Preprocessed Visibility Short Manual

Jifi Bittner, Oliver Mattausch, Michael Wimmer
Institute of Computer Graphics and Algorithms, Vienna University of Technology

February 9, 2007

Contents

1 Introduction

2 Build Project

3 Generate Visibility Solution

4 Integration of Preprocessed Visibility
5 Example Implementation

6 View Cells Usage

1 Introduction

This manual provides a guide to apply preprocessed visibility in a particular target engine. It will start with
instruction for building the preprocessor, describes the integration of the preprocessor and the generated
visibility solution, and last but not least the usage of the view cells within the target engine.

2 Build Project

Open the GtpVisibility.sln with Visual Studio 2003 (2005 might work, but we did not test it recently). Set the
build target to Release. Build the project TestPreprocessor. Now there should be a newly built executable
Preprocessor.exe in bin/release and a library Preprocessor.lib in lib/release.

3 Generate Visibility Solution

All necessary scripts are located in the Preprocessor/scripts directory. The easiest way to use the scripts
is with Cygwin. First some meaningful view cells must be generated for the current scene. The script
generate_viewcells.sh is responsible for view cell generation. It takes the parameters from the file gener-
ate viewcells.env. To specify the input scene, the parameter

Scene.filename

must be set to the file name of the new scene. Our preprocessor supports the formats obj and x3d.
Important options for performance are

Hierarchy.Construction.samples
VspTree.Termination.maxLeaves

The first parameter sets the number of samples that is used for view cell construction. Less samples
means faster computation, but maybe slightly less optimized view cells. The second parameter sets the
maximal number of view cells.

Running the script will generate a visibility solution with empty view cells. Now we must compute
visibility for these view cells. In the preprocessor script generate_visibility.sh, set the following parameter
to the newly generated visibility solution.

ViewCells.filename

This script starts the preprocessor and generates the full visibility solution. This solution contains view
cells and the corresponding Potentially Visible Set (PVS). Next we explain how this visibility solution can
be used in a target engine.

4 Integration of Preprocessed Visibility
4.1 Requirements
Add the following libraries to your application.

e Preprocessor.lib

zdll.lib

zziplib.lib

xercesc_2.lib

devil.lib

glut32.1ib

OpenGL32.Lib

glu32.1lib

glew32.1ib

glew32s.1ib
The libraries can be found in the following directories.

o trunk/Lib/Vis/Preprocessing/lib/Release
o GTP/trunk/Lib/Vis/Preprocessing/src/GL
o NonGTP/Xerces/xercesc/lib

e NonGTP/ZIib/lib
This include directory must be added to your Solution.
o GTP/trunk/Lib/Vis/Preprocessing/src

In order to employ the preprocessor in a target engine we must make the visibility solution (PVS data)
available in the engine. For this purpose we associate the entities of the engine with the PVS entries from
the visibility solution. For this purposse the user must implement a small number of interface classes
of the preprocessor. We demonstrate this on a small example, which shows how to access preprocessed
visibility in the popular rendering engine Ogre3D. Of course, the implementation has to be adapted to the
requirements of a particular target engine.

// this class associates PVS entries
// with the entities of the engine.
OctreeBoundingBoxConverter bconverter (this);

// a vector of intersectables
ObjectContainer objects;

// load the view cells and their PVS
GtpVisibilityPreprocessor::ViewCellsManager xviewCellsManager =
GtpVisibilityPreprocessor: :ViewCellsManager: :LoadViewCells
(filename, &objects, &bconverter);

This piece of code is loading the view cells into the engine. Let’s analyze this code. There are two
constructs that need explanation, the BoundingBoxConverter and the ObjectContainer, and the view cells
manager.

BoundingBoxConverter This is one of the interfaces that must be implemented In this case, we imple-
mented an OctreeBoundingBoxConverter for the Ogre OctreeSceneManager. The bounding box converter
is used to associate one or more entities (objects) in the engine with each pvs entry of the visibility solution.
This is done by geometric comparison of the bounding boxes.

In the current setting we compare not for equality but for intersection. All entities of the engine inter-
secting a bounding box of a PVS entry are associated with this PVS entry. This means that often more than
one entity in the engine will map to a particular pvs entry. This gives a slight overestimation of PVS but
yields a very robust solution.

ObjectContainer The object container is basicly a vector of Intersectable *. It contains all static entities
of the scene. A PVS entry must be derived from this class. To get access to the PVS of a view cell, the user
must implement this interface as a wrapper for the entities in the particular engine.

ViewCellsManager A view cells manager is returned from the loading call. It will be used to access and
manage the view cells from now on. For example, it can be applied to locate the current view cell. For
loading, the user has to provide the filename of the visibility solution, an ObjectContainer containing all
the static entities of the scene, and a bounding box converter. After this step the view cells should be loaded
and accessable in the engine.

5 Example Implementation

In this section we show an example implementation for the interface classes in Ogre3D.

5.1 Intersectable

In our current setting we said that we test for intersection other than equality when assigning the pvs
entries to engine entites. Hence there can be more than one matching object per PVS entry, and there
is a 1:n relationship. The typical wrapper for an Intersectable will therefore contain an array of entities
corresponding to this PVS entry. In order to use the entities of the target engine instead of Ogre3D entities,
replace Entity with the entity representation of the target engine.

// a vector of engine entities
typedef vector<Entity > EntityContainer;

class EnginelIntersectable: public GtpVisibilityPreprocessor::
IntersectableWrapper<kEntityContainer x>

{
public:
EngineIntersectable (EntityContainer xitem): GtpVisibilityPreprocessor::
IntersectableWrapper<EntityContainer *>(item)

{1

EngineIntersectable::"EngineIntersectable ()

{

delete mItem;

int Type () const

{
return Intersectable::ENGINE_INTERSECTABLE;

}i

5.2 Bounding Box Converter

This is maybe the most tricky part of the integration. The bounding box converter is necessary because
we have to associate the objects of the visibility solution with the objects from the engine without having
unique ids. This is the interface of the BoundingBoxConverter .

/** This class assigns unique indices to objects by

comparing bounding boxes.
*/
class BoundingBoxConverter
{
public:
/+* Takes a vector of indexed bounding boxes and
identify objects with a similar bounding box
It will then assign the bounding box id to the objects.
The objects are returned in the object container.

@returns true if conversion was successful
*/
virtual bool IdentifyObijects (
const IndexedBoundingBoxContainer &iboxes,
ObjectContainer &objects) const

// default: do nothing as we assume that a unique id is
// already assigned to the objects.
return true;
}
bi

We give an example of implementation of a Bounding Box Converter for Ogre3D rendering engine. It
is templated in order to works with any Ogre SceneManager. Again, the implementation of this interface
must be adapted for the requirements of the particular engine.

/+* This class converts preprocessor entites to Ogre3D entities
*/
template<typename T> PlatFormBoundingBoxConverter:
public GtpVisibilityPreprocessor::BoundingBoxConverter
{
public:
/** This constructor takes a scene manager template as parameter.
*/

PlatFormBoundingBoxConverter (T xsm);

bool IdentifyObjects (const GtpVisibilityPreprocessor::
IndexedBoundingBoxContainer &iboxes,
GtpVisibilityPreprocessor::0bjectContainer &objects) const;

protected:

/** find objects which are intersected by this box

*/

void FindIntersectingObjects (const AxisAlignedBox &box,
vector<Entity *> &objects) const;

T *mSceneMgr;
}i

typedef PlatFormBoundingBoxConverter<OctreeSceneManager>
OctreeBoundingBoxConverter;

This class is inherited from BoundingBoxConverter. BoundingBoxConverters has only one virtual
function IdentifyObjects that must be implemented. Additionally we use a helper function FindIntersectin-

gObjects that is responsible for locating the corresponding objects in the scene. Let’s now have a look at

the implementation of IdentifyObjects for Ogre3D.

template<typename T>
bool PlatFormBoundingBoxConverter<T>::IdentifyObjects (

const GtpVisibilityPreprocessor::IndexedBoundingBoxContainer &iboxes,

GtpVisibilityPreprocessor::0bjectContainer &objects) const

GtpVisibilityPreprocessor: : IndexedBoundingBoxContainer: :
const_iterator iit, iit_end = iboxes.end();

for (iit = iboxes.begin(); iit != iit_end; ++ 1iit)
{
const AxisAlignedBox box =
OgreTypeConverter: :ConvertToOgre ((xiit) .second);

EntityContainer xentryObjects = new EntityContainer();

// find all objects that intersect the bounding box
FindIntersectingObjects (box, *entryObjects);

EnginelIntersectable xentry = new Enginelntersectable (entryObjects);

entry->SetId((xiit).first);

objects.push_back (entry);
}

return true;

The function just loops over the bounding boxes of the PVS entries and finds the entities that are
intersected by the bouding boxes. Let’s have a look now at the function FindIntersectingObjects, which is

searching the intersections for each individual box.

template<typename T>

void PlatFormBoundingBoxConverter<T>::FindIntersectingObjects (
const AxisAlignedBox &box,
EntityContainer &objects) const

list<SceneNode x> sceneNodelist;

// find intersecting scene nodes to get candidates for intersection
// note: this function has to be provided by scene manager
mSceneMgr->findNodesIn (box, sceneNodelList, NULL);

// convert the bounding box to preprocessor format
GtpVisibilityPreprocessor: :AxisAlignedBox3 nodeBox =

OgreTypeConverter: :ConvertFromOgre (box) ;

// loop through the intersecting scene nodes

for (sit = sceneNodelist.begin(); sit != sceneNodelist.end(); ++ sit)

{
SceneNode #*sn = #*sit;
SceneNode: :ObjectIterator oit = sn->getAttachedObjectIterator();

// find the objects that intersect the box

while (oit.hasMoreElements())

{
MovableObject xmo = oit.getNext ();

// we are only interested in scene entities
if (mo->getMovableType () != "Entity")
continue;

// get the bounding box of the objects
AxisAlignedBox bbox = mo->getWorldBoundingBox () ;

// test for intersection (note: function provided of preprocessor)
if (Overlap (nodeBox, OgreTypeConverter::ConvertFromOgre (bbox)))
{

objects.push_back (static_cast<Entity %> (mo));

Note that the implementation of this function is maybe the one that differs the most for another engine,
as it is highly depending on the particular engine design. For the Ogre3D implementation, we use a two
stage approach. First we find the intersecting scene nodes. We apply a search function that is optimized
for this engine. In case of Ogre3D, this is the function findNodesIn. The engine is responsible to provide a
function for fast geometric search in the scene, in order to quickly find the objects intersecting the bounding
box of a PVS entry. A spatial data structure like Octree or Kd tree is very useful in this regard. Second we
traverse through the list of entities attached to the scene node. The intersection test is then applied for each
indiviual bounding box.

6 View Cells Usage

By now the view cells should be accessible within the target engine. The view cells manager provides the
necessary functionality to handle the view cells. In order to query the current view cell, use the following
function of the view cells manager.

ViewCell xcurrentViewCell = viewCellsManager—->GetViewCell (viewPoint);

viewPoint contains the current location of the player. It must be of type GtpVisibilityPreprocessor::Vector3.
In order to traverse the PVS of this view cell, we apply a PVS iterator, like in the following example. For
the implementation in another engine, Entity from Ogre3D must be replaced by the target engine entities.

GtpVisibilityPreprocessor::0bjectPvsIterator pit =
currentViewCell->GetPvs () .GetIterator();

while (pit.HasMoreEntries())

{
GtpVisibilityPreprocessor: :0bjectPvsEntry entry = pit.Next();
GtpVisibilityPreprocessor::Intersectable xobj = entry.mObject;

EngineIntersectable %0l = static_cast<EnginelIntersectable x> (obj);
EntityContainer xentries = oi->GetItem();

EntityContainer::const_iterator eit, eit_end = entries->end();

for (eit = entries->begin(); eit != eit_end; ++ eit)
{
Entity *ent = xeit;

// do something, e.g., set objects visible

