

Bachelor’s Thesis

„Jungle Rumble“

Martin Knecht, 0326294, martin.knecht@aon.at

Michael Schwärzler, 0325222, michael@schwaerzler.com

SS 2005/2006

Index

Index .. 2

Introduction ... 3

Playing the game .. 5

The game engine .. 8
General Overview .. 8
Classdiagram .. 9
Scene graph.. 9
Event Handling .. 10
PhysX... 10
Frustum Culling ... 10
Renderpasses.. 11
Special Nodes.. 11

Terrain... 11
Ocean .. 11
Particle System ... 11
Sound.. 12

GTP Effect Renderers.. 12
Depth Impostors ... 12
Heat Haze .. 13
Approximate Raytracer ... 13

Creating your own levels ...15

Jungle Rumble 2/20

Introduction

In our bachelor’s thesis, we present a game called “Jungle Rumble” which

was developed under supervision of the “Institute of Computer Graphics

and Algorithms” at the Technical University of Vienna. The goal of the

project was to create a real-time 3d-game which implements various

effects developed and provided by the “GameTools Project” (GTP):

“The GameTools Project is an EU project from the 6th Framework

Programme that brings together leading European computer

graphic experts from universities in Austria, France, Hungary and

Spain with European industrial partners from the fields of

computer game development and virtual reality to create next

generation realtime 3D libraries for Geometry, Visibility and

Global Illumination for the PC platform, with an extension to

consoles PS2, XBox, PS3, XBox 360 planned.” (Quote from the GTP

Website)

Since the TU Vienna is a GTP member, we were allowed to participate

actively in the EU project by creating this game, supervised by Dipl. Ing.

Markus Giegl and Dr. Michael Wimmer.

The main reason for creating this game was to use some of the developed

effects in a “real” game, not only in small examples and demos. This is

generally a quite challenging task, since there are lots of things which

have to be processed in real time beside the special effects (for example

game physics). We were able to include three of the technologies created

by the GTP: An approximate raytracer, depth impostors and a special kind

of depth impostors using a noise texture to create heat haze.

Furthermore we decided to use a professional physic engine in our game.

We chose the PhysX engine from Ageia, which is free for non-commercial

Jungle Rumble 3/20

purposes. The players, all the objects and even the particle systems use

the physic engine to simulate a realistic game world.

The approximate raytracer is used to display transparent objects like

crystals or glass. It is used for special objects in the game levels.

Unfortunately, the effect is very costly, so the amount of objects using

this special effect is limited.

Depth impostors are a technique to realistically render particles without

clipping artefacts. They are used in all the particle systems used in the

game. We could even enhance the depth impostors with another render

pass to generate heat haze, which can be seen when the flamethrower is

used in the game (Weapon 4).

In the next chapter, we explain how the game can be started and played.

Then we give a short overview over the game engine architecture,

followed by an instruction on how to create your own levels using xml

files.

Finally, we would like to say thank you to Markus Giegl and Michael

Wimmer for supporting us and providing us with the necessary hardware,

which helped us a lot during development.

Jungle Rumble 4/20

Playing the game

Welcome to the jungle!

The aim of the game is to help a poor giraffe in its nutshell vehicle to fight

against some other animals in their own cars, using some of the coolest

weapons you have ever encountered in gaming history! ☺

In order to play the game, your system needs to fulfil the following

minimum specifications (Since we implemented some very costly effects

using latest hard- and software technology, the minimum specifications

are quite high):

• Windows XP/Windows Server 2003 operating system

• CPU with at least 2.5 GHz.

• 512 MB RAM

• A shader model 3 compliant graphic card (tested on a Geforce

6600GT)

• 50 MB hard disk space

The game uses version 2.4.0 of the Ageia PhysX engine. Therefore the

PhysX drivers have to be installed, regardless of having an Ageia Physx

hardware accelerator or not (note: it may be possible the game speed

increases by using such an accelerator, but we haven’t had the

opportunity yet to verify this since we don’t have one).

To install the driver, please execute PhysX_2.4.0_SystemSoftware.exe

lying in the root directory of the game.

NOTE: If you do not install the driver, the game will CRASH

IMMEDIATELY!

You can easily configure the game by editing the file config.xml. Here the

game resolution as well as the display mode (windowed or full screen) can

be selected. Furthermore, you have the opportunity to add your own

Jungle Rumble 5/20

custom levels here by adding a “<challenge>” tag. Information on how to

add a custom level will be explained in detail later.

After this installation, start the game by executing jungle.exe. The menu

screen will fade in, and you can select a challenge from the list box and

play it by clicking the “Load Challenge” button afterwards. If you don’t

want to play (anymore), you can click the “Exit” button to leave the game.

As soon as a challenge is loaded, you see your avatar, a giraffe, sitting in

its nutshell vehicle, standing somewhere on a beautiful landscape.

Unfortunately, some enemies will appear and attack you sooner or later.

Therefore you have to interact: steer your “car” using the well-known

“wasd” buttons while aiming with your mouse! By clicking the left mouse

button, the current weapon is fired.

During the game, you can collect various weapons:

1. Rocket launcher: Explosive bullets! This is the standard weapon. If

you hit your enemy with a bullet, it is catapulted into the air and the

terrain gets destroyed because of the impact explosion! Be careful

though: if you shoot into the ground somewhere near you, your car

will be damaged and your health will be reduced! Select this weapon

by clicking “1” on the keyboard.

2. Bombs: They are the most destructive weapon in the game, but it is

very hard to control where they explode. It creates a gigantic

explosion and huge crates, and players in its area are damaged

drastically! Select this weapon by clicking “2” on the keyboard.

3. Alien Weapon: The bullets from this alien weapon are not affected

by gravity! Select it by clicking “3” on the keyboard.

4. Flame Thrower: Definitely a weapon only for close combat, but then

very effective since aiming is easy. Be careful not to get toasted

yourself while fighting in a “wheel-to-wheel”-fight! Select this

weapon by clicking “4” on the keyboard.

Jungle Rumble 6/20

5. Ice Thrower: You can use this weapon to freeze your opponents and

make them get slower and slower, which can be very useful in

combination with the Flame Thrower weapon.

Now it’s up to you to defeat the enemy animals! Be sure to pick up

goodies like health packages if you find any (they appear from time to

time).

By pressing the Escape button, you can return to the menu screen again,

where you can load another level or leave the game.

Special Keys during the game:

• F1 – display help

• F2 – frame counter

• F3 – physx debugger on/off (physxdebug tag has to be “1” in

config.xml)

• F4 – music on/off

• F9 – depth impostors on/off

• F10 – raytracer on/off

• F11 – turn off AI (enemies do not shoot anymore)

• Pause – Pause Game

Jungle Rumble 7/20

The game engine

Here we will give a short overview of our game engine.

General Overview
The main class is called GameManager. It is responsible for creating the

scenes (menu scene for the menu, game scene for playing the game

levels) and switching between them. Moreover the game is updated and

controlled from here.

All objects in the game are derived from the class Node (for Example the

class Object3d which stores a mesh and its textures). The Node class has

several methods which are useful for positioning, culling and rendering

each object.

Each renderable node needs to have its own instance of the (derived)

Renderer class. There are several renderers for specific objects, for

example the RaytraceRenderer for the approximate raytrace effect.

Furthermore, a ResourceManager class is responsible for efficient resource

loading, a HUD class creates the HUD, and the Camera Class does all the

camera stuff.

Of course there are several more classes which perform their own special

tasks (special nodes like the Ocean or the Terrain, or all the specific

renderers) which will partly be discussed later.

Jungle Rumble 8/20

Classdiagram

Note: Not all dependencies are shown due to readability.

Scene graph
All engine objects are organized in a hierarchic scene graph. Each node

has several functions to change the behaviour, position or rotation. The

function “update”, for example, is called each frame for each node

recursively. Here it is possible to do some calculations depending on the

node, like updating the opponent players. Furthermore, each node can be

Jungle Rumble 9/20

set to a standby mode. This means, that the node still lies in the scene

graph, but no operations are performed on it. This is quite comfortable if

there are objects in the levels which will appear at a later point of time.

Event Handling
We developed a time dependent trigger system for all events, except for

key and mouse events. So whenever a node should get activated after

some time, it can be done by setting a trigger.

There are several other types of triggers which can be set, especially for

events generated by the PhysX Engine. Since it runs in its own thread,

there are so called Report classes which notify our engine about certain

events that occurred. These events are stored in Triggers which are

immediately processed in the next frame. A typical example for a PhysX

event is a bullet colliding with the terrain.

PhysX
The PhysX Engine was implemented in a way which makes it usable very

abstractly. This means that every node can be used as a physic object in

the scene, while the node handling does not change. To create a physical

object in the engine two main steps are necessary. First the shape of the

physic object has to be described. After that, we just have to tell the node

how it should behave (static, kinematic or rigidbody). For more

information on the different behaviour modes, please take a look at the

PhysX documentation. To view what PhysX is doing during the game, open

the config.xml file and set the physxdebug tag to “1”. Whenever this tag

is set, it is possible to turn the PhysX debugrenderer on and off by

pressing F3.

Frustum Culling
The game uses a quadtree to perform fast frustum culling. While culling

the objects against the view frustum, a list of all needed renderers is set

up.

Jungle Rumble 10/20

Renderpasses
After frustum culling is completed, there is a list of all renderers. Each

type of renderer has a priority, by which they get sorted (e.g.

SkyboxRenderer renders first). Some renderers need extra passes to work

correctly. In this case, these passes are rendered using the RenderPass

class, which is capable of handling separate rendertargets, custom

transformations and a list of functions which should be executed.

Special Nodes

Terrain
The terrain uses a heightmap to generate its geometry. It is splitted into

several patches to enable culling using the quadtree. The terrain is

destructible: whenever explosions occur, the vertices as well as the textur

will be modified accordingly. Multitexturing and per-pixel-lighting is

performed through a pixel-shader.

Ocean
To render the ocean, we created a shader which was inspired by the

nvidia ocean.fx shader. It uses a normal mapping technique to generate

the wave distortions.

Particle System
The particle system is a pretty customizable collection of classes to

generate various particle effects. Its main parts are:

• ParticleGroup – It stores the particles and the emitters. It is possible

to attach a ParticleRenderer so that all particles can be rendered at

once.

• ParticleEmitter – Generates the particles. We are able to define

parameters like emission duration, birthrate, velocity, rotational

degree of objects, vertical and horizontal spreading and obviously

which nodes should be emitted. ☺

• ParticleCube – Used to manipulate momentum and velocity of

particles. It should be used as a baseclass for other ParticleCubes.

Each ParticleCube has a distinct width, height and depth. Every

Jungle Rumble 11/20

Particle which is inside the ParticleCube can be influenced by it.

Currently there are no ParticleCubes in the scene, but for example if

you would like to apply wind, tornados or similar effects to the

particles, this would be the fastest way to do so.

Sound
We chose the fmod sound library to add 3d sound effects and music to our

game.

GTP Effect Renderers

Depth Impostors
As previously described, depth impostors are a technique to realistically

render particles without clipping artefacts. You can turn on/off distance

impostors by pressing the F9 key.

Standard Billboards with Artefacts Depth Impostors – no Artefacts

The rendering of the Particles is done by the ParticleRenderer class. But in

order to render the particles, the zBuffer values are needed. Therefore

this effect needs an extra renderpass. Since there can exist multiple

ParticleRenderers at the same time, the zBuffer is used multiple times. To

provide a suitable solution for this problem (and similar situations) a class

SharedResource was developed. It is a very simple base class for some

Resources which should be available in the whole scene. The derived class

SharedResourceTexture stores a pointer to a texture (in this case the

Jungle Rumble 12/20

result of a depthpass). Each SharedResource gets reset every frame, so

that renderer can ask if the resource is up to date or not.

If a particle is drawn into the scene, a lookup into the depthTexture is

made. If the pixels z-Value is near the current z-Value it is faded out. So,

if the Particle hits another Object (equal z-Value), it is completely

transparent.

Heat Haze
To get the effect of heat haze we extended the depth impostors. In

another pass all particles which generate heat are rendered to a distortion

map. Here we use depth impostors again to fade out the “influence” of

heat. After that the final Image is generated by simply distorting the

rendered image through the distortion map.

Approximate Raytracer
The RaytraceRenderer is used to display transparent or reflective objects.

Equal to the ParticleRenderer, an extra pass is needed, but this time a

cubemap of the environment from the objects position is rendered. To

perform this task again the RenderPass class is used. Due to performance

problems it was only possible to implement single refraction. When

rendering the cubemap, the distance for each pixel is saved into the alpha

channel of the texture. This is why we cannot draw any transparent

objects like particles into the cubemap.

Since the algorithm works iteratively its quality strongly depends on the

first derivation of the depth (the alpha channel). Sometimes (ex.

crossover between terrain edge and skybox) the differences are very big,

which results in artefacts. Maybe it would help to blur the depthpass

before using it.

We wanted to add more objects than one, rendered by the

RaytraceRenderer. Since this is normally not possible because of

performance issues, we developed a small algorithm that only renders the

object which is nearest to the camera. All other objects in the view

frustum get updated (rerender the cubemap) about every 4 seconds. This

update is done at random time intervals, which should prevent all objects

Jungle Rumble 13/20

from being updated at the same time. With our solution its also possible

to render inter reflections between to raytraced objects.

To change the rendering between classic refraction and the GTP effect

press F10 during the game.

Classic Refraction Approximate Raytraced Refraction

Jungle Rumble 14/20

Creating your own levels

Each game level is created by specifying all resources and information in

an xml file. If you create your own level (and therefore your own xml file),

be sure to add a <challenge>tag in the file config.xml, which is lying in

the game root directory:

<challenge>

 <name>Challenge name</name>

 <location>challenge_location.xml</location>

</challenge>

All models except the terrain are in the DirectX .x file format. To create

your own level, we suggest copying an existing xml file and modifying it.

Please do not change the order of the tags; it could be possible that some

things stop working otherwise.

A level xml file consists of the following tags (Note: This information does

not concern config.xml! A level has to be created in another xml file.):

• <challenge>: root node. This tag indicates a new jungle rumble

level.

<challenge>

 …level…

<challenge>

• <name>: sets the challenge name.

• <mode>: sets the game mode using an integer. Currently only the

deathmatch mode is supported (so please set the mode to 0).

• <time>: Specifies the time the player has to finish the level in

seconds.

• <description>: Sets a message which is displayrd at the beginning

of the level.

• <soundfile>: Can be used to specify a mp3 file which is played as

background music while playing the level.

• <soundvolume>: Sets the volume level of the background sound.

Jungle Rumble 15/20

• <sun>: this tag has a subnode <direction> which specifies the sun

direction using <x>, <y> and <z> subnodes again, for example:

<sun>

 <direction>

 <x>-1</x><y>-1</y><z>1</z>

 </direction>

</sun>

• <hud>: defines the Head-Up Display in the level. The hud tag is a

bit more complicated than the other tags we encountered so far,

since there are many parameters to be configured:

o <crosshair>: defines the crosshair texture. <crosshairscaleX>

and <crosshairscaleY> can be used to modify its size.

o <radar>: defines the texture for the radar which is usually

displayed in the bottom left corner of the screen. To generate

such a radar texture, take the terrain heightmap, reduce its

size by -1 (for example, if the size of the terrain heightmap is

129x129, the texture size has to be 128x128), flip it vertically

and put it into the alpha channel (since the radar has to be

semitransparent). <radarscaleX> and <radarscaleY> are used

to modify the displayed size, while <radaroffsetX> and

<radaroffsetY> are used to define the screen position.

o <userplayerscale> and <aiplayerscale> are used to modify

the the display size of the players’ health bars.

o <texture0>: defines the “dot” which is used to display players

on the radar.

o <texture1> to <texture4>: define the healthbar textures.

• <terrain>: needs to be set AFTER the <dimension> tag! The terrain

tag is used to specify the heightmap (from which the landscape is

generated, defined in <heightmap>) and the textures (defined in

<texture0> to <texture2>). The heightmap has to be a 129x129

greyscale raw file.

• <ocean>: The ocean shader needs three textures: <texture0>

defines the normal map used to generate the wave distortions, and

<texture1> sets the cubemap used to generate reflections. The
Jungle Rumble 16/20

<watermap> tag gives information on the blending factor of the

ocean. The <shallowColor?> and <deepColor?> tags set the water

color.

• <skybox>: Sets a textured cube in .x file format as skybox. Note:

The polygons of the skybox are rendered clockwise, so you can

model the cube like a standard model (with the normals pointing

inside-out).

• <envObject>: Defines an object which appears in the game level.

Many parameters can be set here:

o <position>: Sets the object position in the scene. Use the

<x>, <y> and <z> tags to set the coordinates.

o <rotation>: Sets the object rotation in the scene. Use the

<x>, <y> and <z> tags to set the rotation around all three

axes (in degree).

o <xfile>: Defines the .x model to be loaded.

o <renderer>: This is a tag to define a special renderer to be

used for this object (optional). Currently the game has only

one special renderer, the approximate raytracer (type 0).

<renderer>
 <type>0</type>
 <fresnel>0.0</fresnel><refraction>0.95</refraction>
 <iterations>1</iterations>
</renderer>

The parameters <fresnel> and <refraction> define the

appearance of the effect.

The parameter <iterations> defines how many iterations

should be calculated for each pixel. (higher leads to better

results, but is slower)

o <arrivaltime>: Sets the time when the object appears in the

game (optional).

o <timevariation>: variates the arrivaltime (optional).

o <pmaterial>: Defines the physical material of the object.

<pmaterial>

 <materialid>1<materialid>

Jungle Rumble 17/20

 <restitution>0.7</restitution>

 <staticfriction>0.5</staticfriction>

 <dynamicfriction>0.5</dynamicfriction>

</pmaterial>

<materialid> sets an id for the created material (id must be

an integer > 0). This is necessary to refer to a material in the

<pactor> tag. <restitution> sets the restitution, a measure of

the elasticity of the collision between objects, and the two

other parameters define the friction.

o <pactor>: Defines the physical behaviour of the object.

<pactor>

 <behaveas>0</behaveas>

 <colmode>1</colmode>

 <density>10.2</density>

 <material>index</material>

</pactor>

<behaveas> defines the behaviour of the object (0 - normal,

1 - static, 2 - kinematic, 3 – rigidbody), <colmode> the

collision mode (0 - mesh, 1 - heightfield, 2 - convex, 3 –

pmap). <density> sets the density, and <material> sets a

material you have created before (!) using <pmaterial> (use 0

for a standard material).

• <sprite>: Defines a sprite-particle which can be emitted by a

particle emitter.

o <dimension>: Sets the sprite dimension.

o <texture0>: defines the texture image file.

o <lookAtCamera>: (0 or 1) defines if the sprite is rotated

towards the camera or not.

o <animation>: activates sprite animation. If you want to

animate a sprite, you have to use a texture which consists of

several single frame images. For example, you can have a

texture file which has 64 frame images in it (8 rows, 8

columns). The <animation> tag has several sub tags:

� <fps> defines the animation speed (frames per second)

� <framecount> defines the number of frames to be used

Jungle Rumble 18/20

� <rowcount> defines the number of rows

� <columncount> defines the number of columns

� <loopanimation> (0 or 1). If the value is 1, the

animation is played endlessly.

o <key_start>, <key_middle> and <key_end> define animation

key frames. You can set these key frames to change the

particle size & color during the animation.

� <red>, <green>, <blue> and <alpha> set the color.

� <width> and <height> set the size.

� <time> only affects the <key_middle> and defines

when the <key_middle> state should occur (value

between 0 and 1).

o <pactor> defines the physical behaviour of the object. This

tag has already been explained in detail at the <envObject>

tag.

• <particleEmitter>: Defines a particle emitter. To define the particles

which should be emitted, include <sprite> and/or <envObject> sub

tags.

o <position> and <rotation> are to be used in the same way as

in the tags described before.

o <dimension> sets the area size from which particles are

emitted.

o <velocity> defines the particle speed.

o <duration> defines the time the emitter is active.

o <heathaze> (0 or 1) activates the heat haze effect for the

particles.

o <timetolive> sets the time a particle exists.

o <horizontalDegree> and <verticalDegree> set the emission

angle for the particles.

o <rotationalDegree> defines the particle rotation.

o <birthRate> defines the number of particles to be emitted per

second.

Jungle Rumble 19/20

o <colGroup> defines the kind of collision group the particles

belong to. Choose between 4 (other), 20 (no collision), 25 (no

self-collision) or 30 (obstacle).

o <sprite> or <envObject>: Use as many of them as you want

to define the emitted particles (see detailed explanation

above).

• <player> defines a player

o <type> (0 or 1) defines whether this player is the human

player (0) or a player controlled by the computer (1)

o <xfile> sets the x model to be used.

o <position> sets the player initial position. The tag has been

explained already, see above.

o <team> define a team the player belongs to. Players in the

same team don’t shoot each other.

o <weapon> defines a weapon the player possesses.

� <type> defines the kind of weapon.

� <amount> sets the initial amount of ammunition for this

weapon.

• <goodies> defines goodies which appear in a level. There are

several types of goodies, but all of them have the <position> (has

already been explained several times above), the <arrivaltime> and

the <timevariation> tag (see <envObject> for an explanation).

Moreover, the already-known <pactor> tag as well as the

<renderer> tag can be set as well.

o <healthpackage> sets a health package.

� <healthamount> sets the amount of health the package
gives when picked up.

o <weaponpackage> sets a weapon to be picked up.
� <type> defines the type of weapon.
� <amount> sets the amount of ammunition the picked

up weapon has.
o <amopackage>

� <type> defines the type of weapon the ammunition is
for.

� <amount> sets the amount of ammunition

Jungle Rumble 20/20

