//////////////////// // SSAO + color bleeding shader // based on shader of Alexander Kusternig #include "../shaderenv.h" struct fragment { // normalized screen position float4 pos: WPOS; float4 texCoord: TEXCOORD0; float3 view: COLOR0; }; struct pixel2 { float4 ssao_col: COLOR0; float4 illum_col: COLOR1; }; struct pixel { float4 illum_col: COLOR0; }; float2 myreflect(float2 pt, float2 n) { // distance to plane float d = dot(n, pt); // reflect around plane float2 rpt = pt - d * 2.0f * n; return rpt; } struct GiStruct { float3 illum; float2 ao; }; /** Computes diffuse reflections + ambient occlusion */ GiStruct globIllum(fragment IN, uniform sampler2D colors, uniform sampler2D positions, uniform sampler2D noiseTexture, uniform float2 samples[NUM_SAMPLES], uniform float3 currentNormal, uniform float4 centerPosition, float w //, uniform float3 currentViewDir ) { GiStruct gi; // Check in a circular area around the current position. // Shoot vectors to the positions there, and check the angle to these positions. // Summing up these angles gives an estimation of the occlusion at the current position. // ao is in stored in the w component float3 total_color = float3(0, 0, 0); float total_ao = 0.0f; float numSamples = 0.0f; //////////// //-- the main sampling loop for (int i = 0; i < NUM_SAMPLES; i ++) { float2 offset = samples[i]; #if 1 //////////////////// // add random noise: reflect around random normal vector (warning: slow!) float2 mynoise = tex2D(noiseTexture, IN.texCoord.xy).xy; float2 offsetTransformed = myreflect(offset, mynoise); #else float2 offsetTransformed = offset; #endif // weight with projected coordinate to reach similar kernel size for near and far float2 texcoord = IN.texCoord.xy + offsetTransformed * AREA_SIZE * w; if ((texcoord.x <= 1.0f) && (texcoord.x >= 0.0f) && (texcoord.y <= 1.0f) && (texcoord.y >= 0.0f)) ++ numSamples; // use lower lod level to improve cache coherence float3 sample_position = tex2Dlod(positions, float4(texcoord, 0, SSAO_MIPMAP_LEVEL)).xyz; float3 sample_color = tex2Dlod(colors, float4(texcoord, 0, GI_MIPMAP_LEVEL)).xyz; float3 vector_to_sample = sample_position - centerPosition.xyz; const float length_to_sample = length(vector_to_sample); float3 direction_to_sample = vector_to_sample / length_to_sample; // Angle between current normal and direction to sample controls AO intensity. float cos_angle = max(dot(direction_to_sample, currentNormal), 0); // distance between current position and sample position controls AO intensity. const float distance_intensity = (SAMPLE_INTENSITY * DISTANCE_SCALE) / (DISTANCE_SCALE + length_to_sample * length_to_sample); // if normal perpenticular to view dir, only half of the samples count /* const float view_correction = 1.0f + VIEW_CORRECTION_SCALE * (1.0f - dot(currentViewDir, currentNormal)); total_color.w -= cos_angle * distance_intensity * view_correction; total_color.xyz += cos_angle * distance_intensity * view_correction * sample_color * ILLUM_INTENSITY; */ total_ao += cos_angle * distance_intensity; total_color += cos_angle * distance_intensity * sample_color * ILLUM_INTENSITY; } gi.illum = total_color; gi.ao = float2(max(0.0f, 1.0f - total_ao), numSamples); //return saturate(total_color); return gi; } /** The mrt shader for screen space ambient occlusion + indirect illumination */ pixel2 main(fragment IN, uniform sampler2D colors, uniform sampler2D positions, uniform sampler2D normals, uniform sampler2D noiseTexture, uniform float2 samples[NUM_SAMPLES], uniform sampler2D oldSsaoTex, uniform sampler2D oldIllumTex, const uniform float4x4 oldModelViewProj, uniform float maxDepth, uniform float temporalCoherence ) { pixel2 OUT; float4 norm = tex2D(normals, IN.texCoord.xy); float3 normal = normalize(norm.xyz); // something like a constant ambient term const float amb = norm.w; /// the current view direction //float3 viewDir = normalize(IN.view); // the w coordinate from the persp. projection float w = norm.w; // the current world position const float4 centerPosition = tex2D(positions, IN.texCoord.xy); // the current color const float4 currentCol = tex2Dlod(colors, float4(IN.texCoord.xy, 0, 0)); // the current depth is stored in the w component const float currentDepth = centerPosition.w; GiStruct gi = globIllum(IN, colors, positions, noiseTexture, samples, normal, centerPosition, w); //, viewDir); ///////////////// //-- compute temporally smoothing float4 realPos = centerPosition * maxDepth; realPos.w = 1.0f; float4 oldPos = mul(oldModelViewProj, realPos); const float newDepth = oldPos.z / oldPos.w; float2 tex = (oldPos.xy / oldPos.w) * 0.5f + 0.5f; float4 oldSsao = tex2D(oldSsaoTex, tex); float4 oldIllum = tex2D(oldIllumTex, tex); const float oldDepth = oldSsao.w; const float depthDif = 1.0f - newDepth / oldDepth; float oldWeight = clamp(oldSsao.z, 0, temporalCoherence); float newWeight; const float oldNumSamples = oldSsao.y; const float oldAvgDepth = oldSsao.z; if ((temporalCoherence > 0.0f) && (tex.x >= 0.0f) && (tex.x < 1.0f) && (tex.y >= 0.0f) && (tex.y < 1.0f) && (abs(depthDif) < 1e-3f) // check if something changed in the surrounding area && (oldNumSamples > 0.2 * gi.ao.y) //&& (oldAvgDepth / newAvgDepth > 0.99) ) { newWeight = oldWeight + 1; OUT.ssao_col.xy = (gi.ao + oldSsao.xy * oldWeight) / newWeight; OUT.illum_col.xyz = (gi.illum + oldIllum.xyz * oldWeight) / newWeight; } else { newWeight = 0; OUT.ssao_col.xy = gi.ao.xy; OUT.illum_col.xyz = gi.illum; } OUT.ssao_col.z = newWeight; OUT.ssao_col.w = currentDepth; return OUT; } pixel combine(fragment IN, uniform sampler2D colors, uniform sampler2D ssaoTex, uniform sampler2D illumTex ) { pixel OUT; float4 col = tex2D(colors, IN.texCoord.xy); float ao = tex2D(ssaoTex, IN.texCoord.xy).x; float4 illum = tex2D(illumTex, IN.texCoord.xy); OUT.illum_col = (col + illum) * ao; OUT.illum_col.w = col.w; return OUT; }