 {\em visibility from a region} ({\em from-region visibility}) 79 \begin{enumerate} 80 \item region 81 \item region + restricted set of rays 82 \end{enumerate} 83 84 \item 85 {\em global visibility} 86 \begin{enumerate} 87 \item no further input (all rays in the scene) 88 \item restricted set of rays 89 \end{enumerate} 90 \end{enumerate} 91 92 The domain restrictions can be given independently of the dimension 93 of the scene, but the impact of the restrictions differs depending on 94 the scene dimension. For example, visibility from a polygon is 95 equivalent to visibility from a (polygonal) region in 2D, but not in 96 3D. 97 98 %***************************************************************************** 99 100 \section{Dimension of the problem-relevant line set} 101 102 The six domains of visibility problems stated in 103 Section~\ref{sec:prob_domain} can be characterized by the {\em 104 problem-relevant line set} denoted ${\cal L}_R$. We give a 105 classification of visibility problems according to the dimension of 106 the problem-relevant line set. We discuss why this classification is 107 important for understanding the nature of the given visibility problem 108 and for identifying its relation to other problems. 109 110 111 For the following discussion we assume that a line in {\em primal 112 space} can be mapped to a point in {\em line space}. For purposes of 113 the classification we define the line space as a vector space where a 114 point corresponds to a line in the primal space\footnote{A classical 115 mathematical definition says: Line space is a direct product of two 116 Hilbert spaces~\cite{Weisstein:1999:CCE}. However, this definition 117 differs from the common understanding of line space in computer 118 graphics~\cite{Durand99-phd}}. 119 120 121 122 \subsection{Parametrization of lines in 2D} 123 124 There are two independent parameters that specify a 2D line and thus 125 the corresponding set of lines is two-dimensional. There is a natural 126 duality between lines and points in 2D. For example a line expressed 127 as: $l:y=ax+c$ is dual to a point $p=(-c,a)$. This particular duality 128 cannot handle vertical lines. See Figure~\ref{fig:duality2d} for an 129 example of other dual mappings in the plane. To avoid the singularity 130 in the mapping, a line $l:ax+by+c=0$ can be represented as a point 131 $p_l=(a,b,c)$ in 2D projective space ${\cal 132 P}^2$~\cite{Stolfi:1991:OPG}. Multiplying $p_l$ by a non-zero scalar 133 we obtain a vector that represents the same line $l$. More details 134 about this singularity-free mapping will be discussed in 135 Chapter~\ref{chap:vfr2d}. 136 137 138 \begin{figure}[!htb] 139 \centerline{ 140 \includegraphics[width=0.9\textwidth,draft=\DRAFTFIGS]{figs/duality2d}} 141 \caption{Duality between points and lines in 2D.} 142 \label{fig:duality2d} 143 \end{figure} 144 145 146 147 148 149 To sum up: In 2D there are two degrees of freedom in description of a 150 line and the corresponding line space is two-dimensional. The 151 problem-relevant line set ${\cal L}_R$ then forms a $k$-dimensional 152 subset of ${\cal P}^2$, where $0\leq k \leq 2$. An illustration of the 153 concept of the problem-relevant line set is depicted in 154 Figure~\ref{fig:classes}. 155 156 157 \begin{figure}[htb] 158 \centerline{ 159 \includegraphics[width=0.8\textwidth,draft=\DRAFTFIGS]{figs/classes}} 160 \caption{The problem-relevant set of lines in 2D. The ${\cal L}_R$ for 161 visibility along a line is formed by a single point that is a mapping 162 of the given line. The ${\cal L}_R$ for visibility from a point $p$ is 163 formed by points lying on a line. This line is a dual mapping of the 164 point $p$. ${\cal L}_R$ for visibility from a line segment is formed 165 by a 2D region bounded by dual mappings of endpoints of the given 166 segment.} 167 \label{fig:classes} 168 \end{figure} 169 170 171 \subsection{Parametrization of lines in 3D} 172 173 174 Lines in 3D form a four-parametric space~\cite{p-rsls-97}. A line 175 intersecting a given scene can be described by two points on a sphere 176 enclosing the scene. Since the surface of the sphere is a two 177 parametric space, we need four parameters to describe the line. 178 179 The {\em two plane parametrization} of 3D lines describes a line by 180 points of intersection with the given two 181 planes~\cite{Gu:1997:PGT}. This parametrization exhibits a singularity 182 since it cannot describe lines parallel to these planes. See 183 Figure~\ref{fig:3dlines} for illustrations of the spherical and the 184 two plane parameterizations. 185 186 187 \begin{figure}[htb] 188 \centerline{ 189 \includegraphics[width=0.78\textwidth,draft=\DRAFTFIGS]{figs/3dlines}} 190 \caption{Parametrization of lines in 3D. (left) A line can be 191 described by two points on a sphere enclosing the scene. (right) The 192 two plane parametrization describes a line by point of intersection 193 with two given planes.} 194 \label{fig:3dlines} 195 \end{figure} 196 197 Another common parametrization of 3D lines are the {\em \plucker 198 coordinates}. \plucker coordinates of an oriented 3D line are a six 199 tuple that can be understood as a point in 5D oriented projective 200 space~\cite{Stolfi:1991:OPG}. There are six coordinates in \plucker 201 representation of a line although we know that the ${\cal L}_R$ is 202 four-dimensional. This can be explained as follows: 203 204 \begin{itemize} 205 \item Firstly, \plucker coordinates are {\em homogeneous 206 coordinates} of a 5D point. By multiplication of the coordinates 207 by any positive scalar we get a mapping of the same line. 208 \item Secondly, only 4D subset of the 5D oriented projective space 209 corresponds to real lines. This subset is a 4D ruled quadric called 210 the {\em \plucker quadric} or the {\em Grassman 211 manifold}~\cite{Stolfi:1991:OPG,Pu98-DSGIV}. 212 \end{itemize} 213 214 Although the \plucker coordinates need more coefficients they have no 215 singularity and preserve some linearities: lines intersecting a set of 216 lines in 3D correspond to an intersection of 5D hyperplanes. More details 217 on \plucker coordinates will be discussed in 218 Chapters~\ref{chap:vfr25d} and~\ref{chap:vfr3d} where they are used to 219 solve the from-region visibility problem. 220 221 To sum up: In 3D there are four degrees of freedom in the 222 description of a line and thus the corresponding line space is 223 four-dimensional. Fixing certain line parameters (e.g. direction) the 224 problem-relevant line set, denoted ${\cal L}_R$, forms a 225 $k$-dimensional subset of ${\cal P}^4$, where $0\leq k \leq 4$. 226 227 228 \subsection{Visibility along a line} 229 230 The simplest visibility problems deal with visibility along a single 231 line. The problem-relevant line set is zero-dimensional, i.e. it is 232 fully specified by the given line. A typical example of a visibility 233 along a line problem is {\em ray shooting}. 234 235 A similar problem to ray shooting is the {\em point-to-point} 236 visibility. The point-to-point visibility determines whether the 237 line segment between two points is occluded, i.e. it has an 238 intersection with an opaque object in the scene. Point-to-point 239 visibility provides a visibility classification (answer 1a), whereas 240 ray shooting determines a visible object (answer 2a) and/or a point of 241 intersection (answer 3a). Note that the {\em point-to-point} 242 visibility can be solved easily by means of ray shooting. Another 243 constructive visibility along a line problem is determining the {\em 244 maximal free line segments} on a given line. See Figure~\ref{fig:val} 245 for an illustration of typical visibility along a line problems. 246 247 \begin{figure}[htb] 248 \centerline{ 249 \includegraphics[width=0.85\textwidth,draft=\DRAFTFIGS]{figs/val}} 250 \caption{Visibility along a line. (left) Ray shooting. (center) Point-to-point visibility. (right) Maximal free line segments between two points.} 251 \label{fig:val} 252 \end{figure} 253 254 255 \subsection{Visibility from a point} 256 257 Lines intersecting a point in 3D can be described by two 258 parameters. For example the lines can be expressed by an intersection 259 with a unit sphere centered at the given point. The most common 260 parametrization describes a line by a point of intersection with a 261 given viewport. Note that this parametrization accounts only for a 262 subset of lines that intersect the viewport (see Figure~\ref{fig:vfp}). 263 264 \begin{figure}[htb] 265 \centerline{ 266 \includegraphics[width=0.6\textwidth,draft=\DRAFTFIGS]{figs/vfp}} 267 \caption{Visibility from a point. Lines intersecting a point can be described by a 268 point of intersection with the given viewport.} 269 \label{fig:vfp} 270 \end{figure} 271 272 In 3D the problem-relevant line set ${\cal L}_R$ is a 2D subset of 273 the 4D line space. In 2D the ${\cal L}_R$ is a 1D subset of the 2D 274 line space. The typical visibility from a point problem is the visible 275 surface determination. Due to its importance the visible surface 276 determination is covered by the majority of existing visibility 277 algorithms. Other visibility from a point problem is the construction 278 of the {\em visibility map} or the {\em point-to-region visibility} 279 that classifies a region as visible, invisible, or partially visible 280 with respect to the given point. 281 282 283 \subsection{Visibility from a line segment} 284 285 Lines intersecting a line segment in 3D can be described by three 286 parameters. One parameter fixes the intersection of the line with the 287 segment the other two express the direction of the line. The 288 problem-relevant line set ${\cal L}_R$ is three-dimensional and it can 289 be understood as a 2D cross section of ${\cal L}_R$ swept according 290 to the translation on the given line segment (see 291 Figure~\ref{fig:vls}). 292 293 294 \begin{figure}[htb] 295 \centerline{ 296 \includegraphics[width=0.8\textwidth,draft=\DRAFTFIGS]{figs/vls}} 297 \caption{Visibility from a line segment. (left) Line segment, a 298 spherical object $O$, and its projections $O^*_0$, $O^*_{0.5}$, $O^*_{1}$ 299 with respect to the three points on the line segment. (right) 300 A possible parametrization of lines that stacks up 2D planes. 301 Each plane corresponds to mappings of lines intersecting a given 302 point on the line segment.} 303 \label{fig:vls} 304 \end{figure} 305 306 In 2D lines intersecting a line segment form a two-dimensional 307 problem-relevant line set. Thus for the 2D case the ${\cal L}_R$ is a 308 two-dimensional subset of 2D line space. 309 310 311 \subsection{Visibility from a region} 312 313 Visibility from a region (or from-region visibility) involves the 314 most general visibility problems. In 3D the ${\cal L}_R$ is a 4D 315 subset of the 4D line space. In 2D the ${\cal L}_R$ is a 2D subset of 316 the 2D line space. Consequently, in the proposed classification 317 visibility from a region in 2D is equivalent to visibility from a line 318 segment in 2D. 319 320 A typical visibility from a region problem is the problem of {\em 321 region-to-region} visibility that aims to determine if the two given 322 regions in the scene are visible, invisible, or partially visible (see 323 Figure~\ref{fig:vfr}). Another visibility from region problem is the 324 computation of a {\em potentially visible set} (PVS) with respect to a 325 given view cell. The PVS consists of a set of objects that are 326 potentially visible from any point inside the view cell. Further 327 visibility from a region problems include computing form factors 328 between two polygons, soft shadow algorithms or discontinuity meshing. 329 330 331 \begin{figure}[htb] 332 \centerline{ 333 \includegraphics[width=0.6\textwidth,draft=\DRAFTFIGS]{figs/vfr}} 334 \caption{Visibility from a region --- an example of the region-to-region 335 visibility. Two regions and two occluders $A$, $B$ 336 in a 2D scene. In line space the region-to-region visibility can be 337 solved by subtracting the sets of lines $A^*$ and $B^*$ 338 intersecting objects $A$ and $B$ from the lines intersecting both 339 regions.} 340 \label{fig:vfr} 341 \end{figure} 342 343 344 \subsection{Global visibility} 345 346 According to the classification the global visibility problems can be 347 seen as an extension of the from-region visibility problems. The 348 dimension of the problem-relevant line set is the same ($k=2$ for 2D 349 and $k=4$ for 3D scenes). Nevertheless, the global visibility problems 350 typically deal with much larger set of rays, i.e. all rays that 351 penetrate the scene. Additionally, there is no given set of reference 352 points from which visibility is studied and hence there is no given 353 priority ordering of objects along each particular line from ${\cal 354 L}_R$. Therefore an additional parameter must be used to describe 355 visibility (visible object) along each ray. 356 357 358 \subsection{Summary} 359 360 The classification of visibility problems according to the dimension 361 of the problem-relevant line set is summarized in 362 Table~\ref{table:classification3D}. This classification provides 363 means for understanding how difficult it is to compute, describe, and 364 maintain visibility for a particular class of problems. For example a 365 data structure representing the visible or occluded parts of the scene 366 for the visibility from a point problem needs to partition a 2D ${\cal 367 L}_R$ into visible and occluded sets of lines. This observation 368 conforms with the traditional visible surface algorithms -- they 369 partition a 2D viewport into empty/nonempty regions and associate each 370 nonempty regions (pixels) with a visible object. In this case the 371 viewport represents the ${\cal L}_R$ as each point of the viewport 372 corresponds to a line through that point. To analytically describe 373 visibility from a region a subdivision of 4D ${\cal L}_R$ should be 374 performed. This is much more difficult than the 2D 375 subdivision. Moreover the description of visibility from a region 376 involves non-linear subdivisions of both primal space and line space 377 even for polygonal scenes~\cite{Teller:1992:CAA,Durand99-phd}. 378 379 \begin{table*}[htb] 380 \begin{small} 381 \begin{center} 382 \begin{tabular}{|l|c|l|} 383 \hline 384 \multicolumn{3}{|c|}{2D} \\ 385 \hline 386 \mc{domain} & $d({\cal L}_R)$ & \mc{problems} \\ 387 \hline 388 \hline 389 \begin{tabular}{l}visibility along a line\end{tabular} & 0 & \begin{tabular}{l}ray shooting, point-to-point visibility\end{tabular}\\ 390 \hline 391 \begin{tabular}{l}visibility from a point\end{tabular} & 1 & \begin{tabular}{l}view around a point, point-to-region visibility\end{tabular}\\ 392 \hline 393 \begin{tabular}{l} visibility from a line segment \\ visibility from region \\ global visibility \end{tabular} 394 & 2 & \begin{tabular}{l} region-to-region visibility, PVS \end{tabular}\\ 395 \hline 396 \hline 397 \multicolumn{3}{|c|}{3D} \\ 398 \hline 399 \mc{domain} & $d({\cal L}_R)$ & \mc{problems} \\ 400 \hline 401 \hline 402 \begin{tabular}{l}visibility along a line\end{tabular} & 0 & \begin{tabular}{l} ray shooting, point-to-point visibility \end{tabular}\\ 403 \hline 404 \begin{tabular}{l}from point in a surface\end{tabular} & 1 & \begin{tabular}{l} see visibility from point in 2D \end{tabular}\\ 405 \hline 406 \begin{tabular}{l}visibility from a point\end{tabular} & 2 & \begin{tabular}{l} visible (hidden) surfaces, point-to-region visibility,\\ 407 visibility map, hard shadows 408 \end{tabular} \\ 409 \hline 410 \begin{tabular}{l}visibility from a line segment\end{tabular} & 3 & \begin{tabular}{l} segment-to-region visibility (rare) \end{tabular}\\ 411 \hline 412 \begin{tabular}{l}visibility from a region\\global visibility\end{tabular} & 4 & \begin{tabular}{l} region-region visibility, PVS, aspect graph,\\ 413 soft shadows, discontinuity meshing 414 \end{tabular} \\ 415 416 \hline 417 \end{tabular} 418 \end{center} 419 \end{small} 420 \caption{Classification of visibility problems in 2D and 3D according 421 to the dimension of the problem-relevant line set.} 422 \label{table:classification3D} 423 \end{table*} 424 425 426 427 428 429 \section{Classification of visibility algorithms} 430 431 432 The taxonomy of visibility problems groups similar visibility problems 433 in the same class. A visibility problem can be solved by means of 434 various visibility algorithms. A visibility algorithm poses further 435 restrictions on the input and output data. These restrictions can be 436 seen as a more precise definition of the visibility problem that is 437 solved by the algorithm. 438 439 Above we classified visibility problems according to the problem 440 domain and the desired answers. In this section we provide a 441 classification of visibility algorithms according to other 442 important criteria characterizing a particular visibility algorithm. 443 444 445 \subsection{Scene restrictions} 446 \label{sec:scene_restrictions} 447 448 Visibility algorithms can be classified according to the restrictions 449 they pose on the scene description. The type of the scene description 450 influences the difficulty of solving the given problem: it is simpler 451 to implement an algorithm computing a visibility map for scenes 452 consisting of triangles than for scenes with NURBS surfaces. We list 453 common restrictions on the scene primitives suitable for visibility 454 computations: 455 456 457 \begin{itemize} 458 \item 459 triangles, convex polygons, concave polygons, 460 461 \item 462 volumetric data, 463 464 \item 465 points, 466 467 \item 468 general parametric, implicit, or procedural surfaces. 469 470 \end{itemize} 471 472 Some attributes of scenes objects further increase the complexity of the visibility computation: 473 474 \begin{itemize} 475 476 \item 477 transparent objects, 478 479 \item 480 dynamic objects. 481 482 \end{itemize} 483 484 The majority of analytic visibility algorithms deals with static 485 polygonal scenes without transparency. The polygons are often 486 subdivided into triangles for easier manipulation and representation. 487 488 \subsection{Accuracy} 489 \label{sec:accuracy} 490 491 Visibility algorithms can be classified according to the accuracy of 492 the result as: 493 494 \begin{itemize} 495 \item exact, 496 \item conservative, 497 \item aggressive, 498 \item approximate. 499 \end{itemize} 500 501 502 An exact algorithm provides an exact analytic result for the given 503 problem (in practice however this result is typically influenced by 504 the finite precision of the floating point arithmetics). A 505 conservative algorithm overestimates visibility, i.e. it never 506 misses any visible object, surface or point. An aggressive algorithm 507 always underestimates visibility, i.e. it never reports an invisible 508 object, surface or point as visible. An approximate algorithm 509 provides only an approximation of the result, i.e. it can overestimate 510 visibility for one input and underestimate visibility for another 511 input. 512 513 The classification according to the accuracy is best illustrated on 514 computing PVS: an exact algorithm computes an exact PVS. A 515 conservative algorithm computes a superset of the exact PVS. An 516 aggressive algorithm determines a subset of the exact PVS. An 517 approximate algorithm computes an approximation to the exact PVS that 518 is neither its subset or its superset for all possible inputs. 519 520 521 \subsection{Solution space} 522 523 \label{sec:solspace} 524 525 The solution space is the domain in which the algorithm determines 526 the desired result. Note that the solution space does not need to 527 match the domain of the result. 528 529 The algorithms can be classified as: 530 531 \begin{itemize} 532 \item discrete, 533 \item continuous, 534 \item hybrid. 535 \end{itemize} 536 537 A discrete algorithm solves the problem using a discrete solution 538 space; the solution is typically an approximation of the result. A 539 continuous algorithm works in a continuous domain and often computes an 540 analytic solution to the given problem. A hybrid algorithm uses both 541 the discrete and the continuous solution space. 542 543 The classification according to the solution space is easily 544 demonstrated on visible surface algorithms (these algorithms will be 545 discussed in Section~\ref{chap:traditional}). The 546 z-buffer~\cite{Catmull:1975:CDC} is a common example of a discrete 547 algorithm. The Weiler-Atherton algorithm~\cite{Weiler:1977:HSR} is an 548 example of a continuous one. A hybrid solution space is used by 549 scan-line algorithms that solve the problem in discrete steps 550 (scan-lines) and for each step they provide a continuous solution 551 (spans). 552 553 Further classification reflects the semantics of the solution 554 space. According to this criteria we can classify the algorithms as: 555 556 \begin{itemize} 557 \item primal space (object space), 558 \item line space, 559 \begin{itemize} 560 \item image space, 561 \item general, 562 \end{itemize} 563 \item hybrid. 564 \end{itemize} 565 566 A primal space algorithm solves the problem by studying the 567 visibility between objects without a transformation to a different 568 solution space. A line space algorithm studies visibility using a 569 transformation of the problem to line space. Image space algorithms 570 can be seen as an important subclass of line space algorithms for 571 solving visibility from a point problems in 3D. These algorithms cover 572 all visible surface algorithms and many visibility culling 573 algorithms. They solve visibility in a given image plane that 574 represents the problem-relevant line set ${\cal L}_R$ --- each ray 575 originating at the viewpoint corresponds to a point in the image plane. 576 577 The described classification differs from the sometimes mentioned 578 understanding of image space and object space algorithms that 579 incorrectly considers all image space algorithms discrete and all 580 object space algorithms continuous. 581 582 583 %***************************************************************************** 584 585 \section{Visibility algorithm design} 586 587 Visibility algorithm design can be decoupled into a series of 588 important design decisions. The first step is to clearly formulate a 589 problem that should be solved by the algorithm. The taxonomy stated 590 above can help to understand the difficulty of solving the given 591 problem and its relationship to other visibility problems in computer 592 graphics. The following sections summarize important steps in the 593 design of a visibility algorithm and discuss some commonly used 594 techniques. 595 596 597 \subsection{Scene structuring} 598 599 We discuss two issues dealing with structuring of the scene: 600 identifying occluders and occludees, and spatial data structures for 601 scene description. 602 603 \subsubsection{Occluders and occludees} 604 %occluders, occludees, 605 606 Many visibility algorithms restructure the scene description to 607 distinguish between {\em occluders} and {\em occludees}. Occluders 608 are objects that cause changes in visibility (occlusion). Occludees 609 are objects that do not cause occlusion, but are sensitive to 610 visibility changes. In other words the algorithm studies visibility of 611 occludees with respect to occluders. 612 613 The concept of occluders and occludees is used to increase the 614 performance of the algorithm in both the running time and the accuracy 615 of the algorithm by reducing the number of primitives used for 616 visibility computations (the performance measures of visibility 617 algorithms will be discussed in 618 Section~\ref{sec:performance}). Typically, the number of occluders and 619 occludees is significantly smaller than the total number of objects in 620 the scene. Additionally, both the occluders and the occludees can be 621 accompanied with a topological (connectivity) information that might 622 be necessary for an efficient functionality of the algorithm. 623 624 The concept of occluders is applicable to most visibility 625 algorithms. The concept of occludees is useful for algorithms 626 providing answers (1) and (2) according to the taxonomy of 627 Section~\ref{sec:answers}. Some visibility algorithms do not 628 distinguish between occluders and occludees at all. For example all 629 traditional visible surface algorithms use all scene objects as both 630 occluders and occludees. 631 632 Both the occluders and the occludees can be represented by {\em 633 virtual objects} constructed from the scene primitives: the occluders 634 as simplified inscribed objects, occludees as simplified circumscribed 635 objects such as bounding boxes. Algorithms can be classified according 636 to the type of occluders they deal with. The classification follows 637 the scene restrictions discussed in 638 Section~\ref{sec:scene_restrictions} and adds classes specific to 639 occluder restrictions: 640 641 \begin{itemize} 642 \item 643 vertical prisms, 644 \item 645 axis-aligned polygons, 646 \item 647 axis-aligned rectangles. 648 \end{itemize} 649 650 The vertical prisms that are specifically important for computing 651 visibility in \m25d scenes. Some visibility algorithms can deal only 652 with axis-aligned polygons or even more restrictive axis-aligned 653 rectangles. 654 655 656 \begin{figure}[htb] 657 \centerline{ 658 \includegraphics[width=0.7\textwidth,draft=\DRAFTIMAGES]{images/houses}} 659 \caption{Occluders in an urban scene. In urban scenes the occluders 660 can be considered vertical prisms erected above the ground.} 661 \label{fig:houses} 662 \end{figure} 663 664 Other important criteria for evaluating algorithms according to 665 occluder restrictions include: 666 667 668 \begin{itemize} 669 \item 670 connectivity information, 671 \item 672 intersecting occluders. 673 \end{itemize} 674 675 676 The explicit knowledge of the connectivity is crucial for efficient 677 performance of some visibility algorithms (performance measures will 678 be discussed in the Section~\ref{sec:performance}). Intersecting 679 occluders cannot be handled properly by some visibility algorithms. 680 In such a case the possible occluder intersections should be resolved 681 in preprocessing. 682 683 A similar classification can be applied to occludees. However, the 684 visibility algorithms typically pose less restrictions on occludees 685 since they are not used to describe visibility but only to check 686 visibility with respect to the description provided by the occluders. 687 688 689 %occluder selection, occluder LOD, virtual occluders, 690 691 \subsubsection{Scene description} 692 693 The scene is typically represented by a collection of objects. For 694 purposes of visibility computations it can be advantageous to transform 695 the object centered representation to a spatial representation by 696 means of a spatial data structure. For example the scene can be 697 represented by an octree where full voxels correspond to opaque parts 698 of the scene. Such a data structure is then used as an input to the 699 visibility algorithm. The spatial data structures for the scene 700 description are used for the following reasons: 701 702 \begin{itemize} 703 704 \item {\em Regularity}. A spatial data structure typically provides a 705 regular description of the scene that avoids complicated 706 configurations or overly detailed input. Furthermore, the 707 representation can be rather independent of the total scene 708 complexity. 709 710 \item {\em Efficiency}. The algorithm can be more efficient in both 711 the running time and the accuracy of the result. 712 713 \end{itemize} 714 715 716 Additionally, spatial data structures can be applied to structure the 717 solution space and/or to represent the desired solution. Another 718 application of spatial data structures is the acceleration of the 719 algorithm by providing spatial indexing. These applications of spatial 720 data structures will be discussed in 721 Sections~\ref{sec:solution_space_ds} 722 and~\ref{sec:acceleration_ds}. Note that a visibility algorithm can 723 use a single data structure for all three purposes (scene 724 structuring, solution space structuring, and spatial indexing) while 725 another visibility algorithm can use three conceptually different data 726 structures. 727 728 729 % gernots alg. 730 %used as solution space DS and/or acceleration DS 731 732 \subsection{Solution space data structures} 733 \label{sec:solution_space_ds} 734 735 A solution space data structure is used to maintain an intermediate 736 result during the operation of the algorithm and it is used to 737 generate the result of the algorithm. We distinguish between the 738 following solution space data structures: 739 740 \begin{itemize} 741 742 \item general data structures 743 744 single value (ray shooting), winged edge, active edge table, etc. 745 746 \item primal space (spatial) data structures 747 748 uniform grid, BSP tree (shadow volumes), 749 bounding volume hierarchy, kD-tree, octree, etc. 750 751 \item image space data structures 752 753 2D uniform grid (shadow map), 2D BSP tree, quadtree, kD-tree, etc. 754 755 \item line space data structures 756 757 regular grid, kD-tree, BSP tree, etc. 758 759 \end{itemize} 760 761 The image space data structures can be considered a special case of 762 the line space data structures since a point in the image represents a 763 ray through that point (see also Section~\ref{sec:solspace}). 764 765 If the dimension of the solution space matches the dimension of the 766 problem-relevant line set, the visibility problem can often be solved 767 with high accuracy by a single sweep through the scene. If the 768 dimensions do not match, the algorithm typically needs more passes to 769 compute a result with satisfying accuracy~\cite{EVL-2000-60,wonka00} 770 or neglects some visibility effects altogether~\cite{EVL-2000-59}. 771 772 773 %ray shooting none 774 %visible surface algorithms - list of scan-line intersections, BSP tree, 775 % z-buffer (graphics hardware) 776 %shadow computation shadow volumes, BSP tree, shadow map (graphics hardware) 777 %PVS for view cell - occlusion tree 778 779 780 \subsection{Performance} 781 \label{sec:performance} 782 783 %output sensitivity, memory consumption, running time, scalability 784 785 786 The performance of a visibility algorithm can be evaluated by measuring 787 the quality of the result, the running time and the memory consumption. 788 In this section we discuss several concepts related to these 789 performance criteria. 790 791 792 \subsubsection{Quality of the result} 793 794 One of the important performance measures of a visibility algorithm 795 is the quality of the result. The quality measure depends on the type 796 of the answer to the problem. Generally, the quality of the result 797 can be expressed as a distance from an exact result in the solution 798 space. Such a quality measure can be seen as a more precise 799 expression of the accuracy of the algorithm discussed in 800 Section~\ref{sec:accuracy}. 801 802 For example a quality measure of algorithms computing a PVS can be 803 expressed by the {\em relative overestimation} and the {\em relative 804 underestimation} of the PVS with respect to the exact PVS. We can 805 define a quality measure of an algorithm $A$ on input $I$ as a tuple 806 $\mbi{Q}^A(I)$: 807 808 \begin{eqnarray} 809 \mbi{Q}^A(I) & = & (Q^A_o(I), Q^A_u(I)), \qquad I \in {\cal D} \\ 810 Q^A_o(I) & = & {|S^A(I) \setminus S^{\cal E}(I)| \over |S^{\cal E}(I)|} \\ 811 Q^A_u(I) & = & {|S^{\cal E}(I) \setminus S^A(I) | \over |S^{\cal E}(I)|} 812 \end{eqnarray} 813 814 where $I$ is an input from the input domain ${\cal D}$, $S^A(I)$ is 815 the PVS determined by the algorithm $A$ for input $I$ and $S^{\cal 816 E}(I)$ is the exact PVS for the given input. $Q^A_o(I)$ expresses the 817 {\em relative overestimation} of the PVS, $Q^A_u(I)$ is the {\em 818 relative underestimation}. 819 820 The expected quality of the algorithm over all possible inputs can be 821 given as: 822 823 \begin{eqnarray} 824 Q^A & = & E[\| \mbi{Q}^A(I) \|] \\ 825 & = & \sum_{\forall I \in {\cal D}} f(I).\sqrt{Q^A_o(I)^2 + Q^A_o(I)^2} 826 \end{eqnarray} 827 828 where f(I) is the probability density function expressing the 829 probability of occurrence of input $I$. The quality measure 830 $\mbi{Q}^A(I)$ can be used to classify a PVS algorithm into one of the 831 four accuracy classes according to Section~\ref{sec:accuracy}: 832 833 \begin{enumerate} 834 \item exact\\ 835 $\forall I \in {\cal D} :Q_o^A(I) = 0 \wedge Q_u^A(I) = 0$ 836 \item conservative\\ 837 $\forall I \in {\cal D} : Q_o^A(I) \geq 0 \wedge Q_u^A(I) = 0$ 838 \item aggressive \\ 839 $\forall I \in {\cal D} : Q_o^A(I) = 0 \wedge Q_u^A(I) \geq 0$ 840 \item approximate \\ 841 $\qquad \exists I_j, I_k \in {\cal D}: Q_o^A(I_j) > 0 \wedge Q_u^A(I_k) > 0$ 842 \end{enumerate} 843 844 845 846 \subsubsection{Scalability} 847 848 Scalability expresses the ability of the visibility algorithm to cope 849 with larger inputs. A more precise definition of scalability of an 850 algorithm depends on the problem for which the algorithm is 851 designed. The scalability of an algorithm can be studied with respect 852 to the size of the scene (e.g. number of scene objects). Another 853 measure might consider the dependence of the algorithm on the number 854 of only the visible objects. Scalability can also be studied 855 according to the given domain restrictions, e.g. volume of the view 856 cell. 857 858 A well designed visibility algorithm should be scalable with respect 859 to the number of structural changes or discontinuities of 860 visibility. Furthermore, its performance should be given by the 861 complexity of the visible part of the scene. These two important 862 measures of scalability of an algorithm are discussed in the next two 863 sections. 864 865 \subsubsection{Use of coherence} 866 867 Scenes in computer graphics typically consist of objects whose 868 properties vary smoothly from one part to another. A view of such a 869 scene contains regions of smooth changes (changes in color, depth, 870 texture,etc.) and discontinuities that let us distinguish between 871 objects. The degree to which the scene or its projection exhibit local 872 similarities is called {\em coherence}~\cite{Foley90}. 873 874 Coherence can be exploited by reusing calculations made for one part 875 of the scene for nearby parts. Algorithms exploiting coherence are 876 typically more efficient than algorithms computing the result from the 877 scratch. 878 879 Sutherland et al.~\cite{Sutherland:1974:CTH} identified several 880 different types of coherence in the context of visible surface 881 algorithms. We simplify the classification proposed by Sutherland et 882 al. to reflect general visibility problems and distinguish between the 883 following three types of {\em visibility coherence}: 884 885 \begin{itemize} 886 887 \item {\em Spatial coherence}. Visibility of points in space tends to 888 be coherent in the sense that the visible part of the scene consists 889 of compact sets (regions) of visible and invisible points. We can 890 reuse calculations made for a given region for the neighboring 891 regions or its subregions. 892 893 \item {\em Line-space coherence}. Sets of similar rays tend to have the 894 same visibility classification, i.e. the rays intersect the same 895 object. We can reuse calculations for the given set of rays for its 896 subsets or the sets of nearby rays. 897 898 \item {\em Temporal coherence}. Visibility at two successive moments is 899 likely to be similar despite small changes in the scene or a 900 region/point of interest. Calculations made for one frame can be 901 reused for the next frame in a sequence. 902 903 \end{itemize} 904 905 The degree to which the algorithm exploits various types of coherence 906 is one of the major design paradigms in research of new visibility 907 algorithms. The importance of exploiting coherence is emphasized by 908 the large amount of data that need to be processed by the current 909 rendering algorithms. 910 911 912 \subsubsection{Output sensitivity} 913 914 915 An algorithm is said to be {\em output-sensitive} if its running time 916 is sensitive to the size of output. In the computer graphics community 917 the term output-sensitive algorithm is used in a broader meaning than 918 in computational geometry~\cite{berg:97}. The attention is paid to a 919 practical usage of the algorithm, i.e. to an efficient implementation 920 in terms of the practical average case performance. The algorithms are 921 usually evaluated experimentally using test data and measuring the 922 running time and the size of output of the algorithm. The formal 923 average case analysis is usually not carried out for the following two 924 reasons: 925 926 \begin{enumerate} 927 928 \item {\em The algorithm is too obscured}. Visibility algorithms 929 exploit data structures that are built according to various heuristics 930 and it is difficult to derive proper bounds even on the expected size 931 of these supporting data structures. 932 933 \item {\em It is difficult to properly model the input data}. In 934 general it is difficult to create a reasonable model that captures 935 properties of real world scenes as well as the probability of 936 occurrence of a particular configuration. 937 938 \end{enumerate} 939 940 A visibility algorithm can often be divided into the {\em offline} 941 phase and the {\em online} phase. The offline phase is also called 942 preprocessing. The preprocessing is often amortized over many 943 executions of the algorithm and therefore it is advantageous to 944 express it separately from the online running time. 945 946 For example an ideal output-sensitive visible surface algorithm runs 947 in $O(n\log n + k^2)$, where $n$ is the number of scene polygons (size 948 of input) and $k$ is the number of visible polygons (in the worst case 949 $k$ visible polygons induce $O(k^2)$ visible polygon fragments). 950 951 952 953 \subsubsection{Acceleration data structures} 954 \label{sec:acceleration_ds} 955 956 Acceleration data structures are often used to achieve the performance 957 goals of a visibility algorithm. These data structures allow efficient 958 point location, proximity queries, or scene traversal required by many 959 visibility algorithms. 960 961 With a few exceptions the acceleration data structures provide a {\em 962 spatial index} for the scene by means of a spatial data structure. 963 The spatial data structures group scene objects according to the 964 spatial proximity. On the contrary line space data structures group 965 rays according to their proximity in line space. 966 967 The common acceleration data structures can be divided into the 968 following categories: 969 970 \begin{itemize} 971 \item Spatial data structures 972 \begin{itemize} 973 \item {\em Spatial subdivisions} 974 975 uniform grid, hierarchical grid, kD-tree, BSP tree, octree, quadtree, etc. 976 977 \item {\em Bounding volume hierarchies} 978 979 hierarchy of bounding spheres, 980 hierarchy of bounding boxes, etc. 981 982 \item {\em Hybrid} 983 984 hierarchy of uniform grids, hierarchy of kD-trees, etc. 985 986 \end{itemize} 987 988 \item Line space data structures 989 \begin{itemize} 990 \item {\em General} 991 992 regular grid, kD-tree, BSP tree, etc. 993 \end{itemize} 994 995 \end{itemize} 996 997 998 999 \subsubsection{Use of graphics hardware} 1000 1001 Visibility algorithms can be accelerated by exploiting dedicated 1002 graphics hardware. The hardware implementation of the z-buffer 1003 algorithm that is common even on a low-end graphics hardware can be 1004 used to accelerate solutions to other visibility problems. Recall that the 1005 z-buffer algorithm solves the visibility from a point problem by 1006 providing a discrete approximation of the visible surfaces. 1007 %$(3-D-2b(i), A-3b)$ 1008 1009 A visibility algorithm can be accelerated by the graphics hardware if 1010 it can be decomposed so that the decomposition includes the 1011 problem solved by the z-buffer or a series of such problems. 1012 %$(3-D-2b(i), A-3b)$ 1013 Prospectively, the recent features of the graphics hardware, such as 1014 the pixel and vertex shaders allow easier application of the graphics 1015 hardware for solving specific visibility tasks. The software interface 1016 between the graphics hardware and the CPU is usually provided by 1017 OpenGL~\cite{Moller02-RTR}. 1018 1019 1020 \section{Visibility in urban environments} 1021 1022 Urban environments constitute an important class of real world scenes 1023 computer graphics deals with. We can identify two fundamental 1024 subclasses of urban scenes. Firstly, we consider {\em outdoor} scenes, 1025 i.e. urban scenes as observed from streets, parks, rivers, or a 1026 bird's-eye view. Secondly, we consider {\em indoor} scenes, i.e. urban 1027 scenes representing building interiors. In the following two sections 1028 we discuss the essential characteristics of visibility in both the 1029 outdoor and the indoor scenes. The discussion is followed by 1030 summarizing the suitable visibility techniques. 1031 1032 1033 \subsection{Analysis of visibility in outdoor urban areas} 1034 1035 \label{sec:analysis_ue} 1036 \label{sec:ANALYSIS_UE} 1037 1038 1039 Outdoor urban scenes are viewed using two different scenarios. In a 1040 {\em flyover} scenario the scene is observed from the bird's eye 1041 view. A large part of the scene is visible. Visibility is mainly 1042 restricted due to the structure of the terrain, atmospheric 1043 constraints (fog, clouds) and the finite resolution of human 1044 retina. Rendering of the flyover scenarios is usually accelerated 1045 using LOD, image-based rendering and terrain visibility algorithms, 1046 but there is no significant potential for visibility culling. 1047 1048 In a {\em walkthrough} scenario the scene is observed from a 1049 pedestrians point of view and the visibility is often very 1050 restricted. In the remainder of this section we discuss the walkthrough 1051 scenario in more detail. 1052 1053 Due to technological and physical restrictions urban scenes viewed 1054 from outdoor closely resemble a 2D {\em height function}, i.e. a 1055 function expressing the height of the scene elements above the ground. 1056 The height function cannot capture certain objects such as bridges, 1057 passages, subways, or detailed objects such as trees. Nevertheless 1058 buildings, usually the most important part of the scene, can be 1059 captured accurately by the height function in most cases. For the 1060 sake of visibility computations the objects that cannot be represented 1061 by the height function can be ignored. The resulting scene is then 1062 called a {\em \m25d scene}. 1063 1064 In a dense urban area with high buildings visibility is very 1065 restricted when the scene is viewed from a street (see 1066 Figure~\ref{fig:outdoor}-a). Only buildings from nearby streets are 1067 visible. Often there are no buildings visible above roofs of buildings 1068 close to the viewpoint. In such a case visibility is essentially 1069 two-dimensional, i.e. it could be solved accurately using a 2D 1070 footprint of the scene and a 2D visibility algorithm. In areas with 1071 smaller houses of different shapes visibility is not so severely 1072 restricted since some objects can be visible by looking over other 1073 objects. The view complexity increases (measured in number of visible 1074 objects) and the height structure becomes increasingly 1075 important. Complex views with far visibility can be seen also near 1076 rivers, squares, and parks (see Figure~\ref{fig:outdoor}-b). 1077 1078 \begin{figure}[htb] 1079 \centerline{ 1080 \hfill 1081 \includegraphics[width=0.45\textwidth,draft=\DRAFTIMAGES]{images/foto_street1} 1082 \hfill 1083 \includegraphics[width=0.45\textwidth,draft=\DRAFTIMAGES]{images/foto_castle1} 1084 \hfill 1085 } 1086 \caption{Visibility in outdoor urban areas. (left) In the center of a city 1087 visibility is typically restricted to a few nearby streets. (right) 1088 Near river banks typically a large part of the city is visible. Note 1089 that many distant objects are visible due to the terrain gradation.} 1090 \label{fig:outdoor} 1091 \end{figure} 1092 1093 In scenes with large differences in terrain height the view complexity 1094 is often very high. Many objects can be visible that are situated for 1095 example on a hill or on a slope behind a river. Especially in areas 1096 with smaller housing visibility is much defined by the terrain itself. 1097 1098 We can summarize the observations as follows (based on 1099 Wonka~\cite{wonka_phd}) : 1100 1101 \begin{itemize} 1102 1103 \item 1104 Outdoor urban environments have basically \m25d structure and 1105 consequently visibility is restricted accordingly. 1106 1107 \item 1108 The view is very restricted in certain areas, such as in the 1109 city center. However the complexity of the view can vary 1110 significantly. It is always not the case that only few objects are 1111 visible. 1112 1113 \item 1114 If there are large height differences in the terrain, many 1115 objects are visible for most viewpoints. 1116 1117 \item 1118 In the same view a close object can be visible next to a very 1119 distant one. 1120 1121 \end{itemize} 1122 1123 1124 In the simplest case the outdoor scene consists only of the terrain 1125 populated by a few buildings. Then the visibility can be calculated on 1126 the terrain itself with satisfying 1127 accuracy~\cite{Floriani:1995:HCH,Cohen-Or:1995:VDZ, Stewart:1997:HVT}. 1128 Outdoor urban environments have a similar structure as terrains: 1129 buildings can be treated as a terrain with {\em many discontinuities} 1130 in the height function (assuming that the buildings do not contain 1131 holes or significant variations in their fa{\c{c}}ades). To 1132 accurately capture visibility in such an environment specialized 1133 algorithms have been developed that compute visibility from a given 1134 viewpoint~\cite{downs:2001:I3DG} or view 1135 cell~\cite{wonka00,koltun01,bittner:2001:PG}. 1136 1137 % The methods presented later in the thesis make use of the specific 1138 % structure of the outdoor scenes to efficiently compute a PVS for the 1139 % given view cell. The key observation is that the PVS for a view cell 1140 % in a \m25d can be determined by computing visibility from its top 1141 % boundary edges. This problem becomes a restricted variant of the 1142 % visibility from a line segment in 3D with $d({\cal L}_R) = 3$. 1143 1144 1145 \subsection{Analysis of indoor visibility} 1146 1147 Building interiors constitute another important class of real world 1148 scenes. A typical building consists of rooms, halls, corridors, and 1149 stairways. It is possible to see from one room to another through an 1150 open door or window. Similarly it is possible to see from one corridor 1151 to another one through a door or other connecting structure. In 1152 general the scene can be subdivided into cells corresponding to the 1153 rooms, halls, corridors, etc., and transparent portals that connect 1154 the cells~\cite{Airey90,Teller:1991:VPI}. Some portals 1155 correspond to the real doors and windows, others provide only a 1156 virtual connection between cells. For example an L-shaped corridor 1157 can be represented by two cells and one virtual portal connecting them. 1158 1159 Visibility in a building interior is often significantly restricted 1160 (see Figure~\ref{fig:indoor}). We can see the room we are located at 1161 and possibly few other rooms visible through open doors. Due to the 1162 natural partition of the scene into cells and portals visibility can 1163 be solved by determining which cells can be seen through a give set of 1164 portals and their sequences. A sequence of portals that we can see 1165 through is called {\em feasible}. 1166 1167 \begin{figure}[htb] 1168 \centerline{ 1169 \hfill 1170 \includegraphics[width=0.45\textwidth,draft=\DRAFTIMAGES]{images/foto_chodba1} 1171 \hfill 1172 \includegraphics[width=0.45\textwidth,draft=\DRAFTIMAGES]{images/foto_sloupy2} 1173 \hfill 1174 } 1175 \caption{Indoor visibility. (left) Visibility in indoor scenes is typically 1176 restricted to a few rooms or corridors. (right) In scenes with more complex 1177 interior structure visibility gets more complicated. 1178 } 1179 \label{fig:indoor} 1180 \end{figure} 1181 1182 1183 Many algorithms for computing indoor visibility~\cite{Airey90, 1184 Teller92phd, Luebke:1995:PMS} exploit the cell/portal structure of the 1185 scene. The potential problem of this approach is its strong 1186 sensitivity to the arrangement of the environment. In a scene with a 1187 complicated structure with many portals there are many feasible portal 1188 sequences. Imagine a hall with columns arranged on a grid. The number 1189 of feasible portal sequences rapidly increases with the distance from 1190 the given view cell~\cite{Teller92phd} if the columns are sufficiently 1191 small (see Figure~\ref{fig:portal_explosion}). Paradoxically most of 1192 the scene is visible and there is almost no benefit of using any 1193 visibility culling algorithm. 1194 1195 The methods presented later in the report partially avoids this 1196 problem since it does not rely on finding feasible portal sequences 1197 even in the indoor scenes. Instead of determining what {\em can} be 1198 visible through a transparent complement of the scene (portals) the 1199 method determines what {\em cannot} be visible due to the scene 1200 objects themselves (occluders). This approach also avoids the explicit 1201 enumeration of portals and the construction of the cell/portal graph. 1202 1203 1204 1205 \begin{figure}[htb] 1206 \centerline{ 1207 \includegraphics[width=0.45\textwidth,draft=\DRAFTFIGS]{figs/portals_explosion}} 1208 \caption{In sparsely occluded scenes the cell/portal algorithm can 1209 exhibit a combinatorial explosion in number of feasible portal 1210 sequences. Paradoxically visibility culling provides almost no 1211 benefit in such scenes.} 1212 \label{fig:portal_explosion} 1213 \end{figure} 1214 1215 1216 1217 \section{Summary} 1218 1219 Visibility problems and algorithms penetrate a large part of computer 1220 graphics research. The proposed taxonomy aims to classify visibility 1221 problems independently of their target application. The 1222 classification should help to understand the nature of the given 1223 problem and it should assist in finding relationships between 1224 visibility problems and algorithms in different application areas. 1225 The tools address the following classes of visibility problems: 1226 1227 \begin{itemize} 1228 \item Visibility from a point in 3D $d({\cal L}_R)=2$. 1229 \item Global visibility in 3D $d({\cal L}_R)=4$. 1230 \item Visibility from a region in 3D, $d({\cal L}_R)=4$. 1231 \end{itemize} 1232 1233 This chapter discussed several important criteria for the 1234 classification of visibility algorithms. This classification can be 1235 seen as a finer structuring of the taxonomy of visibility problems. We 1236 discussed important steps in the design of a visibility algorithm that 1237 should also assist in understanding the quality of a visibility 1238 algorithm. According to the classification the tools address 1239 algorithms with the following properties: 1240 1241 \begin{itemize} 1242 \item Domain: 1243 \begin{itemize} 1244 \item viewpoint (Chapter~\ref{chap:online}), 1245 \item polygon or polyhedron (Chapters~\ref{chap:sampling,chap:mutual}) 1246 \end{itemize} 1247 \item Scene restrictions (occluders): 1248 \begin{itemize} 1249 \item meshes consisting of convex polygons 1250 \end{itemize} 1251 \item Scene restrictions (group objects): 1252 \begin{itemize} 1253 \item bounding boxes (Chapters~\ref{chap:rtviscull},~\ref{chap:vismap},~Chapter~\ref{chap:rot25d} and~\ref{chap:rot3d}), 1254 \end{itemize} 1255 \item Output: 1256 \begin{itemize} 1257 \item Visibility classification of objects or hierarchy nodes 1258 \item PVS 1259 \end{itemize} 1260 \item Accuracy: 1261 \begin{itemize} 1262 \item conservative 1263 \item exact 1264 \item aggresive 1265 \end{itemize} 1266 \item Solution space: 1267 \begin{itemize} 1268 \item discrete (Chapters~\ref{chap:online},~\ref{chap:sampling}) 1269 \item continuous, line space / primal space (Chapter~\ref{chap:rot25d}) 1270 \end{itemize} 1271 \item Solution space data structures: viewport (Chapter~\ref{chap:online}), ray stack (Chapter~\ref{chap:sampling}), ray stack or BSP tree (Chapter~\ref{chap:mutual}) 1272 \item Use of coherence of visibility: 1273 \begin{itemize} 1274 \item spatial coherence (all methods) 1275 \item temporal coherence (Chapter~\ref{chap:online}) 1276 \end{itemize} 1277 \item Output sensitivity: expected in practice (all methods) 1278 \item Acceleration data structure: kD-tree (all methods) 1279 \item Use of graphics hardware: Chapter~\ref{chap:online} 1280 1281 \end{itemize} 1282 1283 -
trunk/VUT/doc/SciReport/preprocessing.tex
r251 r255 129 129 \end{itemize} 130 130 131 We meet these requirements by using a view cell BSP tree, where the BSP leafs are associated with the view cells. 132 Using the BSP tree, we are able to find the initial view cells with only a few view ray-plane intersections. 133 The hierarchical structure of the BSP tree can be exploited as hierarchy of view cells. If neccessary, the BSP 134 approach makes it very easy to further subdivide a view cell. 131 We meet these requirements by using a view cell BSP tree, where the 132 BSP leafs are associated with the view cells. Using the BSP tree, we 133 are able to find the initial view cells with only a few view ray-plane 134 intersections. The hierarchical structure of the BSP tree can be 135 exploited as hierarchy of view cells. If neccessary, the BSP approach 136 makes it very easy to further subdivide a view cell. 135 137 136 138 Currently we use two approaches to generate the initial BSP view cell tree. 137 139 138 140 \begin{itemize} 139 \item We use a number of dedicated input view cells. As input view cell any closed mesh can be applied. The only requirement 140 is that the view cells do not overlap. We insert one view cell after the other into the tree. The polygons of a view cell are filtered down the tree, guiding the insertion process. Once we reach a leaf and there are no more polygons left, we terminate 141 the tree subdivision. If we are on the inside of the last split plane (i.e., the leaf is representing the inside of the view cell), we associate the leaf with the view cell (i.e., add a pointer to the view cell). Hence a number of leafes 142 can be associated with the same input view cell. 143 \item We apply the BSP tree subdivision to the scene geometry. When the subdivision terminates, the leaf nodes 144 also represent the view cells. 141 \item We use a number of dedicated input view cells. As input view 142 cell any closed mesh can be applied. The only requirement is that the 143 view cells do not overlap. We insert one view cell after the other 144 into the tree. The polygons of a view cell are filtered down the tree, 145 guiding the insertion process. Once we reach a leaf and there are no 146 more polygons left, we terminate the tree subdivision. If we are on 147 the inside of the last split plane (i.e., the leaf is representing the 148 inside of the view cell), we associate the leaf with the view cell 149 (i.e., add a pointer to the view cell). Hence a number of leafes can 150 be associated with the same input view cell. 151 \item We apply the BSP tree subdivision to the scene geometry. When 152 the subdivision terminates, the leaf nodes also represent the view 153 cells. 145 154 \end{itemize} 146 155 -
trunk/VUT/doc/SciReport/sampling.tex
r251 r255 7 7 The proposed visibility preprocessing framework consists of two major 8 8 steps. 9 9 10 \begin{itemize} 10 11 \item The first step is an aggresive visibility sampling which gives … … 13 14 section~\ref{sec:sampling}. The imporant property of the aggresive 14 15 sampling step is that it provides a fast progressive solution to 15 global visibility and thus it can be easily integrated into the 16 gamedevelopment cycle.17 18 \item The second step is visibility verification. This step turns the19 previous aggresive visibility solution into either exact, conservative 20 or error bound aggresive solution. The choice of the particular 21 verifier is left on the user in order to select the best for a 22 particular scene, application context and time constrains. For16 global visibility and thus it can be easily integrated into the game 17 development cycle. 18 19 \item The second step is mutual visibility verification. This step 20 turns the previous aggresive visibility solution into either exact, 21 conservative or error bound aggresive solution. The choice of the 22 particular verifier is left on the user in order to select the best 23 for a particular scene, application context and time constrains. For 23 24 example, in scenes like a forest an error bound aggresive visibility 24 25 can be the best compromise between the resulting size of the PVS (and 25 26 framerate) and the visual quality. The exact or conservative algorithm 26 27 can however be chosen for urban scenes where of even small objects can 27 be more distructing for the user. 28 be more distructing for the user. The mutual visibility tool will be 29 described in the next chapter. 30 28 31 \end{itemize} 29 30 32 31 33 … … 43 45 \end{itemize} 44 46 45 Both of these points are addressed bellow in more detail. 47 Both these points will be addressed in this chapter in more detail. 48 49 50 51 \section{Related work} 52 \label{VFR3D_RELATED_WORK} 53 54 55 Below we briefly discuss the related work on visibility preprocessing 56 in several application areas. In particular we focus on computing 57 from-region which has been a core of most previous visibility 58 preprocessing techniques. 59 60 61 \subsection{Aspect graph} 62 63 The first algorithms dealing with from-region visibility belong to the 64 area of computer vision. The {\em aspect 65 graph}~\cite{Gigus90,Plantinga:1990:RTH, Sojka:1995:AGT} partitions 66 the view space into cells that group viewpoints from which the 67 projection of the scene is qualitatively equivalent. The aspect graph 68 is a graph describing the view of the scene (aspect) for each cell of 69 the partitioning. The major drawback of this approach is that for 70 polygonal scenes with $n$ polygons there can be $\Theta(n^9)$ cells in 71 the partitioning for unrestricted viewspace. A {\em scale space} 72 aspect graph~\cite{bb12595,bb12590} improves robustness of the method 73 by merging similar features according to the given scale. 74 75 76 \subsection{Potentially visible sets} 77 78 79 In the computer graphics community Airey~\cite{Airey90} introduced 80 the concept of {\em potentially visible sets} (PVS). Airey assumes 81 the existence of a natural subdivision of the environment into 82 cells. For models of building interiors these cells roughly correspond 83 to rooms and corridors. For each cell the PVS is formed by cells 84 visible from any point of that cell. Airey uses ray shooting to 85 approximate visibility between cells of the subdivision and so the 86 computed PVS is not conservative. 87 88 This concept was further elaborated by Teller et 89 al.~\cite{Teller92phd,Teller:1991:VPI} to establish a conservative 90 PVS. The PVS is constructed by testing the existence of a stabbing 91 line through a sequence of polygonal portals between cells. Teller 92 proposed an exact solution to this problem using \plucker 93 coordinates~\cite{Teller:1992:CAA} and a simpler and more robust 94 conservative solution~\cite{Teller92phd}. The portal based methods 95 are well suited to static densely occluded environments with a 96 particular structure. For less structured models they can face a 97 combinatorial explosion of complexity~\cite{Teller92phd}. Yagel and 98 Ray~\cite{Yagel95a} present an algorithm, that uses a regular spatial 99 subdivision. Their approach is not sensitive to the structure of the 100 model in terms of complexity, but its efficiency is altered by the 101 discrete representation of the scene. 102 103 Plantinga proposed a PVS algorithm based on a conservative viewspace 104 partitioning by evaluating visual 105 events~\cite{Plantinga:1993:CVP}. The construction of viewspace 106 partitioning was further studied by Chrysanthou et 107 al.~\cite{Chrysanthou:1998:VP}, Cohen-Or et al.~\cite{cohen-egc-98} 108 and Sadagic~\cite{Sadagic}. Sudarsky and 109 Gotsman~\cite{Sudarsky:1996:OVA} proposed an output-sensitive 110 visibility algorithm for dynamic scenes. Cohen-Or et 111 al.~\cite{COZ-gi98} developed a conservative algorithm determining 112 visibility of an $\epsilon$-neighborhood of a given viewpoint that was 113 used for network based walkthroughs. 114 115 Conservative algorithms for computing PVS developed by Durand et 116 al.~\cite{EVL-2000-60} and Schaufler et al.~\cite{EVL-2000-59} make 117 use of several simplifying assumptions to avoid the usage of 4D data 118 structures. Wang et al.~\cite{Wang98} proposed an algorithm that 119 precomputes visibility within beams originating from the restricted 120 viewpoint region. The approach is very similar to the 5D subdivision 121 for ray tracing~\cite{Simiakakis:1994:FAS} and so it exhibits similar 122 problems, namely inadequate memory and preprocessing complexities. 123 Specialized algorithms for computing PVS in \m25d scenes were proposed 124 by Wonka et al.~\cite{wonka00}, Koltun et al.~\cite{koltun01}, and 125 Bittner et al.~\cite{bittner:2001:PG}. 126 127 The exact mutual visibility method presented later in the report is 128 based on method exploting \plucker coordinates of 129 lines~\cite{bittner02phd,nirenstein:02:egwr,haumont2005}. This 130 algorithm uses \plucker coordinates to compute visibility in shafts 131 defined by each polygon in the scene. 132 133 134 \subsection{Rendering of shadows} 135 136 137 The from-region visibility problems include the computation of soft 138 shadows due to an areal light source. Continuous algorithms for 139 real-time soft shadow generation were studied by Chin and 140 Feiner~\cite{Chin:1992:FOP}, Loscos and 141 Drettakis~\cite{Loscos:1997:IHS}, and 142 Chrysanthou~\cite{Chrysantho1996a} and Chrysanthou and 143 Slater~\cite{Chrysanthou:1997:IUS}. Discrete solutions have been 144 proposed by Nishita~\cite{Nishita85}, Brotman and 145 Badler~\cite{Brotman:1984:GSS}, and Soler and Sillion~\cite{SS98}. An 146 exact algorithm computing an antipenumbra of an areal light source was 147 developed by Teller~\cite{Teller:1992:CAA}. 148 149 150 \subsection{Discontinuity meshing} 151 152 153 Discontinuity meshing is used in the context of the radiosity global 154 illumination algorithm or computing soft shadows due to areal light 155 sources. First approximate discontinuity meshing algorithms were 156 studied by Campbell~\cite{Campbell:1990:AMG, Campbell91}, 157 Lischinski~\cite{lischinski92a}, and Heckbert~\cite{Heckbert92discon}. 158 More elaborate methods were developed by 159 Drettakis~\cite{Drettakis94-SSRII, Drettakis94-FSAAL}, and Stewart and 160 Ghali~\cite{Stewart93-OSACS, Stewart:1994:FCSb}. These methods are 161 capable of creating a complete discontinuity mesh that encodes all 162 visual events involving the light source. 163 164 The classical radiosity is based on an evaluation of form factors 165 between two patches~\cite{Schroder:1993:FFB}. The visibility 166 computation is a crucial step in the form factor 167 evaluation~\cite{Teller:1993:GVA,Haines94,Teller:1994:POL, 168 Nechvile:1996:FFE,Teichmann:WV}. Similar visibility computation takes 169 place in the scope of hierarchical radiosity 170 algorithms~\cite{Soler:1996:AEB, Drettakis:1997:IUG, Daubert:1997:HLS}. 171 172 173 174 \subsection{Global visibility} 175 176 The aim of {\em global visibility} computations is to capture and 177 describe visibility in the whole scene~\cite{Durand:1996:VCN}. The 178 global visibility algorithms are typically based on some form of {\em 179 line space subdivision} that partitions lines or rays into equivalence 180 classes according to their visibility classification. Each class 181 corresponds to a continuous set of rays with a common visibility 182 classification. The techniques differ mainly in the way how the line 183 space subdivision is computed and maintained. A practical application 184 of most of the proposed global visibility structures for 3D scenes is 185 still an open problem. Prospectively these techniques provide an 186 elegant method for ray shooting acceleration --- the ray shooting 187 problem can be reduced to a point location in the line space 188 subdivision. 189 190 191 Pocchiola and Vegter introduced the visibility complex~\cite{pv-vc-93} 192 that describes global visibility in 2D scenes. The visibility complex 193 has been applied to solve various 2D visibility 194 problems~\cite{r-tsvcp-95,r-wvcav-97, r-dvpsv-97,Orti96-UVCRC}. The 195 approach was generalized to 3D by Durand et 196 al.~\cite{Durand:1996:VCN}. Nevertheless, no implementation of the 3D 197 visibility complex is currently known. Durand et 198 al.~\cite{Durand:1997:VSP} introduced the {\em visibility skeleton} 199 that is a graph describing a skeleton of the 3D visibility 200 complex. The visibility skeleton was verified experimentally and the 201 results indicate that its $O(n^4\log n)$ worst case complexity is much 202 better in practice. Pu~\cite{Pu98-DSGIV} developed a similar method to 203 the one presented in this chapter. He uses a BSP tree in \plucker 204 coordinates to represent a global visibility map for a given set of 205 polygons. The computation is performed considering all rays piercing 206 the scene and so the method exhibits unacceptable memory complexity 207 even for scenes of moderate size. Recently, Duguet and 208 Drettakis~\cite{duguet:02:sig} developed a robust variant of the 209 visibility skeleton algorithm that uses robust epsilon-visibility 210 predicates. 211 212 Discrete methods aiming to describe visibility in a 4D data structure 213 were presented by Chrysanthou et al.~\cite{chrysanthou:cgi:98} and 214 Blais and Poulin~\cite{blais98a}. These data structures are closely 215 related to the {\em lumigraph}~\cite{Gortler:1996:L,buehler2001} or 216 {\em light field}~\cite{Levoy:1996:LFR}. An interesting discrete 217 hierarchical visibility algorithm for two-dimensional scenes was 218 developed by Hinkenjann and M\"uller~\cite{EVL-1996-10}. One of the 219 biggest problems of the discrete solution space data structures is 220 their memory consumption required to achieve a reasonable 221 accuracy. Prospectively, the scene complexity 222 measures~\cite{Cazals:3204:1997} provide a useful estimate on the 223 required sampling density and the size of the solution space data 224 structure. 225 226 227 \subsection{Other applications} 228 229 Certain from-point visibility problems determining visibility over a 230 period of time can be transformed to a static from-region visibility 231 problem. Such a transformation is particularly useful for antialiasing 232 purposes~\cite{grant85a}. The from-region visibility can also be used 233 in the context of simulation of the sound 234 propagation~\cite{Funkhouser98}. The sound propagation algorithms 235 typically require lower resolution than the algorithms simulating the 236 propagation of light, but they need to account for simulation of 237 attenuation, reflection and time delays. 238 239 \section{Algorithm Setup} 240 241 \subsection{View Cell Representation} 242 243 In order to efficiently use view cells with our sampling method, we 244 require a view cell representation which is 245 246 \begin{itemize} 247 \item optimized for viewcell - ray intersection. 248 \item flexible, i.e., it can represent arbitrary geometry. 249 \item naturally suited for an hierarchical approach. %(i.e., there is a root view cell containing all others) 250 \end{itemize} 251 252 We meet these requirements by using a view cell BSP tree, where the 253 BSP leafs are associated with the view cells. Using the BSP tree, we 254 are able to find the initial view cells with only a few view ray-plane 255 intersections. The hierarchical structure of the BSP tree can be 256 exploited as hierarchy of view cells. If neccessary, we could further 257 subdivide a BSP leaf view cell quite easily. 258 259 Currently we use two approaches to generate the initial BSP view cell tree. 260 261 \begin{itemize} 262 \item We use a number of dedicated input view cells. As input view 263 cell any closed mesh can be applied. The only requirement is that the 264 view cells do not overlap. We insert one view cell after the other 265 into the tree. The polygons of a view cell are filtered down the tree, 266 guiding the insertion process. Once we reach a leaf and there are no 267 more polygons left, we terminate the tree subdivision. If we are on 268 the inside of the last split plane (i.e., the leaf is representing the 269 inside of the view cell), we associate the leaf with the view cell 270 (i.e., add a pointer to the view cell). Hence a number of leafes can 271 be associated with the same input view cell. 272 \item We apply the BSP tree subdivision to the scene geometry. When 273 the subdivision terminates, the leaf nodes also represent the view 274 cells. 275 \end{itemize} 46 276 47 277 \subsection{From-object based visibility} … … 74 304 75 305 76 \s ubsection{Basic Randomized Sampling}306 \section{Basic Randomized Sampling} 77 307 78 308 … … 97 327 98 328 99 \s ubsection{Accounting for View Cell Distribution}329 \section{Accounting for View Cell Distribution} 100 330 101 331 The first modification to the basic algorithm accounts for irregular … … 112 342 113 343 114 \s ubsection{Accounting for Visibility Events}344 \section{Accounting for Visibility Events} 115 345 116 346 Visibility events correspond to appearance and disapearance of … … 125 355 objects. 126 356 127 \subsection{View Cell Representation} 128 129 In order to efficiently use view cells with our sampling method, we require a view cell representation which is 130 131 \begin{itemize} 132 \item optimized for viewcell - ray intersection. 133 \item flexible, i.e., it can represent arbitrary geometry. 134 \item naturally suited for an hierarchical approach. %(i.e., there is a root view cell containing all others) 135 \end{itemize} 136 137 We meet these requirements by using a view cell BSP tree, where the BSP leafs are associated with the view cells. 138 Using the BSP tree, we are able to find the initial view cells with only a few view ray-plane intersections. 139 The hierarchical structure of the BSP tree can be exploited as hierarchy of view cells. If neccessary, we could further subdivide a BSP leaf view cell quite easily. 140 141 Currently we use two approaches to generate the initial BSP view cell tree. 142 143 \begin{itemize} 144 \item We use a number of dedicated input view cells. As input view cell any closed mesh can be applied. The only requirement 145 is that the view cells do not overlap. We insert one view cell after the other into the tree. The polygons of a view cell are filtered down the tree, guiding the insertion process. Once we reach a leaf and there are no more polygons left, we terminate 146 the tree subdivision. If we are on the inside of the last split plane (i.e., the leaf is representing the inside of the view cell), we associate the leaf with the view cell (i.e., add a pointer to the view cell). Hence a number of leafes 147 can be associated with the same input view cell. 148 \item We apply the BSP tree subdivision to the scene geometry. When the subdivision terminates, the leaf nodes 149 also represent the view cells. 150 \end{itemize} 151 357
Note: See TracChangeset
for help on using the changeset viewer.