Continuous Level of detail on Graphics
Hardware

Francisco Ramos, Miguel Chover, Oscar Ripolles, and Carlos Granell

Universitat Jaume I, Depto. Lenguajes y Sistemas Informaticos
12071 Castellon, Spain
{Francisco.Ramos,chover,oripolle,canut}Quji.es

Abstract. Recent advances in graphics hardware provide new possibili-
ties to successfully integrate and improve multiresolution models. In this
paper, we present a new continuous multiresolution model that maintains
its geometry, based on triangle strips, in high-performance memory in the
GPU. This model manages the level of detail by performing fast strip
updating operations. We show how this approach takes advantage of the
new capabilities of GPUs in an efficient manner.

1 Introduction

One of the main problems of interactive graphic applications, such as computer
games or virtual reality, is the geometric complexity of the scenes they represent.
In order to solve this problem, different techniques for modeling by level of detail
have been developed that attempt to adapt the number of polygons of the objects
to their importance within the scene.

The application of these techniques is common in standards such as X3D,
graphic libraries such as Openlnventor, OSG, and even in game engines such as
Torque, CryEngine, and so forth, where models with continuous levels of detail,
based mainly on Progressive Meshes [1], are introduced.

The tendency in recent years has been to improve the features of continuous
models by using the possibilities offered by the graphics hardware to the maxi-
mum, with the intention of competing with the discrete models that, although
more limited, are perfectly adapted to current graphics hardware. Specifically,
they have worked on the representation of multiresolution models which use tri-
angle strips to accelerate visualization by means of vertex arrays located in the
GPU. The fundamental problem of these techniques is the fact that a continu-
ous model needs to make changes in the list of indexes of the primitives it draws
and carrying out this kind of operations causes graphics hardware to lower its
performance.

1.1 Related Work

In recent years, multiresolution models have progressed substantially. At the
beginning, discrete models were employed in graphics applications, due mainly

to the low degree of complexity involved in implementing them, which is the
reason why nowadays they are still used in applications without high graph-
ics requirements. Nevertheless, the increase in realism in graphics applications
make it necessary to use multiresolution models which are more exact in their
approximations, which do not call for high storage costs and which are faster in
visualization. This has given way to continuous models, where two consecutive
levels of detail only differ by a few polygons and where, additionally, the dupli-
cation of information is avoided to a considerable extent, thus improving on the
spatial cost offered by the discrete models.

Fig. 1. Boat model in triangle strips

The best known continuous multiresolution model is Progressive Meshes [1],
included in Microsoft Corporation’s graphic library DirectX. This model offers
excellent results in visualization in real time, although it is based on triangle
primitives.

Advances have been made in the use of new graphics primitives which min-
imize the data transfer between the CPU and the GPU, apart from trying to
make use of the connectivity information given by a polygonal mesh. For this
purpose, graphics primitives with implicit connectivity, such as triangle strips
(see figure 1) and triangle fans, have been developed. Many continuous models
based on this type of primitives have been recently developed [2-7].

In these last few years, graphics hardware performance has evolved outstand-
ingly, giving rise to new techniques which allow the continuous models to accel-
erate even more. The use of stripification algorithms, which try to take the
maximum advantage of the GPU cache, and the new extensions of graphics li-
braries that allow visualization of a whole mesh with only a few instructions are
examples of these new techniques.

Nowadays GPUs offer new capabilities that, when exploited to the maxi-
mum, can offer very good results in several aspects. One of them involves stor-
ing information directly in the high speed memory located in the GPU. This
characteristic allows information to be managed in the GPU while avoiding data

transfer between the CPU and the GPU, and taking the maximum advantage
of the proximity of the memory and the graphics processor. There are a number
of related works which make use of the new capabilities of the current GPUs,
such as [8], which implements a discrete model manager that puts geomorphing
into practice by using vertex shaders; another work is [9], which creates different
shaders depending on the level of detail.

1.2 Motivation

In general, the main problem with continuous models lies in the high cost of
extracting the level of detail, which usually takes about 20% of the total visu-
alization cost. Apart from extraction, the use of AGP buses poses the problem
of their being much better optimized to upload data than to download it, thus
favoring the use of the memory of the graphics card to store static objects that
do not change their geometry. But the appearance of the PCI-Express bus makes
it possible to use a symmetric bus, which allows data to be uploaded and down-
loaded to the GPU at the same speed, so that it is possible to work with the
GPU memory in a reliable way and without penalizations in data download.

1.3 Contributions

In this article we present a new multiresolution model that is integrated into the
graphics hardware. This model makes use of the present capabilities of GPUs to
store its data structures inside them. The fundamental idea on which the model
is based is the creation of efficient data structures that can be integrated into the
GPU and which, at the same time, offer an optimum performance with respect
to both visualization and spatial cost. The model works directly with the GPU
memory, appreciable improvements being obtained, as can be seen in the results
section.

Hence, what this model offers is complete integration into the graphics hard-
ware, a low cost of extraction of the level of detail, by exploiting the coherence
between levels of detail, and a low spatial cost.

The implemented model features different characteristics:

— Wholly based on triangle strips.

— Simplification based on progressive edge collapses.

— Static stripification. Triangle strips are only generated once, at the highest
level of detail, using a method that takes advantage of the GPU cache.

— Geometric information of the model is maintained and stored in the GPU.

— Level of detail management is performed by a data structure, LOD-Manager,
which allows fast updating of strips and removal of degenerated triangles.

2 Fundamentals

2.1 Multiresolution Models

To construct a continuous multiresolution model based on primitives with im-
plicit connectivity, such as triangle strips, certain requirements must be fulfilled.

On the one hand, a mesh made up of this kind of primitives must be available
and, on the other hand, the simplification method that should be employed in
order to generate the different levels of detail must be selected, an example is
shown in figure 2.

Fig. 2. Three levels of detail from the AL model (LOD=1,0.5 and 0, respectively)

There are several mesh simplification methods [10][11], but one of the most
important in progressive mesh simplification is [1]. This method is based on iter-
ative edge contractions, and it is the one employed in well-known multiresolution
models such as [2-7].

Many works can be found in the literature where the problem of converting
a polygonal mesh made up of triangles into triangle strips is solved [12][14]. This
process is commonly called stripification, and it can be carried out in a dynamic
or static way. Dynamic stripification involves generating the triangle strips in
real time, that is, for each level of detail new strips are generated. On the other
hand, static stripification entails first creating triangle strips and then working
with versions of the original strips. There are several models that use dynamic
stripification [3][4], especially variable resolution models. Other models such as
[2][5-7], however, use static stripification techniques.

The main problem of static stripification models can be observed in Figure 3.
As the model reaches lower levels of detail, it presents vertex repetitions that do
not add any information to the final scene but nevertheless involve higher data
traffic between the CPU and the GPU. Models like [2][7] solve this problem by
applying filters to eliminate degenerated triangles. The first employs filters in
visualization, thus avoiding sending those vertices at the moment of rendering,
and the second runs a preprocess that detects them early on, and then stores
that information and eliminates them from the strips before visualizing them.

Given the architecture of present-day GPUs, it is better to employ static
stripification techniques since we thereby avoid strip creation and destruction
in the GPU, which would imply an additional cost that would make the model

much less competitive. Furthermore, there is an additional cost stemming from
the calculation of the new triangle strips at each level of detail, which also
penalizes the use of these techniques. Moreover, it is preferable to eliminate de-
generated triangles before visualization, which allows a considerable degree of
acceleration to be accomplished by resizing strips, apart from also enabling a
better implementation of the model in the GPU by avoiding the need to create a
specific code for the filters. Nowadays, a variety of acceleration techniques have
appeared, which, if integrated into a multiresolution model, would also become
essential to improving its performance. Basically, we can observe stripification
techniques oriented toward exploiting vertex caches [12] and hardware accelera-
tion techniques based on graphics library extensions [13].

Strp: 65132404278 Strip: 6 513247478 Strip: 6 533247478 Strip: 6533347478
Lop: 0 LOD: 1 Lop: z Lop: 3

. . . € 7 6 k]
[1] 7 2 2
3 4 8 E 4 g 3 1 g
3 4 [5 5
5

5

Fig. 3. Multirresolution triangle strips

2.2 High-performance memory in GPUs

A vertex buffer object is a feature that enables us to store data in high-performance
memory in the GPU. The basic idea is to provide some buffers, which will be
available through identifiers. There are different ways to interact with buffers:

— Bind a buffer: this activates the buffer in order to be used by the application.

— Put and get data: this allows us to copy data between a client’s area and a
buffer object in the GPU.

— Map a buffer: you can get a pointer to a buffer object in the client’s area,
but this can lead to the driver’s waiting for the GPU to finish its operations.

There are two kinds of vertex buffer objects: array buffers and element array
buffers. On the one hand, array buffers contain vertex attributes, such as vertex
coordinates, texture coordinates data, per-vertex color data and normals. On
the other hand, element array buffers contain only indexes to elements in array
buffers. The ability to switch between various element buffers while keeping the
same vertex array allows us to implement level of detail schemes by changing
the elements buffer while working on the same array of vertices.

In order to implement the model on graphics hardware, we used different
functions which interact with buffer objects. Among them, we can highlight:

— glBindBuffer ARB: this function sets up internal parameters so that the next
operations work on this current buffer object.

— glBufferDataARB: this function is an abstraction layer between the mem-
ory and the application. Basically, this function copies data from the client
memory to the buffer object bound.

— glBufferSubDataARB and glGetBufferSubDataARB: its purpose consists in
replacing or obtaining, respectively, data from an existing buffer.

3 Implementation Details

3.1 General Framework

A brief outline of the model is shown in Figure 4. At the beginning, information
about vertices and strips, at the highest level of detail, is uploaded into the
GPU. Later, by means of the LOD-Manager data structure, strips are updated
in accordance with the current level of detail.

In our approach we first perform two essential tasks: generation of triangle
strips at the highest level of detail and calculation of vertex-collapse simplifica-
tion.

At runtime, we upload information about vertices and strips into the GPU.
Then, depending on application demands, we perform vertex-split or edge-collapse
operations directly on the strips. This task is executed by the LOD-Manager.
More specifically, when a level of detail transition is required, it downloads the
strips affected by these changes from the GPU. Later, it modifies and uploads
the updated strips to the graphics system. Lastly, strip information in the GPU
is then used for display.

PCI-Express

CPU GPU
LOD Manager vertices
[LITTITITTTITTITT] | fe [0l i
Strips
0
ENEEREENN
HENEREEEEEN

Fig. 4. Model architecture

3.2 LOD-Manager Data Structures

The main function of LOD-Manager consists in serving the level of detail de-
mands required by applications. It is able to quickly change the geometric infor-
mation located in the GPU by applying a series of pre-calculated records. These
records store mainly two kinds of information: simplifications and filters.

Simplification information contains data about which strips change for each
level of detail, and where the vertices to be split or collapsed are located. It allows
us to quickly locate information to be modified when we move from one level of
detail to another. However, as the model moves to coarse LODs, an accumulation
of identical vertices is produced. Sending these vertex repetitions to the graphics
hardware does not contribute at all to the final scene because it is equivalent to
send degenerated triangles, as is shown in Figure 3. We have proved that most
vertex repetitions can be removed, following patterns like aa(a)+ or ab(ab)+.
Patterns aa(a)+ are replaced by aa, and ab(ab)+ by ab. Figure 5 shows an
example for each kind of pattern, and it can be observed that the final geometry
of strips does not change after removing these patterns.

3.3 GPU Data Structures

Two essential data structures for the performance of the model are stored in
the GPU: vertices and strips, which constitute the polygonal mesh. On the one
hand, vertices are stored in a vertex array buffer. On the other hand, we might
allocate each strip in an element buffer. However, we have observed that creating
as many buffers as strips leads to noticeable decreases in performance due to bind
operations. A solution to this problem, with optimum results, consists in creating
a single element buffer, where every strip to be rendered is located. In this way,
we avoid the need for continuous bind operations to assign an element buffer for
each strip.

2 Stwdip: 56232 34 Strip: 562223 4
Replace shizh)+ by sh Deplare aaial+ by aa
Strip: 562 34 Strip: 56 2 23 4

Fig. 5. Removed patterns

3.4 Controlling Level of Detail

In continuous multiresolution models, level of detail management entails two
fundamental tasks: level of detail extraction required by applications and visu-
alization of resulting geometry.

Level of Detail Extraction. At a high level, the pseudo algorithm for moving
from LOD n to LOD n+1 would consist in downloading, from the GPU, the
chunks of memory corresponding to the strips affected by the change in the
level of detail. After that, we replace vertex n by the vertex it collapses to, in
every strip where it appears. Later, derived vertex repetitions must be removed.
Finally, the strip is uploaded to the GPU for visualization. Figure 6 shows the
algorithm.

for LOD = currentLOD to demandedLOD
for Strip = StripsAffected(LOD).Begin() to StripsAffected(LOD).End()
auxStrip=DownloadFromGPU(Strip) ;
CollapseOrSplit(auxStrip,LOD) ;
UploadToGPU (auxStrip) ;
end for
end for

Fig. 6. Level of detail extraction from a LOD to a coarse one

Visualization. Figure 7 shows the visualization algorithm. This algorithm takes
advantage of the capabilities of the latest GPUscapabilities. It stores and man-
ages strips to be visualized directly from the graphics hardware memory.

for IndexStrip = 0 to NumberOfStrips - 1
glDrawRangeElements (
GL_TRIANGLE_STRIP,
currentLOD,
NumberOfVertices - 1,
StripBufferManager (IndexStrip) .size(),
GL_UNSIGNED_INT,
(const voidx) (StripBufferManager (IndexStrip) .0ffset () *sizeof (EnteroUn)),
end for

Fig. 7. Visualization algorithm

4 Results

Figure 8 shows a comparison of spatial costs. On average, the model presented
in this paper fits in 1.5 times the original mesh in triangles and 2.3 times in
triangle strips.

Two well-known utilities to generate strips were tested in this multiresolution
model: Stripe Utility [14] and NVTriStrip Library [12]. Triangle strips for differ-
ent objects were generated using both utilities. The model generated from the
NVTriStrip Library shows better frame-per-second rates than the Stripe object
when the level of detail is higher; this behavior is shown in Figure 9(right).

Results of visualization are shown in Figure 9(left), where our approach is
compared to other models. It can be seen that our model offers the best visual-
ization times due to its being integrated into the hardware.

5 Conclusions

We have presented a uniform resolution model that noticeably improves existing
models in terms of both storage and visualization cost. This model features: total
graphics hardware integration with implementation in high-performance mem-
ory, optimized hardware primitives, vertex cache exploitation and low spatial

cost.
ﬁ @
& ﬂf,
\ Uk
% A X3
Panther Dragon Phone Buddha
Vertices 2904 38911 54294 83044 543699
Faces 5804 69397 108588 165963 1085634
Size Tris kb 113.4 14212 21209 32425 212176
Size Strips kb 735 971.1 1387.6 19995 14107.9
Model Cost Mb 0.16 2.00 3.59 4.7 3353
Ratio Triangles 15 14 17 15 16
Ratio Strips 23 241 27 24 24

Fig. 8. Spatial cost comparison

Visualization times

EM MIS MOM Our Model

Milliseconds

Stripification algorithms performance

Nvidia St_ripe

el

Frames per second

Level of Detail

Level of Detail

Fig. 9. Results obtained from the bunny object. On the left, multiresolution models
comparison of PM[1], MTS[5], MOM[6] and our model. On the right, stripification
techniques perfomance in our approach

Bibliography

[1] Hoppe H.: Progressive Meshes. Computer Graphics (SIGGRAPH), 30:99-
108, 1996.

[2] El-Sana J., Azanli E., Varshney A.: Skip strips: maintaining triangle strips for
view-dependent rendering. In: Proceedings of Visualization 99, 1999. p.131-
137.

[3] Shafae M., Pajarola R.: DStrips. Dynamic Triangle Strips for Real-Time
Mesh Simplification and Rendering. Proceedings Pacific Graphics Confer-
ence, 2003.

[4] A. James Stewart: Tunneling for Triangle Strips in Continuous Level-of-
Detail Meshes. Graphics Interface 2001: 91-100.

[5] Belmonte O., Remolar I., Ribelles J.,Chover M. ,Fernndez M.: Efficient Use
Connectivity Information between Triangles in a Mesh for Real-Time Ren-
dering, Future Generation Computer Systems, Special issue on Computer
Graphics and Geometric Modeling, 2003. ISSN 0167-739X.

[6] Ribelles J., Lpez A.,Remolar I.,Belmonte O.,Chover M.: Multiresolution
Modeling of Polygonal Surface Meshes Using Triangle Fans. Proc. of 9th
DGCI 2000, 431-442, 2000. ISBN 3-540-41396-0.

[7] Ramos J.F.,Chover M.: LodStrips. Level of Detail Strips, Lecture notes in
Computer Science, Proc. of Computational Science ICCS 2004, Springer,
ISBN/ISSN 3-540-22129-8, Krakow (Poland), vol. 3039, pp. 107-114, June,
2004.

[8] Olano, Marc, Kuehne B.,Simmons M.: Automatic Shader Level of Detail.
Proceedings of Graphics Hardware 2003, Eurographics/ACM SIGGRAPH,
July 2003.

[9] Gain J.,Southern R.: Creation and Control of Real-time Continuous Level
of Detail on Programmable Graphics Hardware. Computer Graphics Forum,
March 2003

[10] Garland M. ,Heckbert P.: Surface simplification using quadric error metrics.
In Proceedings of SIGGRAPH 97 (Los Angeles, CA), Computer Graphics
Proceedings, Annual Conference Series, pages 209 - 216. ACM SIGGRAPH,
ACM Press, August 1997.

[11] Luebke P.:A Developer’s Survey of Polygonal Simplification Algorithms,
IEEE CGA, June, 2001

[12] NvTriStrip Library, NVIDIA Corporation (2002). Available in Internet at
following URL http://developer.nvidia.com/object/ nvtristrip_library.html.

[13] ARB_vertex_buffer_object Specification. http://oss.sgi.com/projects/ogl-
sample/registry/ ARB /vertex_buffer_object.txt

[14] Evans F., Skiena S.VarshneyA.: Optimising Triangle Strips
for Fast Rendering, IEEE Visualization ’96, 319-326, 1996.
http://www.cs.sunysb.edu/ stripe

