Changeset 284 for trunk


Ignore:
Timestamp:
09/16/05 18:42:21 (19 years ago)
Author:
bittner
Message:
 
Location:
trunk/VUT/doc/SciReport
Files:
1 added
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/VUT/doc/SciReport/mutual.tex

    r283 r284  
    431431assume that one tested region is a view cell, whereas the other is an 
    432432object bounding box or cell of the spatial hierarchy. The threshold is 
    433 computed as follows: We calculate a point in the view cell which 
    434 maximizes the projected area of the object with respect to the shaft 
    435 (see Figure~\ref{fig:approximate_sampling}). The conservative estimate 
    436 of the maximal error is then given by the computed projected area. If 
    437 this error is below a specified threshold we terminate the subdivision 
    438 of the current shaft. 
     433computed as follows: We first triangulate the farthest intersection 
     434points in the shaft as seen from the view cell side of the shaft. Then 
     435for each computed triangle we calculate a point in the view cell which 
     436maximizes the projected area of the triangle (see 
     437Figure~\ref{fig:approximate_sampling}).  The conservative estimate of 
     438the maximal error is then given by a sum of the computed projected 
     439areas. If this error is below a specified threshold we terminate the 
     440subdivision of the current shaft. 
     441 
     442%We calculate a point in the view cell which 
     443%maximizes the projected area of the object with respect to the shaft 
     444%. The conservative estimate 
     445%of the maximal error is then given by the computed projected area.  
    439446 
    440447\begin{figure}[htb] 
    441448\centerline{ 
    442 \includegraphics[width=0.7\textwidth,draft=\DRAFTFIGS]{figs/approximate_sampling}} 
     449\includegraphics[width=0.7\textwidth,draft=\DRAFTFIGS]{figs/approximate_sampling2}} 
    443450\caption{An example of the approximate error bound visibility verification. The figure shows two 
    444451  tested regions (the view cell and the object) and two 
    445   occluders. The maximal error inside the yellow shaft corresponds to the angle $\alpha$. 
     452  occluders. Due to the 2D nature of the example the triangulation is depicted as 
     453  the red line segment. The maximal error for the possible viewpoints in the shaft 
     454  corresponds to the angle $\alpha$. 
    446455} 
    447456\label{fig:approximate_sampling} 
Note: See TracChangeset for help on using the changeset viewer.