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1. INTRODUCTION 

1.1. OBJECTIVES OF THIS DOCUMENT 
This document describes the finished modules for the Visibility Work Package. Its aim is to describe 
the modules and provide a manual for their usage. In the appendix we explain the algorithmic details 
of the modules.  

1.2. DOCUMENT AMENDMENT PROCEDURE 
Any project partner may request amendments but each amendment must be analysed and approved by 
the GameTools Project Coordinator or Project Manager.  

1.3. TERMINOLOGY 
Glossary 
 
GTP GameTools Project 
PC Project Coordinator 
PM Project Manager 
WP Work Package 
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2. USAGE MANUAL FOR THE VISIBILITY MODULES 
 
The visibility work package (WP3) consists the following modules: 
 

• View space partitioning (task 3.1) 
• Computation of Potentially Visible Sets  (PVS computation -  task 3.2) 
• Online visibility culling (task 3.3) 
 

This section describes the setup and usage of the developed modules. Firstly, the view space 
partitioning module and the PVS computation modules are discussed in Section 2.1. As both these 
modules address preprocessed visibility we discuss the two modules together. Section 2.2 then 
discusses the usage of the online visibility culling module. 
 

2.1. USAGE MANUAL FOR PREPROCESSED VISIBILITY 
 
Preprocessed visibility, including view space partitioning and PVS computation, is implemented as a 
standalone application. The view space partitioning takes as input a static part of the scene and outputs 
a set of view cells. The PVS computation uses these view cells to determine potentially visible sets 
which are saved in a single XML file together with the view cells. Additionally there is a library 
version of the view space partitioning module, which can be used as a runtime interface to the 
preprocessed data. By linking with the view space partitioning library this module also allows the 
engine to use the preprocessed data: it can load the XML view cells and the PVS description and use 
these in runtime to further speedup rendering or schedule prefetching for out-of-core or network-based 
rendering. 
 

2.1.1. Introduction 
This manual provides a quick guide to generate a visibility solution, and apply the preprocessed 
visibility in a particular target engine. It will start with instructions for building the preprocessor, 
describes the integration of the preprocessor and the generated visibility solution, and last but not least 
the usage of  the view cells within the target engine. 
 

2.1.2. Build Project 
 
Open GtpVisibility.sln with Visual Studio 2003 (2005 might work, but we did not test it recently). Set 
the build target to Release. Build the project TestPreprocessor. Now there should be a newly built 
executable Preprocessor.exe in bin/release and a library Preprocessor.lib in lib/release. 
 

2.1.3. Generate Visibility Solution 
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All necessary scripts (unix shell scripts) are located in the Preprocessor/scripts directory. The easiest 
way to use the scripts is by the way of the Unix emulation package Cygwin. First some meaningful 
view cells must be generated for the current scene. The script generate_viewcells.sh is responsible for 
view cell generation. It takes the parameters from the file generate_viewcells.env. To specify the input 
scene, the parameter  
 
Scene.filename  
 
must be set to the file name of the new scene. Our preprocessor supports the formats obj and x3d. 
Important options for performance are 
 
Hierarchy.Construction.samples 
VspTree.Termination.maxLeaves 
 
The first parameter sets the number of samples that are used for view cell construction. Fewer samples 
means faster computation, but maybe slightly less optimized view cells. The second parameter sets the 
maximal number of view cells.  
Running the script will generate a visibility solution with empty view cells. Now we must compute 
visibility for these view cells. In the preprocessor script generate_visibility.sh, set the following 
parameter to the newly generated visibility solution. 
 
ViewCells.filename 
 
This script starts the preprocessor and generates the full visibility solution. This solution contains view 
cells and the corresponding Potentially Visible Set (PVS). Next we explain how this visibility solution 
can be used in a target engine. 
 

2.1.4. Integration of Preprocessed Visibility 
 
Requirements 
 
Add the following libraries to your application.  
 

• Preprocessor.lib 
• zdll.lib 
• zziplib.lib 
• xerces-c_2.lib 
• devil.lib 
• glut32.lib 
• OpenGL32.Lib 
• glu32.lib 



Doc. Identifier:

TGameTools-3-D3.4-03-1-1-
Finished Visibility 

ModulesTTT
 

FINISHED VISIBILITY MODULES 
 

Date: 28/03/2007 

 

 
IST-2-004363 RESTRICTED RE 7 / 69
 

• glew32.lib 
 
The libraries can be found in the following directories. 
 

• trunk/Lib/Vis/Preprocessing/lib/Release 
• GTP/trunk/Lib/Vis/Preprocessing/src/GL 
• NonGTP/Xerces/xercesc/lib 
• NonGTP/Zlib/lib 

 
In order to employ the preprocessor in a target engine we must make the visibility solution (PVS data) 
available to the engine. For this purpose we associate the entities of the engine with the PVS entries 
from the visibility solution. For this purpose the user must implement a small number of interface 
classes of the preprocessor. We demonstrate this on a small example, which shows how to access 
preprocessed visibility in the popular rendering engine Ogre3D. Of course, the implementation has to 
be adapted to the requirements of a particular target engine. 
  
// this class associates PVS entries with the entities of the engine. 
OctreeBoundingBoxConverter bconverter(this); 
   
// a vector of intersectables 
ObjectContainer objects; 
 
// load the view cells and their PVS 
GtpVisibilityPreprocessor::ViewCellsManager *viewCellsManager =  
         GtpVisibilityPreprocessor::ViewCellsManager::LoadViewCells 
                                   (filename, &objects, &bconverter); 
 

This piece of code is loading the view cells into the engine. Let's analyze this code. There are three  
constructs that need explanation, the BoundingBoxConverter and the ObjectContainer, and the 
ViewCellsManager. 
 
BoundingBoxConverter 
 
This is one of the interfaces that must be implemented In this case, we implemented an 
OctreeBoundingBoxConverter for the Ogre OctreeSceneManager. The bounding box converter is used 
to associate one or more entities (objects) in the engine with each PVS entry of the visibility solution. 
This is done by geometric comparison of the bounding boxes.  
In the current setting we compare not for equality but for intersection. All entities of the engine 
intersecting a bounding box of a PVS entry are associated with this PVS entry. This means that often 
more than one entity in the engine will map to a particular PVS entry. This gives a slight 
overestimation of PVS but yields a very robust solution and avoids the nightmare of keeping track of 
volatile object ids. 
 
ObjectContainer 
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The object container is a vector of Intersectable *. It contains all static entities of the scene. A PVS 
entry must be derived from this class. To get access to the PVS of a view cell, the user must 
implement a class derived from Intersectable which wraps one or more entities of the particular engine 
(e.g., through a list of pointers). 
 
ViewCellsManager 
 
The loading function returns a view cells manager.  
 
static ViewCellsManager *LoadViewCells(const string &filename,   

ObjectContainer *objects,  
bool finalizeViewCells = false, 

     BoundingBoxConverter *bconverter = NULL); 

 
 
The user has to provide the filename of the visibility solution, an ObjectContainer containing all the 
static entities of the scene, and a bounding box converter. From now on, the view cells manager is 
used to access and manage the view cells. For example, it can be applied to locate the current view 
cell. After this step the view cells should be loaded and accessible in the engine. 
 
 

2.1.5. Example Implementation 
 
Example Implementation 
 
In the following paragraphs we show an example implementation for the interface classes in Ogre3D. 
First for the object class of the preprocessor, Intersectable, then for the converter class 
BoundingBoxConverter. 
 
Class Intersectable 
 
In our current setting we said that we test for intersection other than equality when assigning the pvs 
entries to engine entites. Hence there can be more than one matching object per PVS entry, and there 
is a 1:n relationship. The typical wrapper for an object of type Intersectable will therefore contain an 
array of entities corresponding to this PVS entry. In order to use the entities of the target engine 
instead of Ogre3D entities, replace Entity with the entity representation of the target engine. 
 
// a ve
typedef vector<Entity *> EntityContainer; 

ctor of engine entities 

 
class EngineIntersectable: public GtpVisibilityPreprocessor:: 
                                IntersectableWrapper<EntityContainer *> 
{ 
public: 
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   EngineIntersectable(EntityContainer *item): GtpVisibilityPreprocessor:: 
      IntersectableWrapper<EntityContainer *>(item)  
   {} 
 
   EngineIntersectable::~EngineIntersectable()  
   { 
       delete mItem; 
   } 
 
   int Type() const 
   { 
       return Intersectable::ENGINE_INTERSECTABLE; 
   } 
}; 
 
 

Class BoundingBoxConverter 
 

This is the most involved part of the integration, but it shouldn’t be too difficult, either. A bounding 
box converter is necessary because we have to associate the objects of the visibility solution with the 
objects from the engine without having unique ids. This is the interface of the class 
BoundingBoxConverter. 
 
/** This class assigns unique indices to objects by 
    comparing bounding boxes. 
*/ 
class BoundingBoxConverter 
{ 
public: 
  /** Takes a vector of indexed bounding boxes and  
      identify objects with a similar bounding box 
      It will then assign the bounding box id to the objects.  

The objects are returned in the object container. 
   
      @returns true if conversion was successful 
  */ 
  virtual bool IdentifyObjects( 
                 const IndexedBoundingBoxContainer &iboxes, 
                 ObjectContainer &objects) const 
  { 
    // default: do nothing as we assume that a unique id is  
    // already assigned to the objects. 
    return true; 
  } 
}; 

 
We give an example of implementation of a BoundingBoxConverter for the Ogre3D rendering engine. 
It is templated in order to work with any SceneManager in Ogre3D (if you are not familiar with the 
SceneManager concept in Ogre3D, it does not matter). Again, the implementation of this interface 
must be adapted for the requirements of the particular engine. 
 
/** This class converts preprocessor entities to Ogre3D entities 
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*/  
template<typename T> PlatformBoundingBoxConverter:  
    public GtpVisibilityPreprocessor::BoundingBoxConverter 
{ 
public: 
  /** This constructor takes a scene manager template as parameter. 
  */ 
  PlatFormBoundingBoxConverter(T *sm); 
  
  bool IdentifyObjects(const GtpVisibilityPreprocessor:: 
         IndexedBoundingBoxContainer &iboxes, 
         GtpVisibilityPreprocessor::ObjectContainer &objects) const; 
 
protected: 
 
  /** find objects which are intersected by this box 
  */ 
  void FindIntersectingObjects(const AxisAlignedBox &box, 
                               vector<Entity *> &objects) const; 
 
  T *mSceneMgr; 
}; 
 
typedef PlatformBoundingBoxConverter<OctreeSceneManager>  
          OctreeBoundingBoxConverter; 

 
This class is inherited from BoundingBoxConverter. This class has only one virtual function 
IdentifyObjects that must be implemented. Additionally we use a helper function 
FindIntersectingObjects that is responsible for locating the corresponding objects in the scene. Let's 
now have a look at the implementation of IdentifyObjects for Ogre3D. 
 
template<typename T> 
bool PlatFormBoundingBoxConverter<T>::IdentifyObjects( 
      const GtpVisibilityPreprocessor::IndexedBoundingBoxContainer &iboxes, 
      GtpVisibilityPreprocessor::ObjectContainer &objects) const 
{ 
  GtpVisibilityPreprocessor::IndexedBoundingBoxContainer:: 
   const_iterator iit, iit_end = iboxes.end(); 
   
  for (iit = iboxes.begin(); iit != iit_end; ++ iit) 
  { 
    const AxisAlignedBox box =  
      OgreTypeConverter::ConvertToOgre((*iit).second); 
   
    EntityContainer *entryObjects = new EntityContainer(); 
 
    // find all objects that intersect the bounding box 
    FindIntersectingObjects(box, *entryObjects); 
 
    EngineIntersectable *entry = new EngineIntersectable(entryObjects); 
    entry->SetId((*iit).first); 
 
    objects.push_back(entry); 
  } 
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  return true; 
} 
 
 

The function just loops over the bounding boxes of the PVS entries and finds the entities that are 
intersected by the bounding boxes. Additionally we introduce a new class, the OgreTypeConverter. 
This class is just responsible for converting basic classes like Vector3 or AxisAlignedBox. between 
Ogre3D types and Preprocessor types. Now we revisit the function FindIntersectingObjects, which 
searches the intersections for each individual box. 
 
template<typename T> 
void PlatFormBoundingBoxConverter<T>::FindIntersectingObjects( 
       const AxisAlignedBox &box, 
       EntityContainer &objects) const 
{ 
  list<SceneNode *> sceneNodeList; 
    
  // find intersecting scene nodes to get candidates for intersection 
  // note: this function has to be provided by scene manager 
  mSceneMgr->findNodesIn(box, sceneNodeList, NULL); 
 
  // convert the bounding box to preprocessor format 
  GtpVisibilityPreprocessor::AxisAlignedBox3 nodeBox =  
    OgreTypeConverter::ConvertFromOgre(box); 
  
  // loop through the intersecting scene nodes 
  for (sit = sceneNodeList.begin(); sit != sceneNodeList.end(); ++ sit) 
  { 
    SceneNode *sn = *sit; 
    SceneNode::ObjectIterator oit = sn->getAttachedObjectIterator(); 
 
    nd the objects that intersect the box // fi
    while (oit.hasMoreElements()) 
    { 
      MovableObject *mo = oit.getNext(); 
 
      // we are only interested in scene entities 
      if (mo->getMovableType() != "Entity") 
        continue; 
    
      // get the bounding box of the objects 
      AxisAlignedBox bbox = mo->getWorldBoundingBox(); 
    
      // test for intersection (note: function provided of preprocessor) 
      if (Overlap(nodeBox, OgreTypeConverter::ConvertFromOgre(bbox))) 
      { 
        objects.push_back(static_cast<Entity *>(mo)); 
      } 
    } 
  } 
} 
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Note that the implementation of this function is maybe the one that differs the most for other engines, 
as it is highly depending on the particular engine design. For the Ogre3D implementation, we use a 
two stage approach. First we find the intersecting scene nodes. We apply a search function that is 
optimized for this engine. In case of Ogre3D, this is the function findNodesIn. The engine is 
responsible for providing a function for fast geometric search in the scene, in order to quickly find the 
objects intersecting the bounding box of a PVS entry. A spatial data structure like octree or kd-tree is 
very useful in this regard. Second we traverse the list of entities attached to the scene node. The 
intersection test is then applied for each individual bounding box. 
 

2.1.6. View Cells Usage 
 
At this point the view cells should be accessible within the target engine. The view cells manager 
provides the necessary functionality to handle the view cells. In order to query the current view cell, 
use the following function of the view cells manager. 
 
ViewCell *GetViewCell(const Vector3 &point, const bool active = false) 
const; 
 

In the target engine, the function is invoked like this. 
 
ViewCell *currentViewCell = viewCellsManager->GetViewCell(viewPoint); 

 
viewPoint contains the current location of the player in the scene. It must be of type 
GtpVisibilityPreprocessor::Vector3. In order to traverse the PVS of this view cell, we apply a PVS 
iterator, like in the following example. For the implementation in another engine, Entity from Ogre3D 
must be replaced by the target engine entities. 
 
GtpVisibilityPreprocessor::ObjectPvsIterator pit =  
  currentViewCell->GetPvs().GetIterator(); 
 
while (pit.HasMoreEntries()) 

   

{   
  GtpVisibilityPreprocessor::ObjectPvsEntry entry = pit.Next(); 
  GtpVisibilityPreprocessor::Intersectable *obj = entry.mObject; 
 
  EngineIntersectable *oi = static_cast<EngineIntersectable *>(obj); 
  EntityContainer *entries = oi->GetItem(); 
   
  EntityContainer::const_iterator eit, eit_end = entries->end(); 
 
  for (eit = entries->begin(); eit != eit_end; ++ eit) 
  { 
    Entity *ent = *eit;       
    // do something, e.g., set objects visible 
  }  
} 
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Figure 1, The PVS Computation Module integrated in the Ogre3d engine. A snapshot of Vienna 
is shown, with the rendered PVS shown in the lower right corner. Note how the PVS closely fits 
to the geometry actually seen. 

 

2.1.7. Setting up the environment for preprocessed visibility 
 
This section gives an overview of how to set the most important parameters to specify the pre-
processor environment. For a quick start, the short manual is sufficient. In this section we show how 
some of the parameters can be tweaked to provide some means for optimization. 
The modules use a number of parameters which can be specified by the user through the "environment 
file" or command line parameters. The parameters can have one of the following types: string, int, 
float, and boolean. All parameters have implicit values set by the preprocessor (see the 
Environment.cpp source file). This value can be redefined by the environment file (see for example 
preprocess_visibility.env) and it can be further overwritten by a command line argument. There are 
two possibilities how to specify the command parameter: using a shortcut or define construct. The 
define construct uses the following syntax: -Dparameter_name=value. With the exception of Boolean 
parameters the shortcut version is specified as follows: -parameter_shortcut=value. The boolean 
parameter shortcut is directly followed by + or - sign (e.g.  -preprocessor_use_gl_render+).  The usage 
of the parameters is illustrated in the example scripts and environment files (preprocess_visibility, 
preprocess_visibility.env, generate_viewcells, generate_viewcells.env). An example of a part of the 
environment file is given in Figure 2. 

 
Scene { 
#filename ../data/vienna/vienna-buildings.x3d 
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#filename ../data/soda/soda.dat 
filename ../data/vienna/vienna_cropped.obj 
#filename ../data/PowerPlant/ppsection1/part_a/g0.ply 
} 
Preprocessor { 
 # stored sample rays 
 samplesFilename rays.out 
 useGlRenderer false 
 useGlDebugger false 
 type rss 
 detectEmptyViewSpace false 
 quitOnFinish true 
 computeVisibility true 
 applyVisibilityFilter false 
 applyVisibilitySpatialFilter true 
 visibilityFilterWidth 0.01 
 visibilityFile visibility.xml 
} 

Figure 2. Example of a part of the environment file. Note that the parameters can be specified 
using a hierarchical syntax with nested braces. Lines staring with ‘#’ are treated as comments. 

 
Below we give a list of the most important parameters. Each parameter in the list contains a name of 
the parameter (used in environment file), followed by its command line shortcut (in round brackets), 
and a parameter type (in square brackets). For more parameters see the environment file 
(generate_viewcells.env) and the documentation included in the source code of the module. In the 
following we describe some important options, first the parameters which are common for all modules 
than the options specific for each module. 
 

2.1.7.1. Common parameters for all techniques 
 
The following parameters are common for all modules, e.g., pvs computation module, and view space  
as well as view space / object space partition module. 
 
Scene.filename (-scene_filename=) [string] 
 
Scene description file. Currently simplified obj (only triangles), simplified X3D (.x3d), Unigraphics 
(.dat), UNC (.ply) formats are supported. This option has to be specified! 
 
Preprocessor.type (-preprocessor=) [string, one of: combined, vss, rss, gvs, sampling, render] 
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Type of the preprocessor to use. Currently only the “combined" type is supported for PVS 
computation. For view cells and view / object space partition the "vss" preprocessor should be used 
(vss stands for View Space Subdivision). 
 
Preprocessor.detectEmtpyViewSpace (-preprocessor_use_gl_renderer) [boolean] 
Empty view space detection allows more efficient sampling for scenes with properly modelled 
watertight objects (those which can be correctly rendered with backface culling on). This option is 
beneficial for all modules and should only be omitted for scenes where there is ill-defined geometry. 
 
ViewCells.type (-view_cells_type=) [string, one of: vspBspTree, .....] 
Type of view cells partition method. Use "vspBspTree", which corresponds to our optimized view cell 
partition, and “vspOspTree” for the combined view space / object space partition. 
 
ViewCells.filename (-view_cells_filename=) [string] 
Specifies the filename of the view cells.  
 
ViewCells.exportToFil (-view_cells_export_to_file=)[boolean] 
Must be true for the view space (view / object space) partition methods. 
 
ViewCells.loadFromFile (-view_cells_load_from_file=) [boolean] 
Must be true for preprocessing visibility, as our visibility solver needs a set of view cells to work. 
 
KdTree.Termination.maxNodes (-kd_term_max_nodes=) [int] 
 Maximum number of KD-tree nodes. The KD tree is constructed at the start of the pre-processor and 
it is used for ray casting acceleration and optionally for PVS storage. 
 
KdTree.Termination.minCost (-kd_term_min_cost=) 
Minimal number of triangles per node of the KD-tree so that the node is further subdivided. 
 

2.1.7.2. Parameters for the View Space Partition module 
 
The view space partitioning is implemented as a standalone application. Alternatively the module can 
be compiled as a library which can be linked to a 3rd party code. An example of such an application is 
the online occlusion culling module (integrated with OGRE engine) which links the library in order to 
load the preprocessed data and use them in runtime. This section gives an overview of the important 
parameters of the view space partitioning module 
 
 
ViewCells.type (-view_cells_type=) [string] 
Use "vspBspTree", which corresponds to our optimized view cell partition 



Doc. Identifier:

TGameTools-3-D3.4-03-1-1-
Finished Visibility 

ModulesTTT
 

FINISHED VISIBILITY MODULES 
 

Date: 28/03/2007 

 

 
IST-2-004363 RESTRICTED RE 16 / 69
 

 
VspBsp.Termination.maxViewCells (-vsp_bsp_term_max_view_cells=) [int] 
Maximal number of generated view cells by the subdivision 
 
VspBsp.Construction.samples (-vsp_bsp_construction_samples=) [int] 
Number of visibility samples to be used for the construction of the view cell subdivision. 
 
VspBsp.Termination.minGlobalCostRatio (-vsp_bsp_term_min_global_cost_ratio=) [float] 
Defines the minimal render cost decrease where the view cell subdivision is terminated 
  
VspBsp.maxPolyCandidates (-vsp_bsp_max_poly_candidates=) [int] 
Number of geometry aligned splits evaluated for the next best split. 
 
VspBsp.useCostHeuristics (-vsp_bsp_use_cost_heuristics=) [bool] 
If spatial mid split is always taken for axis aligned splits or split plane is evaluated using the cost 
model. 
 
ViewCells.PostProcess.merge (-view_cells_post_process_merge=) [bool] 
If the final subdivision should be merged according to the cost model to optimize the view cells. 
 
 

ViewCells.Construction.samples (-view_cells_construction_samples=) [int] 
The number of samples cast before the final merge step (the subdivision is handled by 
VspBsp.Construction.samples) 
 
 

2.1.7.3. Parameters for the combined View / Object Space Partition 
 
We have implemented an optimized version of the view cell partition module that interleaves object 
space and view space partitioning and thus generates even better view cells. In the following we 
describe the parameters for handling this version. 
 
ViewCells.type (-view_cells_type=) [string] 
Use "vspOspTree", which corresponds to our optimized view space / object space partition 
 
We describe the global parameters influencing the construction and interleaving of both hierarchies 
(view and object space). 
 
Hierarchy.Construction.type (-hierarchy_construction_type=)  [int] 
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0 = sequential computation (fast), 2 = optimized interleaved method 
The sequential computation subdivides view space first using surface area heuristics, then the view 
space using our optimized view space partition. The interleaved method computes view and object 
space subdivision in an interleaved fashion, aiming for the optimal #leaves in both domains. 
 
Hierarchy.Construction.samples (-hierarchy_construction_samples =) [int] [e.g., 1000000] 
#samples used for construction of hierarchy 
 
Hierarchy.Construction.maxRepairs(-hierarchy_construction_max_repairs =)  [int] [e.g., 1000] 
This option highly influences computation time for the interleaved method. Maximum #repair steps 
per subdivision step in one domain. A lower value means faster but less accurate computation. 
 
Hierarchy.Termination.maxMemory (-hierarchy_construction_max_memory =) [int] [e.g., 20)] 
Maximal memory cost of visibility solution in MB. Note that this value will be higher for the final 
visibility solution as we are only used coarse sampling here. 
 
Hierarchy.Termination.maxLeaves (-hierarchy_termination_max_leaves =)[int] [e.g., 3000000] 
Maximal number of leaves for both subdivisions (e.g., sum of view cells and object space hierarchy 
leaves)  
 
The following options concern the local and global parameters concerning only the view space 
partition (vsp). 
 
VspTree.Termination.maxViewCells (-vsp_term_max_viewcells =) [int] [e.g., 5000] 
The maximal number of leaves in the view space partition. 
 
VspTree.useCostHeuristics (-vsp_use_cost_heuristics =) [boolean] 
If our optimized view space partition algorithm should be used. 
 
VspTree.splitUseOnlyDrivingAxis (-vsp_split_only_driving_axis =) [boolean] 
If only the driving axis (i.e., the longest axis in the current parent cell) should be subdivided. 
 
The following options concern the local and global parameters concerning only the object space  
partition. We use a bounding volume hierarchy as object space hierarchy. 
 
BvHierarchy.Termination.maxLeaves (-bvh_term_max_leaves =) [int] [e.g., 20000] 
The maximal number of leaves in the object space partition. 
 
BvHierarchy.useCostHeuristics (-bvh_use_cost_heuristics =) [boolean] 
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If some sort of cost heuristics (surface area, sampled visibility based heuristics) should be used. 
 
BvHierarchy.useSah (-vsp_use_sah =) [boolean] 
If surface area heuristics should be used or sampled visibility based heuristics. 
 
BvHierarchy.splitUseOnlyDrivingAxis (-bvh_split_only_driving_axis =) [boolean] 
If only the driving axis (i.e., the longest axis in the current parent cell) should be subdivided. 
 
 

2.1.7.4. Parameters for the PVS Computation Module 
 
The PVS computation module is implemented as a standalone application.  The parameters for the 
module can be specified by the user through the "environment file" or on the command line as 
described for the view space partitioning module. Below we give a list of the most important 
parameters. For other parameters see the environment file (preprocess_visibility.env) and the 
documentation included in the source code of the module. 
 
Preprocessor.type (-preprocessor=) [string] 
The type of the preprocessor to use. Can be one of: combined, rss, sampling, gvs.  Suggested value: 
combined. 
Combined provides a mix of a sampling-based method (PGV, Section 3.3) and an approach using a 
simple ray space subdivision. Instead of an exact solution, we also provide guided visibility sampling 
(see Section 3.4), which is not a progressive method, but aims for a very accurate visibility solution, 
comparable to an exact algorithm. 
 
Preprocessor.totalSamples (-total_samples=) [int] 
The total number of samples cast. 
 
Preprocessor.samplesPerPass (-samples_per_pass=) [int] 
Number of samples to cast per pass. 
 
RssPreprocessor.distributions (-rss_distributions=) [string] 
Distributions to use for mixture distribution sampling separated by + sign.  Can consist of rss, object, 
spatial, global, direction, object_direction, reverse_object, reverse_viewspace_border, mutation. 
Suggested value: -rss_distributions=object_direction+spatial+mutation 
 
Preprocessor.detectEmptyViewSpace (-preprocessor_detect_empty_viewspace) [bool] 
Turn on/off the detection of empty space (see the description of the PVS computation algorithm). The 
empty view space detection can be very beneficial, but it assumes a scene with correct orientation of 
normals with watertight objects. 
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ViewCells.useKdPvs (-view_cells_use_kd_pvs) [bool] 
Store PVS as entries of a KD-tree (on) or BVH (off). Storing PVSs as KD-tree entries usually 
converges faster in terms of accuracy of the PVS. 
 
Preprocessor.useGlRenderer (-preprocessor_use_gl_renderer) [boolean] 
Tells the preprocessor to open an OpenGL window which serves for visualization, testing and visual 
debugging of the preprocessor. This functionality is currently implemented using Qt OpenGL widget 
and thus requires compiling the preprocessor with Qt library. 
 
Preprocessor.applyVisibilityFilter (-preprocessor_apply_visibility_filter) [boolean] 
Tells the preprocessor if the visibility filter should be applied. 
 
Preprocessor.visibilityFilterWidth (-preprocessor_visibility_filter_width=) [float] 
Width of the visibility filter specified as a ratio of the size of the bounding box of the scene. A 
reasonable value for common scenes is 0.01. 
 
Preprocessor.visibilityFile (-preprocessor_visibility_file=) [string] 
Name of the file into which the preprocessed visibility information should be exported. 
 
For the guided visibility sampling (=gvs) preprocessor, we have to set different parameters. Note that 
the algorithm runs on triangle level, but the triangle pvs is converted to the given granularity of objects 
(or kd cells, respectively, if the “view_cells_use_kd_pvs” parameter is set) each time after we finished 
processing a view cell. 
 
GvsPreprocessor.gvsSamplesPerPass (-gvs_samples_per_pass=)[int] 
Samples shot in one pass of the algorithm. This option sets the termination criterium in combination 
with the parameter value for the minimal contribution.  
 
GvsPreprocessor.gvsMinContribution (-gvs_min_contribution=)[int] 
For each view cell, the gvs algorithm terminates if after a number of rays given by 
“gvs_samples_per_pass”, the number of newly found triangles is less than “gvs_min_contribution”. 
 
 

2.2. MANUAL FOR THE ONLINE VISIBILITY CULLING MODULE 
 
The online visibility culling module is implemented as a specialized scene manager. It has been 
integrated into the Ogre3D and Shark3D engines. 

2.2.1. Implementation 
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The major focus in the implementation of the online culling module was a careful separation of the 
CHC algorithm used to do visibility culling from the platform dependent code, which allows reusing 
the same algorithm code for both Ogre3D and Shark3d game engines.  
The main class of the module is the CullingManager. The particular algorithm is realized as class 
which inherits from CullingManager and implements the RenderScene method. The CHC algorithm is 
implemented by the CoherentCullingManager class. The class diagram of the integration into Ogre3D 
is given in Figure 3. 
 

 

Figure 3. Class diagram depicting the integration of the online culling module into Ogre engine. 

 
The Ogre3D implementation was realized using a specialized scene manager plugin. We implemented 
the single pass version of the algorithm as well as a version which applies an initial depth pass. The 
algorithm runs nearly orthogonal to other Ogre3D features and supports Ogre texture-based shadows 
as well as shadow volumes. The second functionality of the online module is the integration of the 
preprocessed visibility: it provides loading and using the preprocessed view cells in Ogre. The view 
cells are loaded from an XML file which is computed by the PVS computation module. The scene 
objects corresponding to the PVS for the current view point are set to visible while all other objects are 
set invisible and thus not rendered. The pseudocode of the CHC algorithm is given in Figure 4. 
 
TraversalStack.Push(hierarchy.Root); 
while ( not TraversalStack.Empty() or
        not QueryQueue.Empty() )  
{ 
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  //-- PART 1: process finished occlusion queries 
  while ( not QueryQueue.Empty() and
         (ResultAvailable(QueryQueue.Front()) or
          TraversalStack.Empty()) )  
  { 
    node = QueryQueue.Dequeue(); 
    // wait if result not available 
    visiblePixels = GetOcclusionQueryResult(node); 
    if ( visiblePixels > VisibilityThreshold )  
    { 
      PullUpVisibility(node); 
      TraverseNode(node); 
    } 
  } 
   
  //-- PART 2: hierarchical traversal 
  if ( not TraversalStack.Empty() )  
  { 
    node = TraversalStack.Pop(); 
    if ( InsideViewFrustum(node) )  
    { 
      // identify previously visible nodes 
      wasVisible = node.visible and  
                   (node.lastVisited == frameID - 1); 
      // identify nodes that we cannot skip queries for 
      leafOrWasInvisible = not wasVisible or IsLeaf(node); 
      // reset node's visibility classification 
      node.visible = false; 
      // update node's visited flag 
      node.lastVisited = frameID; 
      //
      

 skip testing previously visible interior nodes
if ( leafOrWasInvisible )  

      { 
        IssueOcclusionQuery(node);  
        QueryQueue.Enqueue(node); 
      } 
      //
      

 always traverse a node if it was visible 
if ( wasVisible ) 

        TraverseNode(node); 
    } 
  } 
} 
 
TraverseNode(node)  
{ 
  if ( IsLeaf(node) ) 
    Render(node); 
  else 
    TraversalStack.PushChildren(node); 
} 
 
PullUpVisibility(node)  
{ 
  while (!node.visible)  
  {  
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    node.visible = true;  
    node = node.parent;  
  } 
} 

Figure 4. CHC algorithm pseudocode. 

 
 

2.2.2. CHC integration manual 
 
In the following we decribe the steps necessaray to implement CHC into a particular target engine. In 
principle the user needs to implement the methods of a hierarchy interface class to work on the target 
rendering engine.  
 
 
Requirements 
 
Add this library to your application.  
 

• GtpVisibility.lib 
 
The library can be found in the following directory. 
 

• trunk/Lib/Vis/Preprocessing/lib/$(ConfigurationName) 
 
The class contains the interface class HierarchyInterface This is an abstract class that enables us to 
keep the occlusion culling algorithms independent from the platform, The user has to provide an 
implementation of the interface methods for a particular  target engine. The HierarchyInterface stores 
the current frame number as an internal state. 
Most of the hierarchy interface methods operate on a HierarchyNode *. This is merely a void * in 
order to achieve maximum flexibily. The user has to use the node class of the target engine as 
argument whenever a HierarchyNode * is required. 
Each HierarchyNode has to provide a flag isVisible as well as an integer timestamp lastVisited. 
 
The methods HierarchyInterface class that must be reimplemed for using CHC are: 
 

OcclusionQuery* IssueNodeOcclusionQuery (HierarchyNode *  node, const bool wasVisible)   
Issues an occlusion query for this node and returns the query. wasVisible 
indicates if the node was visible in the last frame – in this case, the 
geometry may be tested instead of the geometry at the discretion of the 
implementation. 

 



Doc. Identifier:

TGameTools-3-D3.4-03-1-1-
Finished Visibility 

ModulesTTT
 

FINISHED VISIBILITY MODULES 
 

Date: 28/03/2007 

 

 
IST-2-004363 RESTRICTED RE 23 / 69
 

void TraverseNode(HierarchyNode *  node)  
Renders and traverses the given hierarchy node. Traversal should be done 
by pushing the child nodes onto a DistanceQueue which can be referenced 
via GetQueue(). 

 
void RenderNode(HierarchyNode *  node)  
Renders the given hierarchy node. The render call should make sure that 
geometry is only rendered once in a frame, even if this function is 
called more than once. 

 
void PullUpVisibility (HierarchyNode *  node)  const
Pulls the visibility classification up the hierarchy, i.e., beginning 
from this node, all parents are set to visible because a child node is 
visible.
 
void SetNodeVisible (HierarchyNode *  node, const bool visible)  const 
Sets the node to be visible / invisible in the current frame. 

 
void SetLastVisited (HierarchyNode *  node, const unsigned int  frameId)  
frameid specifies the frame number at which the node was visited the last 
time and should be stored in the HierarchyNode.

 
bool IsLeaf(HierarchyNode *  node)  const
Returns true if the node is a leaf, false if the node is an interior node 
of the hierarchy. 

 
float GetSquaredDistance(HierarchyNode *node) const 
Returns distance of the node to the view plane. 
  
bool CheckFrustumVisible(HierarchyNode *node, bool &intersects) 
Checks if the node is visible from the current view frustum. 
The parameter intersects returns true if the current node intersects the 
near plane. This is necessary to skip queries in case the nodes intersect 
the near plane. 
 

  bool HasGeometry(HierarchyNode *node) const 
  Returns true if there is renderable geometry attached to this node 

 
 

The hierarchy interface provides some more important functions for hierarchy processing: 
 
DistanceQueue* GetQueue ( )  
Returns pointer to the priority queue storing the nodes based on the 
distance to the view point in a front-to-back order.
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void SetHierarchyRoot(HierarchyNode *root) 
sets the root of the scene hierarchy. Needs to be called once. 

 

 
As an example we show the implementation of the TraverseNode method for an Octree hierarchy 
traversal (using the OctreeSceneManager), This method does a traversal from a particular octree node 
to the leaves of the hierarchy. In each step the renderable geometry is rendered. The user must proceed 
in a similar fashion to implement all the functionality of the HierarchyManager for his engine. 
 
void OctreeHierarchyInterface::TraverseNode(GtpVisibility::HierarchyNode 
*node) 
{ 
 ++ mNumTraversedNodes; // just for stats 
  
 // A cast from hierarchy node to the node class of the engine 
 Octree *octree = static_cast<Octree *>(node); 
 

 // Render the node. 
 RenderNode(node);   
  

 // Continue traversal for all children of the octree. 

 if (!IsLeaf(node)) 
 { 
  Octree *nextChild; 
 

if (!IsLeaf(node)) 
  { 
   Octree *nextChild; 
 
   for (int z = 0; z < 2; ++ z) 
   {  
    for (int y = 0; y < 2; ++ y) 
    { 
     for (int x = 0; x < 2; ++ x) 
     { 
      nextChild = octree->mChildren[x][y][z]; 
  

      // push on queue for further traversal 
      if (nextChild) 
                           GetQueue()->push(nextChild); 
     } 
    } 
             } 
         } 
 }  
} 

 
 

2.2.3. OcclusionCullingSceneManager 
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The OcclusionCullingSceneManager provides several options for online and offline occlusion culling. 
These options must be provided in the form of an Ogre configuration file. The configuration file must 
be passed as parameter of the scene manager function setWorldGeometry. We provide an example 
configuration file “terrainCulling.cfg” in Lib\Vis\OnlineCullingCHC\scripts.  
 
##  Online culling alg
OnlineCullingAlgorithm=CHC 

orithm settings 

#OnlineCullingAlgorithm=SWC 
#OnlineCullingAlgorithm=VFC 
#OnlineCullingAlgorithm=DEFAULT 

 
##  Scene geometry: can be one of *.iv, *.obj 
## terrain: generate terrain 
#
Scene=../../../../../resources/media/city1.iv;../../../../../resources/medi
a/roofs_1500.iv;../../../../../resources/media/CityRoads60.iv;../../../../.
./resources/media/CityPlane60.iv 

Scene=terrain 

 
## visibi
ViewCells=../../../../../../../GTP/trunk/Lib/Vis/Preprocessing/scripts/vien
na-visibility.xml.gz 

lity solution (does not work with terrain yet) 

 
 
## depth pass first renders object without material to fill depth buffer 
UseDepthPass=no 
 
## performance option: the render queue will be flushed after some frames 
FlushQueue=yes 

 
 
## Settings for terrain scene 
## these settings are inherited from terrain scenemanager 
 
… 
 

Figure 5, Example for a configuration file for the OcclusionCullingSceneManager 

 
In Figure 5 we can see such an example configuration. The “Scene” parameter provides either static 
geometry or a terrain generated from a heightmap. Note that the visibility solution can be applied NOT 
only on the static geometry provided with the “Scene” parameter, but to any entities in the engine. In 
addition to the startup configuration, some parameters can be set interactively in the scenemanager 
using the scenemanager function  
 
setOption(const String & key, const void * val) 

 
 
All options take either bool or int as second argument. The most important parameters are:  
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Algorithm [int] 
Sets the applied visibility algorithm. 
 
UseViewCells [boolean] 
If the previously loaded view cells should be used for preprocessed per 
view cell visibility culling. off per default. 
 
UseDepthPass [boolean] 
If depth only pass should be applied first. 
 
ExecuteVertexProgramForAllPasses [boolean] 
Together with depth pass, if there are problems with vertex shaders that 
change visibility. renders vertex shaders also in depth pass. 
 
Threshold [int] 
The threshold of visibility pixels where an object is still considered 
invisible. Default is 0. Warning: a value different from zero means that 
there will be visibility errors. 
 
AssumedVisibility [int] 
The #frames where visibility is assumed to be coherent. Default is 1 frame. 
This value influences performance. For slowly changing scenes this value 
can be set higher. 
 
TestGeometryForVisibleLeaves [boolean] 
This value tests the geometry instead of the bounding boxes for leaf nodes. 
This option improves performance, but cannot be used together with 
transparent objects. 
 
FlushQueue [boolean] 
If the render queue should be flushed after some frames (often beneficial 
for performance). 
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3. APPENDIX – ALGORITHM DESCRIPTIONS 

3.1. VIEW SPACE PARTITIONING  

3.1.1. Overview 
 
The view space partitioning module deals with subdividing the space of all possible viewpoints and 
viewing directions into view cells. The result of the computation is a BSP tree describing the geometry 
of the view cells and the view cell hierarchy describing the view cells at different levels of detail. Note 
that on the contrary to common approaches the BSP tree is constructed according to the actual 
visibility in the scene: it aims to minimize the average rendering time for the PVS associated resulting 
set of view cells. The process of view space partitioning consists of three main steps: 
 

• Visibility sampling 
• View space subdivision 
• View space merging 
 

The first step estimates visibility in the scene, which allows basing the view cell construction on scene 
visibility without incurring the overhead of having to calculate complete visibility. We use stochastic 
sampling by casting rays that are uniformly distributed in the whole view space. As a result we obtain 
a set of maximal free line segments which we call visibility segments. The visibility segments provide 
information about scene visibility for the subsequent steps of the view cells construction. 
The second step performs an adaptive hierarchical subdivision of view space. The subdivision is 
driven by heuristics which aim to minimize the estimated rendering cost of the resulting subdivision. 
The result is set of elementary view cells which satisfy certain termination criteria. We choose a very 
fine subdivision in order to allow more choices for the subsequent merging step. 

The third step merges the elementary view cells to larger ones while minimizing the increase of the 
estimated rendering cost for each merging step. The merging progress is recorded in a merge history 
tree. The merge history defines a view cell hierarchy, allows retrieving an optimal set of view cells for 
a specified granularity of the view space subdivision. Additionally, this hierarchy can be used to 
compress the PVSs in a simple and efficient way. The merging step will implicitly approximate 
important visibility events in the scene. The three steps of our algorithm are illustrated in Figure 6. 

 

 

 
 

 
 
 

 
The view cell construction is driven by a cost model which estimates the expected rendering time 
based on the sampled visibility information. The cost of a given a set of view cells S is estimated from 
the expected value of the rendering time as follows: 
Figure 6, Illustration of the view space partitioning process in a building interior (soda
scene). (left) Visibility sampling. (center) Subdivision into elementary view cells. (right)
Merged view cells 
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3.1.2. Cost Model 
 

 
 
where r(PVSi) is a rendering time estimation for the approximate PVS of cell i and p(i) is the 
probability of the viewpoint being located in view cell i. Assuming that viewpoints will be distributed 
uniformly in the whole view space, p(i) can be chosen as the ratio of the volume Vi of the given view 
cell and the total volume V of view space: 
 

 
 
In general, the user can specify any probability density d for viewpoint locations, so that areas where 
the user is more likely to move receive more attention in the view cell construction (note that this 
feature is not yet supported by the module). p(i) is then given by: 
 

 
 
 
The rendering time for a view cell is estimated from the rendering times for the objects in the PVS: 
 

 
 
The rendering time estimation function r(o) is difficult to establish exactly since it depends not only on 
the particular set of objects and their attributes, but also on the actual implementation and hardware. 
On the other hand, the view cell subdivision should not be tied too much to a specific hardware, 
neither do we have an accurate PVS to determine the absolute value of the rendering time. Therefore 
we propose to loosely calibrate an analytic rendering time estimation function to a small number of 
target machines. Since current graphics hardware is CPU limited for small batches, the following 
function provides good results: 
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where a, b and c are positive constants, and to and po are the number of triangles and the number of 
projected pixels of object o (estimated from some points in the cell) respectively. 
 

3.1.3. Representation of View Cells 
 
We maintain the view space partition as a binary space partition tree which is constructed top-down. 
The leaves of this tree are convex polyhedra which form a set of elementary view cells. The final view 
cell partition is constructed from these elementary view cells using a bottom-up merging procedure 
which is recorded in the merge history tree. Note that merging is not tied to the original subdivision 
and therefore usually results in a completely different, more optimal tree. Both steps of the view cell 
hierarchy construction will be detailed in the next section. The representation of view cells using the 
two hierarchies is shown in Figure 7. 
 

BSP tree

Elementary view cells

Merge history tree

S

S 1

2

’optimal’ view cell sets

 
 

Figure 7. The view cell hierarchy is represented using a BSP tree and the merge history tree. 
The BSP tree provides geometrical description for elementary view cells. The merge history tree 
provides logical grouping of the view cells which allows extracting set of view cells with specified 
granularity of the subdivision. The example shows two sets S1 and S2 where the desired number 
of view cells for S2 is larger than for S1. 

 
 
Note that we partition the view space only in the spatial domain, since the observer can quickly move 
through the whole directional space within a few frames by changing her viewing direction. 
Fortunately, culling of directional space is efficiently handled by view-frustum culling. 
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3.1.4. Visibility Sampling 
 
We gain information about global visibility in the scene by sampling the whole view space. A view 
space sample is a 5D entity corresponding to a ray in primal space. For simplicity, let's assume that the 
view space is defined by a 3D spatial box of possible ray origins (view space box) and contains all 
possible ray directions. 
 
The view space is then sampled using the following strategy: 
 

1. Select a point p inside the view space box and a direction d using uniform distributions. 
2. Cast a `forward' ray from p in direction d and a `backward' ray from p  in the opposite 

direction -d.  
3. Construct a line segment formed by the calculated termination points of the forward and 

backward rays. If at least one of the two rays hits an object, we call the resulting line segment 
a visibility segment and store it for later use. 

 
 
The determination of visibility segments is illustrated in Figure 8. 

p1
p

2

p
3

s

s 2 s 3

1

 

Figure 8. Illustration of determination of visibility segments. Three visibility samples are 
generated from points p1, p2 and p3, resulting in two valid visibility segments. s1 carries 
information about visibility of two objects, s2 about one object. s3 is not a valid visibility segment 
since it does not hit any object.} 

 
 
There is an interesting subtlety involved in polygon orientations. For a general scene, the above 
procedure will create visibility segments in the interiors of objects if those regions are not explicitly 
exempted from view space. If, however, the input model is guaranteed to be watertight and the 
polygons have a consistent orientation, the algorithm can detect empty view space at no additional 
cost: if a ray hits the back side of a polygon, the ray starting point is simply shifted to the intersection 
point and the ray is re-cast (see Figure 9). In this way, no visibility segments will be generated in 
empty space. We have found that empty view space detection can improve the final view cell 
hierarchy, because visibility regions are more clearly separated (see the 
Preprocessor.detectEmptyViewSpace parameter of the module). 
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Figure 9. Example of empty view space detection. The origin of the ray lies inside the wall of the 
building and so the ray first hits a back-facing polygon. We shift the ray origin to the 
intersection point and the ray is re-cast. The resulting visibility segment is shown in red. 

 
 

3.1.5. View Space Subdivision 
 
The view space subdivision uses a top-down approach to create a set of elementary view cells. In 
particular we use binary space partitioning (BSP) maintained by a BSP tree. Starting with a single 
view cell corresponding to the whole view space, we recursively subdivide the current view cell using 
either axis-aligned planes or planes aligned with scene geometry. Each cell of the subdivision also 
references all visibility segments that intersect it. 
 
The BSP construction uses a greedy optimization for the best-next split. Note that in contrast to most 
previous work on BSP or kD-tree construction we use global optimization procedure with a priority 
queue for selecting the splitting plane candidates. An entry in the priority queue consists of a reference 
to leaf node, the best splitting plane candidate inside this leaf, and a cost reduction which would be 
achieved when splitting the leaf by the plane.   For each step of the subdivision we select the node for 
which its best splitting plane provides the highest global render cost reduction. The subdivision is thus 
refined progressively and regions with the highest potential render cost decrease are subdivided first. 
 
The best splitting plane for a node is established as follows: we generate axis-aligned splitting plane 
candidates aligned with the endpoints of rays intersecting the node. Additionally, we generate planes 
aligned with the geometry contained in that node (if any). For each candidate, we calculate the 
reduction of the expected rendering cost c(S) that would result from subdividing the node by that 
plane. This is done by partitioning the current set of visibility segments according to the plane (note 
that a segment can be assigned to both sets), computing the PVSs (i.e., the union of the objects hit by 
the visibility segments) for the front and back segment sets, and using those to evaluate the reduction 
of the cost. Finally, we choose the candidate plane that provides the most reduction in expected 
rendering cost and put a corresponding entry in the priority queue. 
 
The subdivision is terminated when one of the following termination 
criteria is met: 
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• A specified maximum number of elementary view cells have been generated. It ensures that 

the algorithm stays within reasonable memory bounds. 
• The cost reduction for the best splitting plane is below a specified threshold. As the cost 

reduction can temporarily stagnate, we only terminate when the reduction was below the 
threshold in several successive subdivision steps in that branch of the tree. 

 
Due to the priority driven subdivision the view space will be evenly subdivided no matter of the 
termination point. This is not the case for depth-first approaches, where for example a termination on 
low memory would leave whole view space regions unsubdivided. Additionally, the local termination 
criteria used in the depth-first approach are hard to tune. 
Note that the time required for the subdivision is dominated by the cost evaluation for the candidate 
planes. To accelerate this process, we limit the number of axis-aligned as well as geometry-aligned 
candidates. If the number of visibility segments or geometry planes is above these limits we select 
their random subsets. This speeds up the selection especially for nodes near the root of the subdivision 
tree. 
 

3.1.6. View Space Merging 
 
View space merging is a bottom-up process which aims to reduce the number of view cells while 
minimizing the cost of the merged view cell set. We use a greedy algorithm that always merges the 
pair of view cells resulting in the minimal cost increase. This is done by maintaining a priority queue 
of view cell merge candidates. Each pair of neighboring view cells forms a merge candidate. The 
relative cost increase due to the merge candidate consisting of view cells x and y is given as: 

 
 
where S is the current set of view cells and Smerged is the set resulting from merging x and y. The 
priority of the merge candidate p(x,y) is given by: 
 

 
 
In the beginning, the queue is initialized with all pairs of neighboring view cells. At every step, we 
select the merge candidate with the highest priority (smallest relative cost increase) and merge the 
associated view cells. The PVS and the estimated rendering cost of the new view cell is calculated. 
After the merge, the priority queue is updated by removing entries corresponding to the merged view 
cells and inserting new entries corresponding to the created view cell and its neighbors. Note that the 
set of neighbors for a view cell is determined using the BSP tree. 
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The merging process provides a sequence of view cell sets: at every merge step we obtain a new set of 
view cells with exactly one view cell less than in the previous set.  We record the whole merging 
process in a merge history tree. The leafs of this tree correspond to elementary view cells. Every 
internal node corresponds to a merged view cell. With each internal node we associate the current cost 
of the subdivision resulting from the corresponding merge. 
 
Once the complete merge history tree is built, there are several ways how to create a view cell partition 
from the tree. The easiest way is to specify a target number n of view cells and extract these from the 
tree. These view cells can then be used as input for a visibility preprocessing algorithm. 
 

3.1.7. Extracting View Cells 
 
The view cell hierarchy allows to extract the set of view cells most suitable for the target application. 
Bellow we discuss three possibilities of view cell extraction. 
 
Getting a specified number of view cells. Often, it is most convenient to specify a desired number of 
view cells to use for visibility calculation. This limits both the preprocessing time and the storage 
required for PVS data, as well as restricting the frequency with which new PVS data has to be fetched 
due to crossing into a new view cell at runtime. To obtain a given number of view cells, we perform a 
priority traversal of the merge history tree. The priority of a node is given by the cost associated with 
the node. When reaching a leaf node, we add it to the list of resulting view cells. When the sum of 
traversed leaves and the nodes in the priority queue becomes equal to the desired number of view 
cells, we terminate the traversal and add the contents of the priority queue to the resulting view cells. 
The collected view cells form a cut of the merge history tree at optimal depths with respect to the 
specified granularity. 
 
Fulfilling a given memory budget. The procedure described above can be extended to allow 
specifying an approximate memory budget for the complete PVS representation (it is only 
approximate because it relies on the approximate PVS from the sampling step). At every step of the 
tree traversal, we can easily calculate the memory requirements for the current set of view cells and 
their approximate PVSs. We can terminate the traversal when the budget is reached and collect the 
resulting view cells as described above. Note, that this step can also be applied after computing the 
final visibility classification. In this case the memory budget would be the real budget for storing the 
PVS representation. 
 
Extracting important view cells. An alternative to the methods described above is view cell 
extraction based on their estimated rendering cost. In particular we can use the maximal tolerance of 
the increase of the estimated rendering cost over the minimal cost, i.e. the cost provided by the densest 
view space partition (elementary  view cells). The view cells are extracted again by a priority traversal 
of the merge history tree. At each step we evaluate the ratio of the current cost (stored with the 
processed node) and the minimal cost. If the ratio falls below a threshold, we terminate the traversal 
and collect the resulting view cells as described above. 
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Interactive specification. In practice, the user can combine these methods in an interactive setup. The 
selection process can easily be accomplished with a real-time visualization of the view cells and a 
depiction of the associated cost and memory budgets, as well as the just described cost ratio. 
Typically, the user would start by setting an initial cost ratio and refining the result interactively. This 
allows the user interactive control over the process, which is a feature often desired by practitioners. 
 
 

3.2. COMBINED VIEWSPACE / OBJECT SPACE PARTITIONING 
 
Visibility preprocessing algorithms assume that a view space is partitioned into a set of view cells and 
the object space is partitioned into a set of objects. In a preprocessing step, they determine for each 
view cell a potentially visible set of objects (PVS). In the last section we dealt only with view space 
partition, while in this section we present a technique that additionally deals with object space 
partition. 
Our pre-processor handles both scenes that consist of predefined objects as well as scenes provided as 
triangle soup. The view space partition scheme presented in the last section is aiming scenes that are 
already logically partitioned into objects. The method presented in this section is beneficial in the 
latter case. It combines our view space partition with an equally optimized object space partition and 
aims to provide ratio of view space / object space splits which is optimal in terms of PVS storage cost / 
render time.  
It is important to note that both view space and object space subdivision are visibility dependent and 
also interdependent. The resulting set of objects directly influences the quality of the preprocessed 
visibility information. If the partitioning is too fine, the memory costs for storing preprocessed 
visibility will be very high. Additionally the setup costs for rendering the corresponding fine-grained 
objects on the GPU will become a burden. On the other hand if the partitioning is too coarse, visibility 
information will be inaccurate, leading to more geometry being rendered than necessary, and therefore 
slower frame rates. 
In this section we present a technique which aims to automatically generate good view space and 
object space subdivisions based on visibility information. As a result, the average render cost in the 
scene can be reduced significantly compared to a naive view space and object space subdivision. We 
will show that our algorithm consistently improves the render cost at a given memory cost, while 
naive methods are very fragile with respect to the relative depths of object and view space 
subdivisions. Figure 6 shows a simple illustrative example: using a non visibility-aware object 
subdivision method, the spherical in the room would inevitably have been needlessly subdivided 
uniformly, whereas our method concentrates the subdivision to the front where actual visibility events 
take place. 
 

3.2.1. Algorithm outline 
 
The main idea of the algorithm is to acquire coarse visibility information about the scene in a global 
sampling step, and then use this visibility information to partition view space and object space 
simultaneously. The proposed method thus consists of two main parts: visibility sampling and 
interleaved subdivision. Visibility sampling acquires visibility information which is represented as a 
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set of maximal free line segments. These segments are then used to quickly determine visibility 
between the cells of the constructed view space and object space partitions. 
The subdivision starts with a single view cell representing the whole view space and a single object 
representing the whole scene geometry. Both the view and object space partitions are progressively 
refined by splitting either a view cell or an object into two parts. The main criterion driving the splits 
are the expected render and memory costs which are estimated using visibility samples. Each split 
attempts to reduce the render cost while keeping the associated memory cost increase as small as 
possible. 
Candidates for splitting are chosen from all current view cells and object space cells. The candidates 
are stored in a priority queue, and at each step we pick the candidate which provides the best ratio of 
render cost reduction over memory increase. This candidate is then used to subdivide the associated 
view space or object space cell. The subdivision proceeds until the given termination criteria are 
reached. In particular the algorithm terminates if the local render cost reduction falls below a specified 
threshold, or a maximal memory budget for the whole visibility data is reached. As a result the 
algorithm delivers optimized view space and object space partitions which can then be fed into any 
from-region visibility preprocessing algorithm. 
 

 

Figure 10, Example of combined view space and object space subdivisions. The scene consists of 
a sphere inside the room which can be seen only through a small hole. We show a cut through 
the 3d view space subdivision. The view space subdivision concentrates in the regions which see 
the sphere through the hole and therefore have higher render cost (low cost=blue, high 
cost=magenta). The object space subdivision focuses on the front of the sphere which is visible 
from more view points. 

3.2.2. Evaluating the render cost reduction 
 
The crucial part of the algorithm is to evaluate the render cost reduction dR resulting from subdividing 
either view space or object space. 
 

3.2.2.1. View Space Splits 
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The render cost of a single view cell is defined as according to the last section: 

)()()( Vr PVSrVpVc =  

 
When subdividing a view cell V by a splitting plane, the render cost reduction is given by the 
difference of the render cost of the new view cells and the old one: 

)()()()( VcVcVcVdR rfrbr −+=  

where Vb and Vf  are back and front fragments of the view cell V with respect to the splitting plane. 
 

3.2.2.2. Object Space Splits 
 
 
To evaluate the render cost reduction when splitting an object, we first need to know from which view 
cells the object and its new fragments can be seen. We denote the set of view cells which can see an 
object O as PVSO. The expected render cost of an object is then expressed as: 
 

∑ ∈
=

OPVSVOr VpVOrc )(),()(  

 
where p(V) is the probability of view point located in view cell V and r(O, V) is the render cost of the 
object O seen from view cell . When subdividing an object O, the render cost reduction is given by: 
 

)()()()( OcOcOcOdR rfrbr −+=  

 
where Ob and Of are the back and front fragments of the object. The object space split is illustrated in 
Figure 11. 
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Figure 11, Illustration of an object space split A spherical object inside a tube-like structure is 
subdivided into two parts shown in blue and green. In this example the view cells which see the 
object (identified by visibility samples) break into two disjoint sets. 

 
 
 

3.2.3. Subdivision 
 
This section describes in detail the selection of splitting planes, determination of their processing 
order, and the computation of the actual splits of view space or object space nodes. 
 

3.2.3.1. Establishing split candidates 
 
Whenever a new (object space or view space) cell is generated in the subdivision, we establish a new 
splitting plane candidate for this cell and add it to the priority queue. Within the cell, we aim to find 
the split plane with the highest priority. Both dR and dM functions have discontinuities at places of 
visibility changes (changes in PVS). The visibility changes can occur only at the end-points of the 
visibility samples clipped to the current node, i.e., either at an end-point of a visibility sample due to 
an object within the view cell, or at the intersection of a visibility sample with the view cell boundary. 
In order to achieve a high chance of separating the PVS, we compute these points and evaluate the 
split priorities for the corresponding split plane positions in all three axes. The splitting plane 
candidate for this node is then established at the position with highest priority. 
 

3.2.3.2. Processing split candidates 
 
The split candidates established for every leaf of the current subdivision have to be processed in the 
order of descending priority. The basic algorithm described so far would just use a single priority 
queue of the candidates, pick the candidate with best priority, split the corresponding node and put 
split candidates for the newly created nodes into the priority queue. However, a view space split 
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induces a change of the priorities of object space split candidates and vice versa. The affected 
candidates are those which could see the node that was split, i.e., those which are connected with that 
node with at least one ray. The priorities of the affected candidates have to be reevaluated and their 
position in the priority queue has to be updated. In the extreme case, a split of a single view space or 
object space node can affect all of the split candidates from the other domain. 
In order to cope with this situation, we exploit the following observation: when performing a split, the 
priority of other candidates in the queue remains valid if they are from the same domain as the split. 
This follows from the fact that the cost evaluation of disjoint nodes of the same domain is 
independent. We use this observation to reduce the number of recomputations of split candidate 
priorities. The optimized algorithm maintains separate priority queues for split candidates of view 
space and object space domains and proceeds as follows: Initially we take the split candidate with the 
highest priority by comparing the fronts of the view space and object space priority queues. We take at 
least nmin splits from the same domain without reevaluation of split candidate priorities. Then we 
compare the priority of the current split candidate with the best split of the other domain. If the priority 
of the current split is lower (condition 1), we recalculate the priorities of the candidates and decide 
whether to switch the domains. Otherwise we continue subdividing in the current domain until 
condition 1 is met or we reach nmax splits (condition 2). nmax is a safety criterion ensuring that 
reevaluation is made with sufficient frequency. As a result the number of steps without reevaluating 
the split candidate priorities is in the range < nmin, nmax >. 
Even when processing the splitting planes in batches, the update of all affected split candidates per 
batch is expensive. The deeper the subdivision, the more candidates have to be updated. To further 
reduce the number of recomputations of priorities, we only update a subset of split candidates. This 
subset is chosen randomly from the set of affected candidates. 
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Figure 12, Snapshot of Vienna scene (upper left) and visualization of the view / object space 
partition (upper right). Snapshot of Arena scene (lower left) and visualization of the view / 
object space partition (lower right). Each colored patch represents one object from the PVS. We 
show a cut through the 3d view space subdivision. The view cells are colored from blue (=low 
render cost) to magenta (=high render cost) The Arena scene is a courtesy of Digital Media 
Production a.s. 
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3.3. PVS COMPUTATION USING PROGRESSIVE VISIBILITY 
SAMPLING  

 
This module deals with calculating visibility in a preprocess. It determines a potentially visible set 
(PVS) of objects for every view cell. In runtime the view cell containing the current viewpoint is 
located and only the objects contained in the associated PVS have to be rendered. 
 
Visibility is an important problem in computer graphics, with many applications in architectural 
walkthroughs, computer games, urban planning, traffic simulation and others. One typical way to 
compute visibility is as a preprocess to a time-critical application like a walkthrough or a computer 
game. This has the advantage that invisible stationary objects can be eliminated at practically no 
runtime cost. Visibility preprocessing algorithms subdivide the view space into view cells and 
compute a potentially visible set (PVS) of objects for each view cell. At runtime, the view cell 
containing the current viewpoint is located and only the objects contained in the associated PVS have 
to be rendered. 
The standard scheme of a visibility preprocessing algorithm is: 
 
  for each view cell v 

    compute all visibility interactions in v 

    create 1 PVS for v 

 
This concept is straightforward and it is known from the early 90s. It is noteworthy that visibility 
calculation times for such algorithms are usually quoted in time per view cell---for a good reason: the 
high calculation times for whole scenes make visibility preprocessing cumbersome and preclude its 
use for anything else than the final delivery of a product. 
 
In the progressive visibility sampling module we implemented a visibility preprocessing framework 
based on which redefines the classical preprocessing scheme. Instead of solving visibility sequentially 
for individual view cells, we progressively compute global visibility, i.e. visibility for all view cells. 
This basically corresponds to the following scheme: 
 
  while(!terminate) 

    compute 1 visibility interaction 

    augment all affected PVSs 

 
This has two key advantages: 1) The solution is truly progressive: a coarse global visibility solution is 
obtained within a few seconds. As time passes, more visible objects are discovered. This is important 
as it opens up completely new fields for visibility processing. For example, the algorithm can be used 
as a fast preview tool for visibility analysis and to find visibility hotspots in large scale modeling. 2) 
The solution exploits the spatial coherence of visibility since each visibility interaction contributes to 
many view cells. Thus, the convergence of the solution is accelerated by at least one order of 
magnitude. 
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A global visibility sampling solution entails a number of issues, foremost the question how samples 
should be chosen. The main problem of visibility sampling is that visibility interactions do not appear 
uniformly in ray space: for a particular view cell, far away parts of the scene require significantly more 
samples than nearby parts. This makes uniform sampling strategies inefficient, as they have to sample 
the whole ray space at the highest necessary sampling density. 
 
It has been shown that for a single view cell and triangle-based scenes, deterministic sampling 
strategies are a good way to efficiently choose samples that contribute to visibility. However, working 
on a triangle level is infeasible for simultaneous global PVS computation for large scenes with many 
view cells and millions of triangles (e.g., a scene with 5,000 view cells and about 100,000 visible 
triangles per view cell would require 2GB of memory). On the other hand, general, non-triangle 
objects are difficult to handle for deterministic sampling strategies due to the computational 
complexity of e.g. silhouette finding. 
 
Another problem of deterministic sampling is that it contradicts the idea of progressive evaluation. For 
example, recursively creating samples at the silhouettes of each encountered object quickly leads to a 
depth-first exploration of local ray space neighborhoods. As an extreme example, consider a view cell 
above a flat terrain. The first ray intersection will induce a ‘visibility flood fill’ of the whole terrain. 
Such a strategy is not progressive even for a single view cell. Furthermore, it requires a significant 
traversal state per view cell, so that the computation cannot easily be distributed among different view 
cells. Basically, one view cell has to be completed before starting the next one. In this paper, we 
present probabilistic sampling strategies based on ray mutations that work for arbitrary objects and 
take into account the non-uniformity of ray space in a similar way as deterministic strategies, while at 
the same time preserving the progressivity of the evaluation. 
 

3.3.1. Algorithm Overview 
 
The Progressive Global Visibility (PGV) algorithm is built on the idea of using sampling to determine 
visibility. At the core of our algorithm is a global visibility sampler, which progressively casts 
bidirectional rays to determine maximal free line segments in the scene, and then determines their 
contribution to all view cells. Thus a single visibility sample can contribute to many view cells and 
therefore exploit visibility coherence. 
 
The second contribution deals with how these samples are generated. The 4D sampling domain is too 
large to quickly capture all important rays by regular sampling. Therefore we use different heuristical 
distributions which are combined in an adaptive mixture distribution that takes into account their 
success in discovering new PVS entries. 
 
We introduce a number of ray distributions that are suitable for a global visibility algorithm.  
Stationary distributions (Section 3.3.2.3) sweep visibility globally and seed the mutation-based 
distributions (Section 3.3.2.4), which focus the sampling at places of visibility changes and allow 
adapting the sampling rate to the distance of visible objects. 
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Finally, we present the concept of visibility filtering, which counteracts errors due to undersampling in 
early stages of the algorithm by including in the PVS also objects that are likely to be visible based on 
the sampling density. 
 

3.3.2. Progressive Global Visibility Sampling 
 

3.3.2.1. Global Visibility Sampling 
 
Visibility sampling relies on ray casting to obtain visibility information. One main reason for the 
efficiency of our approach is the use of spatial coherence in visibility. In contrast to a per-view cell 
algorithm, where each ray can only contribute to one single view cell, we determine the contribution 
of each ray to all view cells it encounters. For this, we use  visibility samples created from rays. 
 
Visibility sample definition 
 
In visibility sampling algorithms, a sample ray r is normally defined starts in a view cell (xr in v) and 
with a direction dr. A visibility contribution is then determined by shooting the ray using a standard 
ray caster and determining the closest object h(r). We define the contribution of a ray as 
 

 
 
In global visibility, however, we are not only interested in the visibility contribution of the hit object to 
the view cell at the ray origin, but to all view cells pierced by the ray along an unobstructed path from 
the hitpoint. This is equivalent to the maximal free line segment defined by r. To obtain this line 
segment, we not only shoot the original ray, but also the ray in the opposite direction, i.e., -r = (xr, - 
dr), and obtain a second hit h(-r). We thus obtain a line segment s associated with zero, one or two 
visible objects at its endpoints: H(s) = H(r) υ H(-r). A line segment with one or two visible objects 
|H(s)|>0 is a valid sample. 
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Figure 13, Left: This figure shows the creation of visibility samples. The scene objects are shown 
in blue. A sample point (see p1 and p2) is generated together with a direction vector. A ray is 
cast from the sample point in the generated direction as well as into the opposite direction. 
Right: A ray associates all its points with visibility of object(s) on its endpoints. These objects are 
added to all PVSs of view cells pierced by the ray. 

 
Updating view cells.   
 
The view cells affected by a valid sample are determined by intersecting the line segment with the data 
structure containing the view cells. The objects associated with the sample are then added to all view 
cells pierced by the line segment. 
 
Sample contribution   
 
During this process, the contribution of the sample is evaluated in order to distinguish between 
samples which give us valuable information about visibility and samples which either hit no object or 
hit objects already discovered as visible. This measure will be used to drive the sampling process 
(Section 3.3.2.2). 
 
The local contribution of the sample to a particular view cell equals the number of objects associated 
with the sample that are added to the PVS of the view cell (and have not already been included in the 
PVS): 
 

 
The total contribution c(r) of the sample is simply the sum of contributions to all view cells V(r) which 
are pierced by the sample: 

 
 
 

3.3.2.2. Adaptive Mixture Distribution 
 
In addition to the explicit use of spatial visibility coherence, another major source of efficiency of our 
global visibility algorithm is the ability to adapt to the visibility structure in the scene. This is done in 
two ways: first, by choosing sample distributions according to previous visibility contributions, and 
second by using a ray mutation strategy which places samples near visibility events and adapts to the 
required sampling density in ray space. 
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We have found that no single sampling strategy is efficient for all types of scenes, as the efficiency of 
a sampling strategy depends on the scene properties and its visibility characteristics. We therefore 
employ a probabilistic approach based on a distribution mixture: we allow the use of several different 
distributions to generate visibility samples. The success of previous samples generated by each 
distribution is used to drive its selection probability, thus automatically adapting to the scene visibility 
properties. 
 
More specifically, the contribution C(D) of a sample distribution D at a specific point in time is 
defined as the sum of sample contributions c(s) of all samples s in a reference set S(D). The reference 
set is typically the set of rays generated by the distribution D in a certain time window: 
 

 
 
To measure the success of a distribution in discovering visibility, we define its weight w(D) as the 
contribution with respect to the reference set: 
 

 
 
The probability for drawing a sample from distribution Di is then simply 
 

 
 
The following two subsections describe the distributions which we use n the algorithm. Three of these 
distributions are stationary, while two mutation-based strategies adapt to the actual visibility 
contributions. 
 

3.3.2.3. Stationary Ray Distributions 
 
A distribution is stationary if each sample is independent of previous ones. These distributions are 
used to provide an initial efficient covering of ray space and to seed the more adaptive mutation-based 
strategies described below. The stationary distributions explore the whole ray space and therefore 
guarantee the progressivity of the algorithm. 
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In contrast to per-view cell visibility, there is no obvious ‘uniform’ sample distribution. Instead, the 
best strategy to discover new visible objects depends on the visibility configuration of the scene. We 
list three distributions which we have found to work well. All rely on low-discrepancy series like the 
Halton sequence to generate samples. We use independent random variables in the range [0,1) denoted 
φ1, φ 2 etc. 
 
 
View space-direction distribution. 
 
This distribution makes sure that all view cells are sampled in all directions. We generate a random 
point x in view space using a uniform distribution and a random direction d using a uniform 
distribution in the directional space with spherical coordinates: 

 
 
Object surface-direction distribution. 
 
This distribution makes sure that all objects are sampled in all directions (note that this can be 
inefficient if the view space does not include all of object space). We generate a random point x on the 
surface of a randomly chosen object, and a random direction d using a cosine-weighted uniform 
distribution on the hemisphere erected over the tangent plane of x. The spherical coordinates of d are: 

 
 
Two-point distribution. 
 
This distribution focuses on the most probable visibility interactions between objects and view cells. 
We generate a random point o as in he object surface-direction distribution, and a random point v as in 
he view space-direction distribution. The ray generating the visibility sample is then r=(v, s-v). The 
most important feature of he two-point distribution is that it adapts to the shape of the scene. or 
example, typical urban scenes are much wider than they are high. his fact is taken into account in the 
two-point distribution and most samples are cast in a roughly horizontal direction. For this reason, he 
two-point distribution is typically the most successful stationary sampling strategy. 
 
For positions generated in view space, we also allow the following modification: instead of using a 
uniform distribution, the distribution is chosen according to a user-supplied density function. In an 
interactive application, or example, this can be used to focus visibility computations (carried out in the 
background) on view cells in the vicinity of the observer by choosing a density function that falls off 
with increasing distance to the current viewpoint. Another option is to let the level designer designate 
regions of higher importance. 
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3.3.2.4. Mutation-Based Distributions 
 
Even using an optimal mix of stationary sample distributions, the size of ray space that needs to be 
sampled is prohibitively high. The required sampling density is highly non-uniform: for a particular 
view cell, far away regions need o be sampled more densely than near regions. Furthermore, it has 
been shown that the efficiency of visibility sampling can be vastly improved by trying to sample near 
possible changes in visibility. We exploit these two observations using mutation-based sampling 
distributions: a two-point mutation distribution and a silhouette mutation distribution. 
 
Mutation candidate maintenance. 
 
Both strategies work on the following principle: During the sampling process, each sample with on-
zero contribution c(s) (regardless of which distribution generated it) is stored as a candidate for 
mutation. In case the visibility sample has two objects associated with it (|H(s)|=2), and the other 
object actually generated a contribution, we generate two mutation candidates from it, as we 
distinguish between the segment termination point (where the object under consideration is hit) and 
the segment origin (either the intersection with an object or a view cell). These two points and the 
object id of the object are stored with the sample. 
 
All mutation candidates for a strategy selected for storage are collected in a buffer. When a new 
sample is requested from a mutation-based strategy, a candidate is chosen from the buffer. However, 
instead of choosing randomly from the buffer, we observe that he history of mutations conveys 
important information about the possible importance of a candidate: If a candidate has received a large 
umber of mutations already, it is likely that its neighborhood is already well explored. On the other 
hand, new mutation candidates have not received any mutations so far, and especially after a certain 
run-in time, such new mutation candidates represent more ‘difficult’ cases of visibility. We therefore 
use the mutation count generated from this candidate as a value to sort the buffer, and always elect the 
candidate with the lowest value. If the buffer is full, the element with the highest value is dropped. 
 
Two-point mutation. 
 
The aim of the two-point mutation is to adapt the sampling rate of visibility to the complexity of ray 
space. More specifically, given a segment s=(so, st), the segment termination point st is mutated o as to 
discover nearby objects, while the segment origin so s mutated so as to discover nearby view cells 
(note that it is entirely due to the global nature of the algorithm that a strategy for discovering new 
view cells is possible at all). 
 
Let h(x) be the object or view cell (in case the reverse ray generating the segment didn't hit an object) 
associated with point x in (so, st), and r(o) the radius of the bounding volume of object or view cell o. 
Then we construct a plane perpendicular to the segment, and mutate x by drawing a new point x' from 
a two-dimensional Gaussian distribution on this plane centered at x with standard deviation σ = r(h(x)) 
(see Figure 14, left). 
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Figure 14, Left: The two-point mutation moves both start and endpoints according to Gaussian 
distributions. Right: Silhouette search. 

 
 
Note that for both mutation-based strategies, once we have obtained the new segment (s’o, s’t), a 
visibility sample is generated from this segment by creating a forward ray r' (together with reverse ray 
-r' with x'r = (s'o, s't)/2 and d'r= s't-s'o. The new ray origin is chosen at the center of the new segment so 
as to avoid local occlusion at the start or termination points of the segment. 
 
 Silhouette mutation. 
 
The silhouette mutation adapts the deterministic adaptive border sampling strategy proposed by 
Wonka et al. for a progressive setting. This strategy places samples near the silhouettes of newly 
discovered objects, where changes in visibility are most likely to occur. However, deterministically 
sampling the whole silhouette of an object would not only be computationally expensive, but it would 
also quickly saturate the list of mutation candidates. 
 
Therefore we chose a probabilistic approach that randomly selects one silhouette point. As in the two-
point mutation, a plane perpendicular to the segment is placed at st. On this plane, we choose a random 
direction $d$. Then we shoot ‘discovery rays’ along the segment (st, r(o) · d). The first ray that does 
not intersect the object is chosen as a silhouette ray and returned as mutation point s't  to construct a 
new visibility sample (see Figure 14, right). 
 
Note that for most ray tracers, these discovery rays can be evaluated much faster than normal samples. 
First, the region of interest can be restricted to the bounding volume of the object so that the ray does 
not need to be intersected with the whole scene. Second, the segment origin remains fixed for all rays, 
so that ray packet optimizations can be exploited. For example, shooting packets of 4 rays, a 
quaternary search of depth 3 gives an accuracy of r(o)/125. 
 
Important visibility events appear at possible depth discontinuities discovered by the silhouette 
sample. For this, we adapt the reverse sampling strategy described by Wonka et al. When the 
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silhouette sample r=(so, s't-so) is cast, a depth discontinuity is reported if the distance between mutated 
segment endpoint s't and the actual hitpoint h(r) is larger than 3 times the original object radius: 
 

 
 
This margin is intended to avoid situations where a closer hitpoint on the same object could be 
interpreted as a depth discontinuity. Now instead of looking for the exact depth discontinuity as in 
reverse sampling, we do a new silhouette mutation as described above using the segment (s't, h(r)), 
and store the resulting ray along with the original silhouette ray. 
 
 

3.3.2.5. Putting It All Together 
 
The complete Progressive Global Visibility algorithm works in a loop as follows: 
  while (!terminate) 

  { 

    select distribution 

    draw a sample from selected distribution 

    cast forward and backward rays 

    if (hit) 

    { 

      update view cells 

      if (contribution > 0) 

        store sample as mutation candidate 

    } 

    update distribution probabilities 

  } 

 
Termination.  
 
One issue that deserves attention is when to terminate calculation. For a per-view cell sampling 
algorithm, the quality and running time of the complete solution depends significantly on setting the 
termination criterion. Interestingly, in a global progressive visibility algorithm the termination 
criterion is not critical, as the user can inspect the current visibility solution at any time. For offline 
use, a termination criterion can be set on the maximum PVS increase for a view cell for a certain 
number of rays. E.g., when during 5M rays no PVS increases by more than 5 objects, the algorithm 
will terminate. 
 
Loop optimization. 
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In practice the loop is not carried out for individual rays, but for larger batches of rays (e.g., 1M). This 
allows reordering the samples so as to achieve better coherence for the ray caster. In addition, if the 
window used for calculating ray distributions is chosen to be exactly one batch, the step of updating 
the distribution probabilities C(D) (see Section 3.3.2.2) needs to be done only once per batch. 
 

3.3.3. Visibility Filtering 
 
While Progressive Global Visibility is an aggressive algorithm (i.e., the PVSs only contain a subset of 
the exact visible set), the sampling strategies described in the previous section aim to approach the 
exact solution as quickly as possible. However, especially in the initial phases of the algorithm, visible 
errors will appear. 
 
To cope with this problem, we introduce the so-called visibility filter, which extends the computed 
PVSs by additional objects which are likely to be visible. The main novelty is that we take into 
account the visibility error expected from the sampling density. This means that PVSs for regions 
which have been sampled densely will not be extended significantly, whereas undersampled regions 
will have more objects added. The visibility filter fills gaps in ‘visible fronts’ that appear when the 
sampling rate in a region is lower than the object density. It can not discover objects that are visible in 
an isolated manner (i.e., objects smaller than the sampling density that have no visible neighbors). 
 
The visibility filter can be applied as a postprocess to all PVSs after running the main algorithm, or it 
can be evaluated lazily during walkthrough for the current view cell. We present an object space filter, 
which adds objects in proximity of already visible objects, and a view space filter, which merges 
visible objects from neighboring view cells. 
 
 

 
 

Figure 15, Illustration of the object space visibility filter. Objects originally in the PVS are 
shown in blue. The extended bounding volumes are shown in black. Objects added to the PVS by 
the filter are shown in red. 

 
Object space filter. 

 



Doc. Identifier:

TGameTools-3-D3.4-03-1-1-
Finished Visibility 

ModulesTTT
 

FINISHED VISIBILITY MODULES 
 

Date: 28/03/2007 

 

 
IST-2-004363 RESTRICTED RE 50 / 69

 
 The object space filter works on a view cell v and its potentially visible set PVSv. For each object o in 
PVSv, the amount of extension e(o) is calculated as the estimated distance to a visibility sample in the 
vicinity of the object. The object space filter is then applied by extending the bounding volume of each 
object o by e(o) (e.g., the radius of a bounding volume or the axes of a bounding box), and adding to 
PVSv all scene objects that intersect one of the extended bounding volumes (see Figure 15). The 
extension e(o) can be calculated either from the density of all visibility samples intersecting the view 
cell (global extension eg(o)), or from the density of samples that hit the object (local extension el(o)). 
 
The global extension estimation assumes that nv visibility samples are uniformly distributed on a 
sphere of radius d(o), which is the distance of the object from the view cell. As extension we use half 
the approximated distance between two neighboring samples on this sphere: 
 

 
 
The local extension assumes that the nv(o) visibility samples which hit the object are uniformly 
distributed on a disk of radius r(o), which is the radius of the object bounding volume. As extension 
we use half the approximated distance between two neighboring samples on this disk: 
 

 
 
Note that both estimations are not accurate: the global estimation ignores that rays due to the mutation-
based strategy are not distributed uniformly, while the local estimation ignores that parts of the object 
may be occluded from the view cell, leading to an overestimation of $e_l$. In practice we therefore 
choose the minimum of the two estimations, and allow the user to increase or decrease the filter size 
with a constant k for more conservative or more aggressive results: e(o)=k ·min(eg(o),el(o)). 
 
View space filter. 
 
 The view space filter is useful only if the size of the view cells is relatively small (i.e., comparable to 
size of the objects). This filter is very simple: it merges the PVS of the given view cell with the PVSs 
of all neighboring view cells. 
 
 

3.3.4. Implementation 
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We have implemented the PVS computation module as a multithreaded application . Initially the scene 
and the view cells are loaded into memory and the initial set of rays is cast. Casting the initial ray set is 
performed on the CPU and takes a few seconds. After propagating the ray visibility contributions to 
the view cells the scene can already be rendered using the view cell based PVS. At this stage visible 
errors appear due to undersampling however the most of the visible objects is already rendered 
correctly. The user can freely walk in the scene and while the visibility processing thread updates the 
PVSs. Depending on the scene it takes few tens of seconds to few minutes till the PVSs capture 
enough objects so that most frames contain no visible errors. 
 

 

Figure 7: Subset of rays generated by the PGV algorithm in one batch after about 20M samples 
have been cast. (left) Vienna (right) Pompeii. 
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3.4. PVS COMPUTATION USING GUIDED VISIBILITY SAMPLING 
 

 

Figure 16, Visualization of sampling strategies (white pixels show a subset of the actual samples, 
missed geometry is marked red). Left: An urban input scene and a view cell (in yellow) for 
visibility sampling. Middle: Previous visibility sampling algorithms repeatedly sample the same 
triangles in the foreground while missing many smaller triangles and distant geometry. Right: 
Our solution is guided by scene visibility and therefore quickly finds most visible triangles while 
requiring drastically fewer samples than previous methods. 

 
This method is similar to the method presented in Section 3.3 in that it calculates a visibility solution 
for a set of view cells. The difference is that the underlying algorithm it is able to provide a triangle-
based PVS and therefore the solution is more accurate. The sampling method is also more 
deterministic and is capable of providing PVSs that are comparable in accuracy to exact methods as 
evidenced later. Obviously, this comes at the cost of higher computation time than progressive global 
visibility. Since Guided Visibility Sampling is much more efficient and robust than exact visibility 
methods, and provides comparable accuracy, we have decided to use this method instead of a real 
exact solution to provide the most accurate PVS computation. 
This method addresses the problem of computing the triangles visible from a region in space. The 
proposed aggressive visibility solution is based on stochastic ray shooting and can take any triangular 
model as input. We do not rely on connectivity information, volumetric occluders, or the availability 
of large occluders, and can therefore process any given input scene. The proposed algorithm is 
practically memoryless, thereby alleviating the large memory consumption problems prevalent in 
several previous algorithms. The strategy of our algorithm is to use ray mutations in ray space to cast 
rays that are likely to sample new triangles. Our algorithm improves the sampling efficiency of 
previous work by over two orders of magnitude.  
While not being globally progressive like the method introduced in the last section (we solve one view 
cell at a time), this method aims for exactness. This method is much faster and robust than so called 
“exact” geometrical visibility solver. We found out that the new method even provides more accurate 
results than the geometrical methods, as they all suffer from robustness issues. In case that we require 
an exact visibility solution, we choose this sampling method over a geometrical visibility solver. For 
these practical reasons we did not see the benefit in additionally providing a geometrical method 
 

3.4.1.  Introduction 
 
Visibility is a fundamental problem in computer graphics: visibility computations are necessary for 
occlusion culling, shadow generation, inside-outside classifications, image-based rendering, motion 
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planning, and navigation, to name just a few examples. While visibility from a single viewpoint can be 
calculated quite easily, many applications require the potentially visible set (PVS) for a region in 
space, which is, unfortunately, much more complicated. A number of excellent from-region visibility 
algorithms exist, but most of them are only applicable to a limited range of scenes, require complex 
computations, and sometimes significant amounts of memory. Therefore, sampling-based solutions 
have become very popular for practical applications due to their robustness, general applicability, and 
ease of implementation. In this paper we will improve upon previous sampling-based algorithms by 
significantly improving the sampling efficiency, i.e., the number of samples required to detect a 
certain set of visible polygons. To motivate our design choices, we will look at two key aspects  of any 
visibility algorithm: the behavior of the algorithm in ray space, and the data structure used to store and 
acquire visibility information. 
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Figure 17, Sampling in object and ray space. Left: a scene with a set of objects. A view cell is 
shown as a line segment parameterized with s. We are interested in all rays that intersect the 
view cell and a second line segment parameterized with t. Middle: Shows a subset of the possible 
rays. One ray is highlighted in blue. Right: A depiction of the discrete ray space. Any ray in the 
middle figure corresponds to a point in ray space. The blue point corresponds to the blue ray in 
the middle figure. 

 

s

t

1 2 3 4 5 6 7 8

1
2

3
4

5
6

7
8

Ray SpaceObject Space

s

t

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Object Space

s

t

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

 
Figure 18, Left: The scene sampled orthogonally. Middle: Additional samples to capture oblique 
surfaces. Right: The rays used to sample the scene are shown in corresponding colors. 

 

Point Sample Void Volume Void Surface  
Figure 19: Representing visibility from a single point. Left: independent samples. Middle: the 
void volume. Right: the void surface. 
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Figure 17 illustrates the concept of ray space in 2D. Given a view cell, shown as edge parameterized 
with s, and a scene with objects shown in grey, we can compute visibility by considering all rays from 
the view cell to a plane behind the scene, parameterized with t. For a 2D scene, this is a 2D set of rays; 
for a 3D scene this is a 4D set of rays. If this set of rays is sampled densely enough, we will have a 
good visibility solution. The inefficiency of a pure regular sampling approach as shown in Figure 17 is 
that the same surfaces are sampled over and over again (note that the definition of regular depends on 
the parameterization of ray space!). Therefore, it would be beneficial if we could only sample areas 
that have not been sampled before. This is shown in Figure 18, where after an initial orthogonal 
sampling, only few additional rays are needed to find all visible surfaces. In total, little more than a 1D 
subspace of the 2D ray space needs to be explored in this example. This is due to the spatial coherence 
of visibility. In this paper, we exploit this coherence: starting from stochastically sampled points, we 
grow lower-dimensional subspaces of ray space using the newly introduced strategies of adaptive 
border sampling and reverse sampling, which are guided by the properties of scene visibility. 
The second key aspect of a visibility algorithm is what data structure is used to store visibility 
information. The most complete, but also complex, way is to store 4D ray space. For large scenes, this 
entails prohibitive levels of memory consumption. Conservative algorithms often store the shadow 
volume, whereas sampling algorithms use the volume of 3D space that has not been sampled yet (the 
so-called void volume, Figure 19); but these data structures still require several times the memory 
taken by the scene description itself. Alternatively, the boundary of the void volume (the void surface) 
can be used, which is easy to sample from one point in space, but difficult to manipulate. In this paper, 
we do not store visibility information beyond the PVS at all, relying on our new reverse sampling 
approach to penetrate the void surface based on the current sample only. The key contribution of this 
paper is an intelligent sampling algorithm that drastically improves the performance of previous 
sampling approaches by combining random sampling with deterministic exploration phases. The 
algorithm requires little memory, is simple to implement, accepts any triangular test scene as input, 
and can be used as a general purpose visibility tool. 
 

3.4.2. Overview 
 

3.4.2.1. Problem Statement 
 
We consider visibility problems that are posed as follows: As first input we take a three-dimensional 
scene consisting of a set of triangles, TS. We do not rely on connectivity information, volumetric 
objects, or large polygons as potential occluders (such a set of triangles is often called triangle soup). 
As second input we consider a subset of ray space Ω, usually defined by the rays emanating within a 
3D polyhedron called view cell and intersecting the bounding box of the scene. A ray can be defined 
by a starting point and a direction. Using TS and Ω, we can define a visibility function v : Ω→TS, so 
that each ray in Ω maps to the triangle in TS that it intersects first. The exact solution of the visibility 
problem is the range of this function, v(Ω)⊆ TS, also called exact visible set EVS. Our algorithm is 
aggressive, i.e., it calculates a potentially visible set PVS EVS. Our algorithm can be used to solve 
the visibility problem in different applications (see Section 

⊆
3.4.4.6). A usage scenario to keep in mind 

for the following exposition is a visibility preprocessing system for real-time rendering: the view space 
(set of possible observer locations) is partitioned into view cells. In a preprocessing step, our 
algorithm is used to calculate and store a PVS for each view cell (note that only its boundary polygons 
are taken into account, since any ray leaving the view cell can be represented by a ray on the 
boundary). At runtime, the view cell corresponding to the current observer location is determined, and 
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only the objects in the associated PVS are sent to the graphics hardware, leading to significant savings 
in rendering time. 
 
 

3.4.2.2. Algorithm Overview 
 
The algorithms in this paper are based on ray shooting and assume the capability to trace a ray x and 
compute its first intersection with a scene triangle t TS, i.e., to compute the triangle t = v(x) (fast ray 
tracers include OpenRT and the recently presented MLRTA). 

⊆

The idea of a sampling solution is to select a sequence of rays X = xi, trace the ray and add the triangle 
v(xi) to the visibility set PVS. In this paper, we will address the problem on how to sample efficiently, 
that is how to improve the chances of finding new triangles. We will start with one of the most popular 
sampling strategies, random sampling (section 3.4.3.1). Then we will show how to use visibility 
information from previous samples to construct intelligent sampling strategies based on ray mutation 
to complement random sampling: Adaptive Border Sampling is an algorithm to quickly find nearby 
triangles by sampling along the borders of triangles previously found to be visible (Section 3.4.3.2). 
Reverse Sampling is an algorithm to sample into regions in space that are likely to be near the 
boundaries of visible and invisible space, i.e., the void surface (Section 3.4.3.3). 
In Section 3.4.3.4, we will show how to combine the different sampling algorithms in order to obtain 
guided visibility sampling, a complete hybrid random and deterministic sampling algorithm. The 
algorithm is called guided because both sampling strategies are guided by visibility information in the 
scene (see Section 3.4.4.4 for a more detailed discussion). 
 
 

3.4.3. Visibility Sampling 
 
All rays in the scene form a 5D space. A ray x has a starting point xp (3D) and a direction xdir (2D). A 
typical visibility query is to give a region R in 3D space and ask what is visible along the rays leaving 
the region (view cell). While this defines a 5D set of rays, we only need to consider a 4D set of rays in 
practice; the rays starting at the boundary δR of the viewing region. Additionally, all triangles 
intersecting R are classified as visible. 
 

3.4.3.1. Random Sample Generator 
 
The random (or pseudo-random) sampling algorithm selects a sequence of random samples X = xi 
from the scene. The probability distribution for each new sample p(xi) is independent of all previous 
samples x1, ...,xn−1. The question of sampling uniformity for random sampling has been explored in the 
context of form factor computation. We sample the position and ray direction uniformly using the 
following formulae:  
 
u = ξ1, v = ξ2, φ= 2 πξ3, θ= arcsin ξ4, 
 
 where the ξi are independent Halton sequences, and (u, v) are the normalized coordinates on a view 
cell face. While random sampling alone suffers from similar inefficiencies as regular sampling, it will 
be used to seed the more efficient strategies described next. 
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3.4.3.2. Adaptive Border Sampling 

 
Figure 20, Adaptive border sampling: Top: If we hit a new surface, we sample nearby points on 
the border polygon t'. Bottom: Adaptive subdivision of an edge of t'. 

 
This sampling algorithm is a deterministic ray mutation strategy that covers most of the ground work 
to make our system successful. This strategy leaves the ray starting point xp on the view cell fixed 
while covering adjacent triangles in object space, practically constructing a local visibility map from 
the selected view cell point. 
The key idea of this sampling strategy is that it adapts the sampling rate to the geometric detail of the 
surface (see Figure 20). Therefore, it is unlikely that subpixel triangles are missed, which is a problem 
for methods that sample objects regularly. The method performs especially well for the most frequent 
case of a connected mesh, but does not assume or use any connectivity information. The connected 
regions are discovered in the random sampling step (therefore, scenes with many small disconnected 
meshes like trees remain a challenge for the approach). The algorithm proceeds as follows. If a 
triangle t = (p1, p2, p3) is hit for the first time by a sample ray x = (xp, xdir), we enlarge t by a small 
amount to obtain an enlarged polygon t´, and adaptively sample along its edges (Figure 20). For each 
edge, we use two rays xl and xr, and the corresponding samples hit(xl) and hit(xr) in world space. If the 
rays xl and xr hit different triangles, we recursively subdivide the edge, up to given threshold. At this 
point, we also detect depth discontinuities between the new samples and the original sample on the 
triangle, which is already a part of reverse sampling as described in the next section. 
 
The actual method used for border enlargement deserves attention. In order not to miss any adjacent 
triangles, the border polygon t´ should be as tight as possible. On the other hand, if it is too tight, t will 
be hit again due to the numerical precision of ray shooting. If the enlargement were done in object 
space, this would happen for near edge-on or very distant triangles. We therefore enlarge t in ray space 
by rotating rays to the vertices of t to their new positions on t´ by a small angle. This is more robust 
because it depends neither on the distance of the triangle nor on its orientation, but only on the 
numerical precision of the ray representation. In practice, this means that for each vertex, the new 
vertices are put on a plane perpendicular to the ray. The shape of t´ is chosen so that the ray space 
distance to t is fairly constant. This is not possible with only 3 vertices, since sliver triangles would 
lead to singularities. We therefore chose t´ to be a polygon of 9 vertices. For each vertex pi of t, three 
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vertices pi, j on t´ are generated. Two vertices are generated each on a vector di, j perpendicular to the 
ray and to one of the adjacent edges, respectively. The third is the midpoint of the other two, pushed 
away from t along the angle bisector di,i: 
 
di,i+1 = N((pi− xp)×( pi+1− pi)) 
di,i-1 = N((pi− xp)×( pi − pi−1)) 
di,i = N(di,i-1+ di,i+1) if di,i-1 · di,i+1  > 0, else: 
N((pi− xp)× di,i-1+ di,i+1×(pi− xp)) 
pi, j = pi+ ε·|pi− xp|·di, j
 
where N(v) is the vector normalization operator. di,i is chosen to be numerically robust. For 
backfacing triangles, the di,j need to be inverted. Adaptive border sampling efficiently explores 
connected visible areas of the input model from a single viewpoint along a 1D curve in ray space. 
However, it cannot penetrate into gaps. This is handled by reverse sampling. 
 

3.4.3.3. Reverse Sampling 
 
 

view cell

xp

predicted(x) hit(x)

 
Figure 21, Reverse Sampling: Left: initial hit on triangle t. Middle: the new ray to predicted(x) is 
blocked by a much closer triangle t'. Right: Reverse sampling mutates the starting point on the 
view cell so that the ray passes through pnew (yellow) and reaches predicted(x). 

 
This algorithm is a deterministic mutation strategy that allows penetrating into as yet uncovered 
regions of space. Note that this cannot be done perfectly: finding the actual void volume is equivalent 
to the original visibility problem. However, the adaptive sampling process gives good candidate 
locations for further sampling rays, namely at discontinuity locations. This strategy works by changing 
the starting point of the ray instead of its direction. 
 
A discontinuity is detected during the adaptive sampling of an edge by comparing the distance of the 
ray origin to the actual hitpoint |hit(x) - xp| with the distance to a “predicted” hitpoint |predicted(x) - 
xp|. The predicted hitpoint is just the intersection of the ray x with the plane of the original triangle t. If 
the new hitpoint is considerably (∆) closer, i.e., 
 
|predicted(x) - xp| - |hit(x) - xp | > ∆, 
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the ray is obviously occluded by a closer triangle. Note that we do not check the reverse case (jump 
from closer to farther triangle) as this will be detected when doing adaptive border sampling for the 
farther triangle. We calculate a mutated ray from a different view cell position to the predicted hitpoint 
so that it passes by the occluding triangle. For this, the plane p = (xp, hit(x), hit(xold)) is intersected with 
the newly found triangle (xold is the previous ray from which x was generated). On the intersecting line, 
we select a point pnew which lies just outside of the new triangle. The mutated ray is now constructed 
with xnew,dir = predicted(x) - pnew as direction vector, and xnew,p = intersect(view cell, line(pnew, 
predicted(x)) as origin (see Figure 21). If the new ray is not contained in the ray space Ω (i.e., it does 
not intersect the view cell), however, it is discarded. 
 
The new ray xnew is now treated as independent ray, and the triangle it intersects will be added for 
adaptive border sampling like any other triangle, but this time with the new view cell origin.  
 
For the 2D example in Figure 21, reverse sampling corresponds to a horizontal movement in ray 
space. 
 

3.4.3.4. Combining the Different Sampling Algorithms 
 
The sampling strategies presented so far can be combined into an extremely efficient guided visibility 
sampling algorithm. Its two main components are a sample generator for exploring the ray space with 
independent random samples, and a sampling queue for propagating the ray using adaptive border 
sampling and reverse sampling. The algorithm is described by the following pseudocode: 
 

 

3.4.3.5. Termination criteria 
 
Depending on the application requirements, there are several options regarding when to stop casting 
rays for a view cell: a) a fixed criterion, allocating a number of rays or an amount of time for the 
computation of each view cell, or b) an adaptive criterion, terminating if the number of newly found 
triangles per a certain number of samples falls below a threshold, or most preferably, c) a combination 
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of both. A typical example for such a criterion is: stop the iteration when not more than 50 new  
triangles are found for 1M rays, or when a total of 10M rays has been shot, whichever comes first. 
 

3.4.4. Related Work, Discussion and Applications 
 
A large volume of research has been devoted to visibility problems due to their importance in 
computer graphics, computer vision, robotics and other fields. This section compares various aspects 
of the proposed visibility sampling algorithm to a wider class of from-region visibility algorithms. For 
a general overview, we can recommend excellent surveys of visibility problems and algorithms. 
 
From-region visibility algorithms are usually classified as exact (potentially visible set PVS = exact 
visible set EVS), conservative (PVS  EVS), aggressive (PVS ⊆  EVS), or approximate (PVS ~ EVS). ⊇
 

3.4.4.1. Exact Visibility 
 
Exact solutions to compute visibility from a region in space have been rare, but recently, two 
algorithms have been published and further improved upon that are both exact and work for general 
scenes. While exact algorithms have been the holy grail of the visibility community for a long time, 
these two algorithms show that the complexity inherent in the visibility problem may be an obstacle to 
make exact visibility widely applicable. The high running times and high complexity of 
implementation are critical, and numerical robustness issues can actually make the solution as 
approximate as a sampling-based strategy. We believe that sampling-based methods and exact 
methods complement each other, as they have different strengths and weaknesses. 
 

3.4.4.2. Conservative Visibility 
 
Several authors stress the importance of conservative visibility computations, i.e., never 
underestimating the visible set. Since this problem is almost as hard as the exact visibility problem, 
practically all published conservative from-region algorithms simplify the problem by imposing 
certain restrictions on the scene. Typical restrictions are the limitation to 2.5D visibility, architectural 
scenes, the restriction to volumetric occluders, or the restriction to larger occluders close to the view 
cell---this last restriction is implied by the nature of the data structures used to store visibility 
information. While it can be argued that larger occluders can be synthesized from smaller ones, this is 
not possible in general. The guarantee to include all visible geometry in the PVS may be important for 
some applications, but ultimately, sampling-based methods can be much more successful: 
 

1. As opposed to the published conservative algorithms, they do not make any assumptions about 
the scene, allowing them to handle a much larger variety of scenes. 

2. Due to their ease of implementation and robustness, non-conservative algorithms are more 
practical for commercial products such as computer games, and are already used in this 
context. 

3. Numerical issues often make conservative algorithms non-conservative in practice. 
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3.4.4.3. Aggressive Visibility 
 
Since visibility is such a fundamental problem, general, robust and practical tools are important to 
complement the specialized algorithms discussed before. These tools are almost universally based on 
sampling. The two most popular solutions are to randomly select a large number of rays to sample 
visibility, or to first sample the boundary of the view cell with points and then sample visibility from 
each of these points. In the context of view planning for laser range scanners, sampling algorithms 
exist that store the void surface or the void volume to compute the next best view. A similar algorithm 
was also used for the generation of textured depth meshes. Another option is to shoot rays from the 
scene triangles towards the view cell, which leads to oversampling of ray space for most scenes. 
 
Nirenstein and Blake were the first to realize the full potential of sampling for visibility computation. 
They proposed a new approach which uses graphics hardware for sampling. This algorithm aims to 
reduce the rendering time by culling even visible triangles as long as this does not result in significant 
rendering error. This is opposed to our algorithm, which always tries to find the best possible 
approximation of the exact visible set. 
 

3.4.4.4. Algorithm Analysis 
 
Ray space analysis. In the introduction in Figure 17, we have argued that it is desirable not to sample 
the ray space regularly. The right image in this figure shows that only an approximately 1D subspace 
of rays needs to be considered in this simple 2D example. Our new algorithm samples ray space more 
intelligently: random sampling places initial seed points in ray space to stochastically search for 
regions in ray space that have not been explored yet. To continue the example for 2D as in the figure, 
adaptive border sampling corresponds to a vertical expansion in 2D ray space (since the viewpoint 
remains fixed) which only proceeds into yet unexplored areas. A particular advantage of the adaptive 
border sampling method is that the sampling rate is adapted to the geometric complexity of the visible 
surfaces. Reverse sampling, on the other hand, is a movement in the horizontal direction (since the 
hitpoint remains fixed) in cases where these movements promise to lead to not yet explored regions. 
 
For the full 3D case, it is instructive to study our algorithm in terms of the visibility complex. The 
visibility complex describes a partition of the 4D ray space into 4D regions of rays that hit the same 
object (note that ray space is strictly 4D because we are only interested in rays starting from the view 
cell). The 3D boundaries of this partition are called tangency volume and consist of rays tangent to 
scene objects. Samples placed along the object borders therefore correspond to samples near the 
tangency volume of the object in dual space. Since we keep the viewpoint (2 degrees of freedom) 
fixed during the deterministic ABS exploration phase, we need to sample a 1D set only. Without ABS, 
we would ignore the tangency volumes and have to sample the whole 2D subset of ray space defined 
by the chosen viewpoint. 
 
Reverse sampling, on the other hand, looks for lines tangent to two scene edges. In ray space, these 
lines are near intersections of two tangency volumes. These intersections are called bitangents and are 
only 2D. For reverse sampling, the viewpoint is allowed to move along a plane (1D), so in total RS 
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also samples a 1D set. The combined ABS and RS strategies therefore correspond to explorations of 
the 4D ray space along those 1D curves that are most likely to reveal new objects. This explains the 
high efficiency of the GVS algorithm. 
 
Another useful interpretation of the ABS sampling strategy in 3D is based on the visibility map. The 
visibility map is a structure that contains all visible line segments in a given view. These segments can 
be characterized mainly as flat and corner (interior edges of a mesh), or shadow (depth 
discontinuities). The ABS sampling strategy places samples at all edges of the visibility map (without 
explicitly constructing it). Samples on interior edges of a mesh serve to find connected sets of a mesh 
(trivially adjacent regions in the visibility complex). Samples at the shadow edges serve to discover 
depth discontinuities, where objects are partly occluded by other objects. Shadow edges are where the 
RS sampling strategy is used to refine the sampling (by finding the bitangents in the visibility 
complex). 
 
Accuracy. The term conservative (or even exact) visibility is actually quite misleading. Most 
algorithms, though conservative in theory, are not conservative in practice due to numerical robustness 
problems. This is especially true for algorithms relying on graphics hardware. Furthermore, complex 
algorithms are prone to implementation problems. Due to the much improved sampling efficiency, the 
magnitude of error introduced by our algorithm is comparable to that of other error sources. Such 
errors are usually tolerated for conservative algorithms. Other algorithms that are often used in 
conjunction with visibility processing, like level-of-detail algorithms or shadow mapping, are an 
additional source of errors. 
 
Scene complexity. One distinguishing feature of our sampling-based algorithm is that it can handle 
arbitrary types of scenes with high overall and visual complexity. It does not rely on occluder 
synthesis, and depends mostly on the size of the visible set, not on the total scene complexity. 
 

3.4.4.5. Limitations and Future Work 
 
Although guided visibility sampling generally finds the major part of the PVS very quickly, the fact 
that it is stochastic on the one hand and guided by the visibility in the scene on the other hand makes 
the final accuracy dependent on the structure of the scene. Therefore, we cannot give any hard 
guarantees for the pixel error of the calculated PVS. Also, the ability to explore connected ray space 
subsets in the far distance is limited by the numerical precision of the ray direction vector. For ABS, 
this means that triangles that have a solid angle of less than double precision accuracy when seen from 
the ray origin will most likely be missed. 
 
The worst case of scene complexity is in scenes that consist of a large set of small disconnected 
triangles, such as forest scenes or synthetic scenes of random triangles. The visibility of such scenes is 
so complex that even sampling-based solutions will either have high error or take a long time to 
compute. Still, it is important to point out that sampling-based algorithms are the only ones that are 
able to even process these scenes. 
 
In this respect, an avenue of future work is to incorporate geometric LOD into the sampling 
framework, similar to the vLOD system proposed by Chhugani et al. Geometric LODs could 
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potentially increase the speed of the ray tracer, and make intersection computations more robust 
because small triangles in the distance get replaced by larger ones. However, robust geometric LOD is 
not available for all scenes, and integrating LODs into ray tracers is a current topic of research. 
Furthermore, the error metric used to create the LODs impacts the accuracy of the visibility algorithm 
and therefore the usable output resolutions. 
 

3.4.4.6. Applications 
 
One important strength of sampling-based methods is their ease of application. We will discuss a 
number of application scenarios for our algorithm. 
 
Visibility preprocessing for real-time rendering and games. This is the scenario already described in 
the overview, and one of the most important applications for GVS. For example, the scenes of current 
computer games are becoming increasingly general, so that special purpose algorithms (cells and 
portals, and 2.5D solutions) cannot be used anymore, while exact algorithms are difficult to implement 
and error-prone. GVS can be used in all stages of game development: During level design, the number 
of rays can be limited so that a coarse solution can be provided almost instantaneously. For the final 
production, the PVS can be calculated with high accuracy. It is very important to create a PVS that is 
as close to the EVS as possible and not dependent on a particular output resolution, since the 
resolution the application will be run at is not known in advance. In addition, antialiasing methods 
(supersampling and multisampling) use information from subpixel triangles, so that the virtual 
resolution is even higher. Note that although scenes in computer games are inherently dynamic, the 
major part of the scene is still static, so huge gains in rendering speeds can be obtained. Furthermore, 
GVS works on arbitrary polyhedral view cells, so that the view space can be chosen freely. 
 
Online and networked visibility. As shown in the results, a reasonable approximation to the EVS with 
low pixel error can be found in a second or less. Therefore, GVS can be used for online visibility 
culling by running it on a separate processor or over the network, as described in the Instant Visibility 
system. In this case, transmitting the PVS on a per-object basis will improve results because it suffices 
for one triangle of an object to be found by GVS in order to classify the whole object as visible. 
Furthermore, a small modification to GVS makes the algorithm better suitable to progressive 
evaluation: instead of interleaving ABS and random samples from the beginning, create a certain 
number (e.g., 1M) of random samples in a startup phase, and only then use those to seed the ABS rays. 
This will give a better distribution of samples in the initial phase of the algorithm, since ABS 
systematically “flood fills” the PVS around its seed point, and it takes some time until all image 
regions have been reached. 
 
Impostor generation. In many scenes, visibility culling is not sufficient to guarantee a high frame rate 
everywhere in the model. Therefore, image-based methods can be used to replace complex scene parts 
by so-called impostors. However, since impostors trade rendering speed against memory consumption, 
it is important to find the exact visible parts of the scene to avoid wasting impostor memory on 
invisible geometry. GVS is ideally suited for this purpose since it provides accurate per-triangle 
visibility information, so that only those object parts that are actually visible need to be stored in an 
impostor. 
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Visibility as decision basis. Many practical applications require accurate visibility information as part 
of a decision making process. Examples include visibility analysis in urban planning (does the new 
skyscraper impact old town?), military applications (line of sight culling, tactical battlefield 
management, telecommunications (visibility of emitters), robotics and many more. GVS is 
advantageous for these problems because it is general purpose and does not have any parameters to 
tweak, and does not depend on any special properties of the scene. 
 

3.4.5. Conclusion 
 
We have presented a visibility sampling algorithm to compute a full 3D visibility solution from a 
region in space. The proposed algorithm improves the efficiency of previous sampling strategies by 
over two orders of magnitude, thereby allowing visibility solutions with negligible error to be 
computed in reasonable time. The proposed algorithm works on arbitrary so-called polygon soups and 
does not require any memory beyond that used by the ray caster. Due to the new sampling strategies 
employed in the algorithm, its accuracy is competitive even with exact and conservative approaches, 
while it is also extremely simple to implement. 
 
We have provided evidence that Guided Visibility Sampling closes an important gap in visibility 
research. It combines the speed and ease of implementation of sampling-based and special-purpose 
conservative algorithms with most of the accuracy of exact solutions. Thus, GVS can be used as a 
general purpose visibility tool. 
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3.5. ONLINE VISIBILITY CULLING 
 
This module works in runtime to quickly cull occluded objects given a particular viewpoint and a 
viewing direction. We have designed and implemented an online culling algorithm which efficiently 
uses occlusion queries supported by the recent graphics hardware. Large regions of similar visibility 
are culled early by using a hierarchy. To eliminate CPU stalls and GPU starvation, we exploit 
temporal coherence and schedule the occlusion queries using a priority queue. To reduce unnecessary 
queries, we pull up and push down visibility information in the hierarchy. 
We further provide a prototype implementation of our online culling algorithm for the Ogre3D engine. 
The integrated algorithm is usable with most Ogre3D features and could be integrated into other scene 
manager plugins (using different spatial hierarchies) without major obstacles. It is flexible enough so 
that it’s applicable in both a rendering and a query mode.  
 

3.5.1. Hardware Occlusion Queries 
 
Hardware occlusion queries follow a simple pattern: To test visibility of an occludee, we send its 
bounding volume to the GPU. The volume is rasterized and its fragments are compared to the current 
contents of the z-buffer. The GPU then returns the number of visible fragments. If there is no visible 
fragment, the occludee is invisible and it need not be rendered. There are several advantages of 
hardware occlusion queries: 
 

• Generality of occluders. We can use the original scene geometry as occluders, since the 
queries use the current contents of the z-buffer. 

• Occluder fusion. The occluders are merged in the z-buffer, so the queries automatically 
account for occluder fusion. Additionally this fusion comes for free since we use the 
intermediate result of the rendering itself. 

• Generality of occludees. We can use complex occludees. Anything that can be rasterized 
quickly is suitable. 

• Exploiting the GPU power. The queries take full advantage of the high fill rates and internal 
parallelism provided by modern GPUs. 

• Simple use. Hardware occlusion queries can be easily integrated into a rendering algorithm. 
They provide a powerful tool to minimize the implementation effort, especially when 
compared to CPU-based occlusion culling. 

 
 

3.5.2. Algorithm Overview 
 
Our method is based on exploiting temporal coherence of visibility classification. In particular, it is 
centered on the following three ideas: 
 

• We initiate occlusion queries on nodes of the hierarchy where the traversal terminated in the 
last frame. Thus we avoid queries on all previously visible interior nodes. 
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• We assume that a previously visible leaf node remains visible and render the associated 
geometry without waiting for the result of the corresponding occlusion query. 

 
• Issued occlusion queries are stored in a query queue until they are known to be carried out by 

the GPU. This allows interleaving the queries with the rendering of visible geometry. 
 
The algorithm performs a traversal of the hierarchy that is terminated either at leaf nodes or nodes that 
are classified as invisible. Let us call such nodes the termination nodes, and interior nodes that have 
been classified visible the opened nodes. We denote sets of termination and opened nodes in the i-th 
frame Ti and Oi, respectively. In the i-th frame, we traverse the kD-tree in a front-to-back order, skip 
all nodes of Oi−1 and apply occlusion queries first on the termination nodes Ti−1. When reaching a 
termination node, the algorithm proceeds as follows: 
 

• For a previously visible node (this must be a leaf), we issue the occlusion query and store it in 
the query queue. Then we immediately render the associated geometry without waiting for the 
result of the query. 

 
• For a previously invisible node, we issue the query and store it in the query queue. 

 
 
When the query queue is not empty, we check if the result of the oldest query in the queue is already 
available. If the query result is not available, we continue by recursively processing other nodes of the 
kD-tree as described above. If the query result is available, we fetch the result and remove the node 
from the query queue. If the node is visible, we process its children recursively. Otherwise, the whole 
subtree of the node is invisible and thus it is culled. 
 
In order to propagate changes in visibility upwards in the hierarchy, the visibility classification is 
pulled up according to the following rule: An interior node is invisible only if all its children have 
been classified invisible. Otherwise, it remains visible and thus opened. An example of the behavior of 
the method on a small kD-tree for two subsequent frames is depicted Figure 22. The pseudo-code of 
the complete algorithm is given in Figure 4. 
 
The sets of opened nodes and termination nodes need not be maintained explicitly. Instead, these sets 
can be easily identified by associating with each node an information about its visibility and an id of 
the last frame when it was visited. The node is an opened node if it is an interior visible node that was 
visited in the last frame (line 23 in the pseudocode). Note that in the actual implementation of the pull 
up we can set all visited nodes to invisible by default and then pull up any changes from invisible to 
visible (lines 25 and line 12). This modification eliminates checking children for invisibility during the 
pull up. 
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Figure 22, (top) Illustration of processing requirements of nodes of the spatial hierarchy at 
frame i. (bottom) Illustration of query requirements of nodes of the spatial hierarchy. 

 

3.5.3. Reduction of the number of queries 
 
Our method reduces the number of visibility queries in two ways: Firstly, as other hierarchical culling 
methods we consider only a subtree of the whole hierarchy (opened nodes + termination nodes). 
Secondly, by avoiding queries on opened nodes we eliminate part of the overhead of identification of 
this subtree. These reductions reflect the following coherence properties of scene visibility: 
 

• Spatial coherence. The invisible termination nodes approximate the occluded part of the scene 
with the smallest number of nodes with respect to the given hierarchy, i.e., each invisible 
termination node has a visible parent. This induces an adaptive spatial subdivision that reflects 
spatial coherence of visibility, more precisely the coherence of occluded regions. The adaptive 
nature of the subdivision allows to minimize the number of subsequent occlusion queries by 
applying the queries on the largest spatial regions that are expected to remain occluded. 
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• Temporal coherence. If visibility remains constant the set of termination nodes needs no 
adaptation. If an occluded node becomes visible we recursively process its children (pull-
down). If a visible node becomes occluded we propagate the change higher in the hierarchy 
(pull-up). A pull-down reflects a spatial growing of visible regions. Similarly, a pull-up 
reflects a spatial growing of occluded regions. By avoiding queries on the opened nodes, we 
can save 1/k of the queries for a hierarchy with branching factor k (assuming visibility remains 
constant). Thus for the kD-tree, up to half of the queries can be saved. The actual savings in 
the total query time are even larger: the higher we are at the hierarchy, the larger boxes we 
would have to check for occlusion. Consequently, the higher is the fill rate that would have 
been required to rasterize the boxes. In particular, assuming that the sum of the screen space 
projected area for nodes at each level of the kD-tree is equal and the opened nodes form a 
complete binary subtree of depth d, the fill rate is reduced (d + 2) times. 

 

3.5.4. The Reduction of CPU stalls and GPU starvation 
 
The reduction of CPU stalls and GPU starvation is achieved by interleaving occlusion queries with the 
rendering of visible geometry. The immediate rendering of previously visible termination nodes and 
the subsequent issuing of occlusion queries eliminates the requirement of waiting for the query result 
during the processing of the initial depth layers containing previously visible nodes. In an optimal 
case, new query results become available in between and thus we completely eliminate CPU stalls. In 
a static scenario, we achieve exactly the same visibility classification as the hierarchical stop-and-wait 
method. 
 
If the visibility is changing, the situation can be different: if the results of the queries arrive too late, it 
is possible that we initiated an occlusion query on a previously occluded node A that is in fact 
occluded by another previously occluded node B that became visible. If B is still in the query queue, 
we do not capture a possible occlusion of A by B since the geometry associated with B has not yet 
been rendered. We show that the increase of the number of rendered objects compared to the stop-and-
wait method is usually very small. 
 

3.5.5. Further Optimizations 
 
This section discusses a couple of optimizations of our method that can further improve the overall 
rendering performance. In contrast to the basic algorithm from the previous section, these 
optimizations rely on some user specified parameters that should be tuned for a particular scene 
and hardware configuration. 
 
Conservative visibility testing 
 
The first optimization addresses the reduction of the number of visibility tests at the cost of a possible 
increase in the number of rendered objects. This optimization is based on the idea of skipping some 
occlusion tests of visible nodes. We assume that whenever a node becomes visible, it remains visible 
for a number of frames. Within the given number of frames we avoid issuing occlusion queries and 
simply assume the node remains visible. This technique can significantly reduce the number of 
visibility tests applied on visible nodes of the hierarchy. Especially in the case of sparsely occluded 
scenes, there is a large number of visible nodes being tested, which does not provide any benefit since 
most of them remain visible. On the other hand, we do not immediately capture all changes from 
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visibility to invisibility, and thus we may render objects that have already become invisible from the 
moment when the last occlusion test was issued. 
 
In the simplest case, the number of frames a node is assumed visible can be a predefined constant. In a 
more complicated scenario this number should be influenced by the history of the success of occlusion 
queries and/or the current speed of camera movement. 
 
Approximate visibility 
 
The algorithm as presented computes a conservative visibility classification with respect to the 
resolution of the z-buffer. We can easily modify the algorithm to cull nodes more aggressively in cases 
when a small part of the node is visible. We compare the number of visible pixels returned by the 
occlusion query with a user specified constant and cull the node if this number drops below this 
constant. 
 
Complete elimination of CPU stalls 
 
The basic algorithm eliminates CPU stalls unless the traversal stack is empty. If there is no node to 
traverse in the traversal stack and the result of the oldest query in the query queue is still not available, 
it stalls the CPU by waiting for the query result. To completely eliminate the CPU stalls, we can 
speculatively render some nodes with undecided visibility. In particular, we select a node from the 
query queue and render the geometry associated with the node (or the whole subtree if it is an interior 
node). The node is marked as rendered but the associated occlusion query is kept in the queue to fetch 
its result later. If we are unlucky and the node remains invisible, the effort of rendering the node’s 
geometry is wasted. On the other hand, if the node has become visible, we have used the time slot 
before the next query arrives in an optimal manner. 
 
 
To avoid the problem of spending more time on rendering invisible nodes than would be spent by 
waiting for the result of the query, we select a node with the lowest estimated rendering cost and 
compare this cost with a user specified constant. If the cost is larger than the constant we conclude that 
it is too risky to render the node and wait till the result of the query becomes available. 
 
Initial depth pass 
 
To achieve maximal performance on modern GPUs, one has to take care of a number of issues. First, 
it is very important to reduce material switching. Thus modern rendering engines sort the objects (or 
patches) by materials in order to eliminate the material switching as good as possible. Next, materials 
can be very costly, sometimes complicated shaders have to be evaluated several times per batch. 
Hence it should be avoided to render the full material for fragments which eventually turn out to be 
occluded. This can be achieved by rendering an initial depth pass (i.e., enabling only depth write to fill 
the depth buffer). Afterwards the geometry is rendered again, this time with full shading. Because the 
depth buffer is already established, invisible fragments will be discarded before any shading is done. 
This approach can be naturally adapted for use with the CHC algorithm. Only an initial depth pass is 
rendered in front-to-back order using the CHC algorithm. The initial pass is sufficient to fill the depth 
buffer and determine the visible geometry. Then only the visible geometry is rendered again, 
exploiting the full optimization and material sorting capability of the rendering engine. If the materials 
require several rendering passes, we can use a variant of the depth pass method. We render only the 
first passes using the algorithm (e.g., the solid passes), determining the visibility of the patches, and 
render all the other passes afterwards. This approach can be used when there are passes which require 
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a special kind of sorting to be rendered correctly (e.g., transparent passes, shadow passes). In Figure 
23, we can see that artifacts occur in the left image if the transparent passes are not rendered in the 
correct order after applying the hierarchical algorithm (right image). In a similar fashion, we are able 
to handle shadows as shown in Figure 24. 
 
Batching multiple queries 
 
When occlusion queries are rendered interleaved with geometry, there is always a state change 
involved. To reduce state changes, it is beneficial not to execute one query at a time, but multiple 
queries at once. Instead of immediately executing a query for a node when we fetch it from the 
traversal stack, we add it to the pending queue. If n of these queries are accumulated in the queue, we 
can execute them at once. To obtain an optimal value for n, several some heuristics can be applied, 
e.g., a fraction of the number of queries issued in the last frame.  
 
 

 
Figure 23, (left) all passes are rendered with CHC. Note that the soldiers are visible through the 
tree. (right) Only the solid passes are rendered using CHC, afterwards the transparent passes. 

 

 
Figure 24, The online culling module correctly handles shadow volumes. 
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