

IST-2-004363 RESTRICTED RE 1 / 96

A D V A N C E D T O O L S F O R D E V E L O P I N G
H I G H L Y R E A L I S T I C C O M P U T E R G A M E S

F I N I S H E D M O D U L E S F O R

I L L U M I N A T I O N

 Document identifier: GameTools-5-D5.4-03-1-1-
Finished Illumination Modules

 Date: 03/04/2007

 Work package: WP5: Illumination

 Partner(s): BUTE, UdG, Unilim

 Leading Partner: BUTE

 Document status: Approved

 Deliverable identifier: D5.4

Abstract: This technical report describes the final modules of the illumination work package.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 2 / 96

Delivery Slip

 Name Partner Date Signature

From Laszlo Szirmay-Kalos BUTE 10.03.2007

Reviewed by Moderator and reviewers ALL

Approved by Moderator and reviewers ALL

Document Log

Issue Date Comment Author

1-0 03.03.2007 First draft Laszlo Szirmay-Kalos

1-1 08.03.2007 Final version Laszlo Szirmay-Kalos

Document Change Record

Issue Item Reason for Change

Files

Software Products User files / URL

Word GameTools-5-D5.4-03-1-1-Finished Illumination
Modules.doc

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 3 / 96

CONTENT

1. INTRODUCTION... 4
1.1. OBJECTIVES OF THIS DOCUMENT... 4
1.2. DOCUMENT AMENDMENT PROCEDURE.. 4
1.3. TERMINOLOGY.. 4

2. STRUCTURE OF THE ILLUMINATION WORKPACKAGE .. 6

3. DESCRIPTION OF THE RUN-TIME ILLUMINATION MODULES... 7
3.1. OGRE3D VERSION ILLUMINATION MODULES .. 8

3.1.1. Extending Ogre3D Material Scripts... 8
3.1.2. Compiling the Ogre3D version of the illumination modules.. 9
3.1.3. Game requirements .. 10
3.1.4. Implemented techniques of the Ogre3D version... 13
3.1.5. Building modules with techniques in Ogre3D.. 28

3.2. SHARK3D VERSION OF ILLUMINATION MODULES.. 51
3.2.1. Implemented shader components of the Shark3D version.. 51
3.2.2. GPU programs in Shark3D.. 60
3.2.3. Building modules with shader components in Shark3D ... 62

4. FILE FORMATS .. 73
4.1. COLLADA FILE [MEDIA*.DAE].. 73
4.2. LEVEL FILE [MEDIA*.LEVEL] ... 73
4.3. MATERIAL FILE [MEDIA*.MATERIALS .. 74
4.4. MESH FILES [MEDIA*.MESH.XML, PROCESSEDMESHES*.MESH.XML, *.MESH] .. 74
4.5. ENTRY POINTS FILE [PRM\PRMENTRYPOINTS.TEXT] ... 74
4.6. PRM TEXTURES [PRM*DDS] .. 74

5. MAYA SCENE EXPORTER... 75

6. LIGHT PATH MAPS PREPROCESSOR.. 78
6.1. RUNNING THE PATH MAP PREPROCESSOR.. 79
6.2. CONTROLS USED IN PATH MAP PREVIEW RENDERING... 80
6.3. PATH MAP ATTRIBUTES IN MAYA ... 81

7. OBSCURANCES PREPROCESSOR ... 85
7.1. IMPLEMENTATION OF THE OBSCURANCES PREPROCESSOR .. 86
7.2. RUNNING THE OBSCURANCES PREPROCESSOR .. 87

8. BILLBOARD TREE PREPROCESSOR.. 90
8.1. RUNNING THE BILLBOARD TREE GENERATOR ... 91
8.2. BILLBOARD TREE PLUGIN IN MAYA .. 94
8.3. MODELLING BILLBOARD CLOUD TREES IN 3DS MAX... 95

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 4 / 96

1. INTRODUCTION

1.1. OBJECTIVES OF THIS DOCUMENT
This document describes the finished, integrated modules for the Illumination Work Package. Its aim
is to describe the modules and explain how they work.

1.2. DOCUMENT AMENDMENT PROCEDURE
Any project partner may request amendments but each amendment must be analyzed and approved by
the GameTools Project Coordinator or Project Manager.

1.3. TERMINOLOGY
Glossary

component An equivalent to technique according to the Shark3D terminology.

final rendering A pass or series of passes rendering into the frame buffer and thus
generating the image. All other passes render into the texture memory.

GPU Graphics Processing Units

GTP Game Tools Project

GUI Graphical User Interface

effect An illumination phenomenon, such as mirror like reflection, refraction,
metallic reflection, diffuse inter-reflection, soft shadow, caustics, light
scattering in participating medium, etc.

illumination manager The runtime operational framework for illumination modules. It
manages instantiations, invocations, and dependencies of techniques.

level A file that describes the set of objects and their illumination properties in
a scene.

material A definition of rendering properties.

module A complete solution to generate a particular illumination effect.

pass A rendering cycle when the geometry is sent through the rendering
pipeline once.

preprocessor A stand-alone program or a Maya plugin that prepares geometry or
texture to be used in the on-line rendering program. The preprocessor
should be run only once during the preparation of the model.

PRM or Light Path Map Precomputed radiance map used in the light path map tool.

RenderTechnique Base class for rendering techniques in the GTP illumination modules.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 5 / 96

resource Data generated by a technique in the GTP illumination modules, usually
in the form of a texture, used as input in further techniques or in the final
rendering.

shader A program written in Cg or HLSL and running on the GPU, either on its
vertex or on its fragment processor. Also, a shader in Shark3D
terminology is the equivalent of a material, but this is only used in the
context of Shark3D.

svn The GTP repository.

technique An implementation building block of tools. A technique may be shared
by different tools. A technique is a way of rendering either into the
frame buffer or into the texture memory. A technique may have a vertex
and a fragment shader.

tool A complete solution to generate a particular illumination effect. It is also
called module, or to emphasize its role, as GTP illumination module.

WP Work Package

/gametools The root of the gametools repository at www.gametools.org

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 6 / 96

2. STRUCTURE OF THE ILLUMINATION WORKPACKAGE

The illumination work package is a collection of solutions called modules or tools to render scenes
realistically, providing physically plausible global illumination effects. The tools themselves are
responsible for different lighting phenomena, including diffuse/glossy inter-reflections, mirror
reflections, refractions, caustics, single and multiple light scattering in participating medium,
obscurances, shadows, etc. When the illumination work package was delivered as a collection of
stand-alone applications, each tool corresponded to a different program. Each tool had a program part
running on the CPU, had different shaders running on the GPU, and used separate resources like
textures or cube maps. Some tools like the billboard cloud tree or the light path map required
resources like textures and geometry prepared off line. It means that some tools also had
preprocessors responsible for these off line computations.

During the integration of GTP illumination modules into game engines like Ogre3D or Shark3D, the
functionality of the modules had to be re-organized in order to allow the reuse common functionalities
in different tools and also to meet the particular requirements of these engines. While shaders
remained the same and preprocessors were changed only with respect to the input requirements of the
game engines, CPU programs organizing these shaders had to be significantly restructured. The goal
of the restructuring is to eliminate redundancy and to allow shaders to work together via passing
information or sharing resources.

The central feature of this framework is the technique. A technique is a way to render something: it
typically includes shaders and results rendered by these shaders into textures. Instances of techniques
are mostly linked to objects, but techniques creating more general resources might be global or linked
to light sources. These technique instances are created automatically based on materials assigned to
objects, or from the program code. All the different illumination effects generated by the work
package tools need some kind of resources during the final rendering step. These resources are usually
textures. To create them, one or more rendering passes are necessary. These pre-computing passes are
implemented as techniques, and corresponding final rendering shaders use the results. Thus, technique
instances assigned to rendered objects will define what resources they require, and these resources
might be provided by other techniques.

With the emergence of the concept of techniques, the module or tool ceased to exist as an
implementation building block unless the module has a single technique. However, modules are there
conceptually, as solutions delivering an illumination effect. Section 3.1.4.12 describes how modules
are built from techniques. To clarify the concepts of techniques and modules, we can take an example.
The shaders and the functionality of generating a cube map storing distance values in its texels were
needed both in the diffuse inter-reflection tool and in the mirror like reflection tool. During
integration, we have identified the cube map generation as a specific technique that is used by both
solutions. Currently the diffuse inter-reflection tool is set of connection rules that defines how the
available techniques should be tied together to produce the desired effect.

During integration the functionality of preprocessors remained the same for the integrated version,
only the specific input requirements of Ogre3D and Shark3D had to be taken into consideration.

In the following chapters we first review the general aspects of the integration of the techniques into
the game engines, then particular techniques are discussed. This is the run-time part of the illumination
modules. The examples show how different techniques should be connected together to obtain the
tools responsible for different effects. Finally, we present the preprocessors one by one.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 7 / 96

3. DESCRIPTION OF THE RUN-TIME ILLUMINATION MODULES

We have implemented two sets of integrated run-time illumination modules, one for the Ogre3D
engine and one for the Shark3D engine, using the same set of shaders. The modules are built of
techniques that are shared by different modules.

The following rendering process is formulated according to Ogre3D terminology, but the concept
applies to both engines. In Shark3D, a material would be referred to as a shader, a technique as a
shader component, and shared resources are more limited. The basic mechanism of rendering a visible
object proceeds as follows:

o Based on the definition of its material, an object will have a final rendering shader, and
associations to render techniques that provide input to this shader.

o If an object is visible, it will trigger the execution of techniques providing necessary resources.
Whenever the resource is already available, the technique needs not to be invoked again.
Therefore, if more objects trigger the same technique, it will only run once.

o Global and light source techniques are invoked to produce global resources like indirect
illumination weights, screen depth information of shadow maps. The techniques are only
performed if there is an object in the scene that requires their output resources.

o Technique instances linked to objects are triggered in a similar manner. For instance, a visible
caustic receiver object triggers the execution of the caustic caster object’s techniques
rendering the caustic cube map.

o Most often, objects trigger techniques associated with themselves. For instance, an object
featuring localized reflections will require a distance cube map. For better performance,
however, multiple objects may share such resources.

o Some resources cannot be simply used as an input to an existing shader pass, but require their
own shader pass to be added to the final rendering of the object wishing to make use of the
resource. For instance, an object using PRM indirect illumination will add indirect
illumination in an extra pass. In such cases, the new pass will be added to the final rendering
material of the object.

o After all necessary techniques have been run, and all the resources are available and set as
inputs for the shaders, the engine performs rendering. This will invoke shaders aware of and
able to use the resources produced by the illumination module techniques.

Two different techniques may require the same resources (e.g.: a distance impostor cube map), so
these resources can be shared between them. It is also possible that two objects that use two, possibly
different techniques, can have common resources. This can happen in case of global resources (e.g.:
scene depth map) or per light resources (e.g.: depth shadow map from a light source), but it can also
happen in more general cases (e.g.: for efficiency reasons we would like to compute a common cube
map for several small objects that are close to each others). Managing shared resources in case of
moving objects is complicated, as resources need to be joined and split dynamically.

The illumination manager automates the creation of resources, the assignment of resources to the
different instances and the assignment of instances to be used to the objects. Since these organization

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 8 / 96

tasks depend on the engine, the illumination manager implementation is engine specific, but the
shaders of the techniques are similar.

3.1. OGRE3D VERSION ILLUMINATION MODULES
In order to incorporate the GTP illumination modules into the Ogre3D game engine, we extended the
material script system and added header files and a library of the new classes. For a game to use the
modules, the library of the GTP illumination modules has to be compiled, and invoked from the game
according to the declarations. The functionality of the illumination manager is provided by the
OgreIllluminationManager class. This is the primary interface for setting up illumination techniques.

3.1.1. Extending Ogre3D Material Scripts

The Ogre3D version of the GTP illumination modules has been designed to fit to the concepts of a
typical Ogre3D application. Thus, the Ogre3D material framework is used to define how an object is
rendered. Ogre3D material scripts have been extended to define illumination techniques.

The class representing an illumination technique is the RenderTechnique. The illumination manager
must instantiate descendant classes, which implement specific techniques. What technique instances
must be constructed depends on how the scene objects are to be rendered. Final rendering will be
performed by the engine in the regular manner, performing passes referenced in materials, which
materials have been constructed from material scripts. These final rendering passes use vertex and
pixel shaders, the inputs of which have to be generated. This will be the task of techniques. Therefore,
if a material script defines a pass that uses a shader which requires some input from a technique, this
information should be given in the material script itself. This way, the illumination manager can
automatically construct the techniques required for a final rendering pass, and assign its results to the
final rendering shaders.

In programming terms, RenderTechniques should operate on demand of a Pass in an object’s material.
Most techniques set the resources they output as some input of a Material, typically a rendered texture
to a texture unit state of a Pass. It is just natural to define RenderTechniques to be used in the material
script within the pass that requires the technique. Thus we added the new keyword IllumTechniques
within the pass definition of materials. Within this scope we can define the techniques to be used for
the given pass with the keyword RenderTechnique. This keyword needs a parameter that defines the
type (referred by Name in the Technique Reference (section 3.1.4)) of the technique. Within the
RenderTechnique scope we can set some technique specific parameters, which will be passed to the
technique constructor. An example of this technique definition which defines an object as a caustic
and a shadow receiver is the following:
material exampleMaterial
{
 technique
 {
 pass // this pass will use Illumination Module techniques
 {
 IllumTechniques // this scope will define techniques to use
 {
 RenderTechnique DepthShadowReceiver // defines a shadow receiver technique
 {
 max_light_count 1 // attribute of depth shadow receiver technique
 }
 RenderTechnique CausticReceiver // defines a caustic receiver technique
 {
 max_caster_count 2 // attribute of caustic receiver technique

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 9 / 96

 }
 }
 // … usual pass definition
 }
 }
}

Another example that shows how a technique can output its resource to a specified input of the pass
(renders and binds a cube texture to a specific texture unit of the pass) is as follows:

material exampleMaterial2
{
 technique
 {
 pass // this pass will use Illumination Module techniques
 {
 IllumTechniques // this scope will define techniques to use
 {
 RenderTechnique ColorCubeMap // this scope will define a color cube map
 {
 resolution 256 // resolution of the cubemap to be created
 texture_unit_id 0 // the texture unit this cubemap in this pass
 }
 }
 // … pass attributes like gpu program references etc.
 texture_unit // the cubemap is this is the first texture unit (id = 0)
 {
 }
 // other texture units if needed
 }
 }
}

For more information about implemented techniques and their parameters see section 3.1.4.

3.1.2. Compiling the Ogre3D version of the illumination modules

All Ogre3D projects that incorporate the GTP illumination modules have to use a library called
IllumModule (this is an abstract interface) and its Ogre3D implementation called OgreIllumModule.
The source code for these libraries can be found in the GTP repository in the following path:

/gametools/gtp/trunk/Lib/Illum/IllumModule

There is a prepared Visual Studio 7.1 solution file that can be used to compile these libraries:

/gametools/gtp/trunk/Lib/Illum/shared/scripts/GTPIllumination.7.1.sln

This solution also contains the projects of Ogre3D demo applications that demonstrate the integrated
modules. The source code of these demos can be found in the repository in:

/gametools/gtp/trunk/App/Demos/Illum/Ogre/src

The OgreIllumModule (and also the demo applications) use Ogre3D 1.2 with the Ogre3D changes that
can be found in the svn repository:

/gametools/ogre/trunk/ogre_changes/Ogre1.2

These Ogre3D changes should be copied to the Ogre3D 1.2 directory and Ogre3D should be rebuilt.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 10 / 96

It is important to set the preprocessor definition GAMETOOLS_ILLUMINATION_MODULE for
all the Ogre3D projects. It is also important to add SpriteSet.h, SpriteSet.cpp,
SpriteParticleRenderer.h, and SpriteParticleRenderer.cpp to the OgreMain project. To compile
the OgreIllumModule, an environment variable named OGRE_PATH should also be set to the
Ogre3D root directory. After these steps the build of the libraries and demos should succeed without
errors.

After the compile process the following library files will be created:

/gametools/gtp/trunk/Lib/Illum/IllumModule/IllumModule/bin/release/IllumModule.lib
/gametools/gtp/trunk/Lib/Illum/IllumModule/IllumModule/bin/debug/IllumModule.lib
/gametools/gtp/trunk/Lib/Illum/IllumModule/OgreIllumModule/bin/release/IllumModule_Ogre.lib
/gametools/gtp/trunk/Lib/Illum/IllumModule/OgreIllumModule/bin/debug/IllumModule_Ogre.lib

3.1.3. Game requirements

To use the Ogre3D version of the GTP illumination modules in an Ogre3D game, the following steps
are required:

Project Configuration Changes

• Define C preprocessor definition GAMETOOLS_ILLUMINATION_MODULE with the
#define directive.

• Add additional library dependencies: IllumModule.lib and OgreIllumModule.lib (also add
additional library directories according to the exact locations of these library files, taking care
of the current configuration type: debug or release).

Source code changes

In the followings we assume that the Ogre3D application is based on the examples provided with
Ogre3D, namely the main class is derived from ExampleApplication. Other implementations should
change their code not just as it is stated here, but implicitly according the structure of their application.

• Include "OgreIlluminationManager.h" and also add the additional include directory where
this file is located:

/gametools/gtp/trunk/Lib/Illum/IllumModule/OgreIllumModule/include

• After adding all the objects to the scene graph (e.g.: in the last line of createScene()) call

OgreIlluminationManager::getSingleton().initTechniques();

OgreIlluminationManager::getSingleton().initTechniques() initializes the techniques that were
given by the material scripts. This function searches the scene graph. For each object that has a
material with an illumination technique defined, it creates these techniques. For objects that
are added to the scene graph later, the following explicitly call can be used:

OgreIlluminationManager::getSingleton().initTechniques(Entity* e),

to initialize the technique only for this entity.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 11 / 96

• Add the Ogre3D Illumination Manager Singleton as a frame listener in createFrameListener()
with this code line:

 mRoot->addFrameListener(&OgreIlluminationManager::getSingleton());

This call is needed because illumination techniques require resources like textures etc. These
resources should be updated in each frame before rendering to the screen. As the
OgreIlluminationManager singleton is also a FrameListener, it will be called in each frame, if
it is added to the active frame listeners. One thing that should be considered here is the priority
of the frame listeners. OgreIlluminationManager should be called after all the other frame
listeners, because frame listeners can change object positions and OgreIlluminationManager
executes rendering processes that require data consistent with the data used when rendering to
the frame buffer. This can be ensured with the use of the FrameListener::setPriority(int)
method (note that this is part of the Ogre3D changes made by GTP Illumination Work
Package). The priority of OgreIlluminationManager should be set higher than the priority of
other frame listeners to be executed later (the default priority of frame listeners is 1, except for
ControllerManager::mFrameTimeController that has 0 priority).

3.1.3.1. Additional parameters of OgreIlluminationManager
The illumination manager also needs some information that is not provided in the material scripts.
These can be given explicitly by code and cover the following topics:

• Basic information about the main camera (required):
o OgreIlluminationManager::setMainCamera(Camera *camera) passes a pointer to the

avatar's camera.
o OgreIlluminationManager::setMainViewport(Viewport *viewport) passes a pointer to the

main viewport.

• Resource joining:
Resource joining means that if two objects are close enough to be treated as a single object and
they need the same resource (e.g. both needs the color cube map of the surrounding environment),
then they can use a single shared resource. This saves us processing time but reduces quality and
visual richness (e.g. if two reflective objects share the same environment map, they do not show
up in the reflection on the other object). The metric used to decide whether two (or more) objects
can be joined is the radius of their minimum enclosing sphere. If it is below a given threshold
value, the resources can be shared. The value should depend on the size of the scene. The
bounding radius can be given for all resource types or for a specific type.

o OgreIlluminationManager::setMaxJoinRadius(float rad) sets the maximum bounding
sphere radius for all resource types.

o OgreIlluminationManager::setMaxJoinRadius(RenderingRunType type, float rad) sets the
maximum bounding sphere radius for a specific resource type.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 12 / 96

• Shadow mapping:
The GTP illumination modules implement shadow mapping independently of Ogre3D's built in
shadowing techniques. If an object should receive shadows computed by the GTP illumination
module, its material should refer to the DepthShadowReceiver technique. This will create
additional shadow rendering passes to the material. The properties of this shadow mapping can be
set with the following functions:

o setShadowMapSize(unsigned int size) sets the size of the shadow maps to use.
o setShadowMapMaterialName(String name) sets the name of the materials that should be

used while rendering the shadow maps.
o setFocusingSM(bool use) sets whether or not the light projection should be focused.
o setFocusingMapSize(unsigned int size) specifies the size of the texture that is used in

focusing (higher resolution yields more precise focusing but it is slower).
o setUseLISPSM(bool use) sets whether or not Light Space Perspective correction should be

used (implemented only for directional lights).
o setBlurShadowMap(bool use) sets if the shadow map should be blurred (useful if Variance

Shadow Mapping is used).

3.1.3.2. Example application

As a practical example of implementing the previously described game requirements, and as a starting
point of new applications based on GTP illumination modules, the example application bundled with
Ogre3D has to be augmented as follows. Thereafter, any object loaded into the scene graph with
materials referencing illumination techniques will be rendered appropriately.

class App : public ExampleApplication
{
 protected:

 void createScene(void)
 {
 //usual Ogre code (mesh loading, transformations, material setup)

 //set global parameters
 //required parameters for main camera and viewport identification
 OgreIlluminationManager::getSingleton().setMainCamera(mCamera);
 OgreIlluminationManager::getSingleton().setMainViewport(mWindow->getViewport(0));
 //resource joining parameters
 //set boundig sphere radius for all run type
 OgreIlluminationManager::getSingleton().setMaxJoinRadius(400);
 //set boundig sphere radius for a given run type
 OgreIlluminationManager::getSingleton().setMaxJoinRadius(ILLUMRUN_PHOTONMAP, 200);
 //shadow mapping attributes (attributes for spotlight using variance shadow)
 OgreIlluminationManager::getSingleton().setShadowMapSize(512);
 OgreIlluminationManager::getSingleton().setFocusingSM(false);
 OgreIlluminationManager::getSingleton().setUseLISPSM(false);
 OgreIlluminationManager::getSingleton().setBlurShadowMap(true);
 OgreIlluminationManager::getSingleton().
 setShadowMapMaterialName("GTP/Basic/Distance_Normalized");
 //search for techniques and initialize them
 OgreIlluminationManager::getSingleton().initTechniques();

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 13 / 96

 }

 void createFrameListener(void)
 {
 // This is where we instantiate our own frame listener
 mFrameListener= new myFrameListener(...);
 // Set priority of the frame listener.
 // The default priority value is 1
 mFrameListener->setPriority(2);
 // set priority of OgreIlluminationManager.
 // It should be higher that the other frame listener's
 OgreIlluminationManager::getSingleton().setPriority(3);
 // add the frame listeners to the active frame listeners
 mRoot->addFrameListener(mFrameListener);
 mRoot->addFrameListener(&OgreIlluminationManager::getSingleton());
 }
}

3.1.4. Implemented techniques of the Ogre3D version
This section describes the rendering techniques that have been implemented in the Ogre3D version of
the GTP illumination modules. These techniques will be shared by the module.

The final gathering module responsible for ideal reflections and refractions with localized environment
mapping, metallic materials, and glow is implemented in the following techniques:

• ColorCubeMap

• DistanceCubeMap

Techniques related to caustic generation are:

• CausticCaster

• CausticReceiver

Diffuse inter-reflections with pre-convolved environment mapping are provided by the following
technique:

• ReducedColorCubeMap

The light path map algorithm is supported by the following run-time technique:

• PathMap

Techniques related to particle systems and volumetric media

• SphericalBillboard

• Fire

• HPS (hierarchical particle systems)

• IllumVolume

Realistic soft shadows are implemented in technique called

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 14 / 96

• DepthShadowReceiver

The illumination manager collects and organizes these techniques, standardizes them, manages the
creation and update of render targets, and sets the appropriate shaders for rendering. In the following
subsections, we consider every technique in detail.

3.1.4.1. Color cube map render technique

This technique generates a color cube map. The color cube map can be used to display reflections and
refractions.

Name
ColorCubeMap

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

Start_frame unsigned
int 1

adds an offset to the current frame number to help
evenly distribute updates between frames (the frame
number of the first update)

resolution unsigned
int 256 cube map resolution

texture_unit_id unsigned
int 0 the id of the texture unit state the resulting cube map

should be bound to

distance_calc bool,
float true 2.0

flag to skip cube face update if object is far away

- bool value to enable calculation

- float value defines the distance tolerance used in face
skip

Face_angle_calc bool,
float true 2.0

flag to skip cube face update if face is negligible

- bool value to enable calculation

- float value defines angle tolerance used in face skip

update_all_face bool False defines if all cube map faces should be updated in a
frame or only one face per frame

render_self bool False sets if the object should be rendered to the cube map

render_env bool True sets if the environment should be rendered to the cube
map

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 15 / 96

self_material string ""
the material that should be set for the object while
rendering the cube map (if no string is given the
original materials are used)

env_material string ""
the material that should be set for the environment
while rendering the cube map (if no string is given the
original materials are used)

attach_to_texture_unit bool True sets if this cube map should be attached to a texture unit
of the pass

layer unsigned
int 0

the layer of this cube map (multiple layers are used by
shaders dealing with multiple reflections and
refractions)

get_min_max bool 0

sets if the minimum and maximum values of the cube
map should be computed (it is quite a slow process as it
requires texture read back to system memory - it is used
to speed up linear search in cube maps while finding
intersection points in multiple reflections)

min_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the minimum value should be
bound to (if no string is given the variable is not
bound)

max_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the maximum value should be
bound to (if no string is given the variable is not
bound)

3.1.4.2. Distance cube map render technique
This technique generates a distance impostor cube map (a cube map of the distance of the surrounding
environment from the cube map center). The distance impostor is a sampled representation of the
scene and makes it possible to find intersection points of an arbitrary ray with the environment which
makes reflection and refraction calculations more accurate.

Name
DistanceCubeMap

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 16 / 96

Start_frame unsigned
int 1

adds an offset to the current frame number to help
evenly distribute updates between frames (the frame
number of the first update)

resolution unsigned
int 256 cube map resolution

texture_unit_id unsigned
int 1 the id of the texture unit state the resulting cube map

should be bound to

distance_calc bool,
float true 2.0

flag to skip cube face update if object is far away

- bool value to enable calculation

- float value defines the distance tolerance used in face
skip

Face_angle_calc bool,
float true 2.0

flag to skip cube face update if face is negligible

- bool value to enable calculation

- float value defines angle tolerance used in face skip

update_all_face bool false defines if all cube map faces should be updated in a
frame or only one face per frame

render_self bool false sets if the object should be rendered to the cube map

render_env bool true sets if the environment should be rendered to the cube
map

self_material string "GTP/Basic/
Distance"

the material that should be set for the object while
rendering the cube map (if no string is given the
original materials are used)

env_material string "GTP/Basic/
Distance"

the material that should be set for the environment
while rendering the cube map (if no string is given the
original materials are used)

attach_to_texture_unit bool true sets if this cube map should be attached to a texture unit
of the pass

layer unsigned
int 0

the layer of this cube map (multiple layers are used by
shaders dealing with multiple reflections and
refractions)

get_min_max bool 0

sets if the minimum and maximum values of the cube
map should be computed (it is quite a slow process as it
requires texture read back to system memory - it is used
to speed up linear search in cube maps while finding
intersection points in multiple reflections)

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 17 / 96

Min_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the minimum value should be
bound to (if no string is given the variable is not
bound)

max_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the maximum value should be
bound to (if no string is given the variable is not
bound)

3.1.4.3. Caustic caster technique
This technique specifies that the object can cast caustics.

Name
CausticCaster

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

start_frame unsigned
int 1

adds an offset to the current frame number to help evenly
distribute updates between frames (the frame number of
the first update)

photonmap_resolution unsigned
int 64 photon map resolution

caustic_cubemap_resolutio
n

unsigned
int 128 caustic cube map resolution

photon_map_material string
"GTP/Caustic/
PhotonMap_
HitEnv"

the name of the material should be used when rendering
the photon hit map - the default material needs a distance
impostor cube map and finds photon hits with secant
search

caustic_map_material string
"GTP/Caustic/
CauCube_
PointSprite"

the name of the material that should be used when
rendering the caustic cube map

photon_map_tex_id unsigned
int 0 the texture unit state id of the caustic map generation

material where the photon hit map should be bound to

distance_impostor bool true tells if a distance cube map impostor should be used in
photon hit calculation (recommended) (the cube map will

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 18 / 96

be bound to the first texture unit of the photon hit map
material)

update_all_face bool false defines if all cube map faces of the caustic cube map
should be updated in a frame or only one face per frame

attenuation float 1.0 attenuation distance of the caustic

use_triangles bool false

sets if triangles should be rendered into the caustic cube
map instead of sprites - the two different methods need
different caustic map materials: for sprites use
"GTP/Caustic/CauCube_PointSprite", for triangles use
"GTP/Caustic/CauCube_Triangles"

Blur_caustic_cubemap bool false sets if the caustic cube map should be blurred
(recommended if rendering caustic triangles)

3.1.4.4. Caustic receiver technique
This technique defines that the object will receive caustic lighting from caustic caster objects. The
caustic light spots will be calculated by caustic caster's techniques. These techniques will only be
updated if caustic receivers are visible, so it is the receiver technique's responsibility to trigger them.
Each caustic caster's light contribution will be added in a separate pass (these passes will be inserted
just after the pass in which the CausticReceiver technique is defined).

Name
CausticReceiver

Parameters

Name Type Default Value Description

Max_caster_count unsigned
int 1 the maximum number of caustic casters from which this

receiver can receive caustic light

vertex_program_name string "GTP/Basic/
Shaded_VS"

the name of the vertex program that should be used in
the caustic gathering passes

fragment_program_name string
"GTP/Caustic/
GatherCaustic_
Cube_PS"

the name of the fragment program that should be used in
the caustic gathering passes

3.1.4.5. Downsampled color cube map render technique
This technique specifies that the rendering will need a downsampled color cube map. This reduced
sized cube map is created by averaging the original cube map. This downsampled cube map can easily
be convolved in the final shading to achieve special effects like diffuse reflections. This technique will

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 19 / 96

automatically create a color cube map (if it is not already defined with a ColorCubeMap technique)
with the given parameters.

Name
ReducedColorCubeMap

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

start_frame unsigned
int 1

adds an offset to the current frame number to help
evenly distribute updates between frames (the
frame number of the first update)

resolution unsigned
int 256 cube map resolution

reduced_resolution unsigned
int 8 resolution of the downsampled cube map

texture_unit_id unsigned
int 0 the id of the texture unit state the resulting cube

map should be bound to

distance_calc bool,
float true 2.0

flag to skip cube face update if object is far away

- bool value to enable calculation

- float value defines the distance tolerance used in
face skip

face_angle_calc bool,
float true 2.0

flag to skip cube face update if face is negligible

- bool value to enable calculation

- float value defines angle tolerance used in face
skip

update_all_face bool false defines if all cube map faces should be updated in a
frame or only one face per frame

render_self bool false sets if the object should be rendered to the cube
map

render_env bool true sets if the environment should be rendered to the
cube map

self_material string "" the material that should be set for the object while
rendering the cube map (if no string is given the

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 20 / 96

original materials are used)

env_material string ""
the material that should be set for the environment
while rendering the cube map (if no string is given
the original materials are used)

attach_to_texture_unit bool true sets if this cube map should be attach to a texture
unit of the pass

layer unsigned
int 0

the layer of this cube map (multiple layers are used
by shaders dealing with multiple reflections and
refractions)

get_min_max bool 0

sets if the minimum and maximum values of the
cube map should be computed (it is quite a slow
process as it requires texture read back to system
memory - it is used to speed up linear search in
cube maps while finding intersection points in
multiple reflections)

Min_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the minimum value should be
bound to (if no string is given the variable is not
bound)

Max_var_name string ""

sets the name of the GPU fragment shader program
parameter to which the maximum value should be
bound to (if no string is given the variable is not
bound)

3.1.4.6. Path map technique
This technique defines that the rendering of the object will add indirect lighting with the use the
precomputed light path maps (see Section 6 on the Path Map preprocessor). It will create a new pass
after the pass that defines the technique. The new pass will add indirect lighting to the object.

Name
PathMap

Parameters
no parameters needed

3.1.4.7. Spherical billboard technique
This is a technique for rendering particle systems with the spherical billboard method. This technique
defines that the final rendering will need a depth map (camera space z-values) of the scene. With the
use of this map scene geometry can be taken into account during final rendering of the particles, and
we can eliminate billboard clipping and popping artifacts.

Name
SphericalBillboard

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 21 / 96

Parameters

Name Type Default Value Description

texture_unit_id unsigned
int 1 the texture unit id where the scene depth texture will be

bound

3.1.4.8. Fire Technique

This technique is similar to the spherical billboards render technique. It also defines that the rendering
will need a scene depth map from the camera. The difference is that the particles will be rendered to a
separate texture instead of the default frame buffer. This image can be blended with the frame buffer
in a post processing step with a compositor. Particles are rendered into two textures simultaneously
with multiple render targets, including the color buffer of the particles and the so-called heat texture.
The heat texture is used to simulate heat shimmering. It stores offset values that are used at post
processing. Higher offset values result in higher distortion to the image. So the shader that renders fire
particles should be prepared to render into two render targets, output the color in the first and output
2D offset values in the second texture. One compositor script should use these textures and refer to
them by names ILLUM_FIRE_COLOR_TEXTURE and ILLUM_FIRE_HEAT_TEXTURE. The
compositor should blend the color texture with the frame buffer using the offsets stored in the heat
texture.

There is also an option to set the resolution of these two textures smaller than the frame buffer. This
speeds up rendering but decreases quality. This can be set with the function

OgreIlluminationManager::setFireRenderTargetSize(int size).

If size is two, then the resolution of these textures will be half of the frame buffer resolution. If it is
three, it will be third of the frame buffer resolution, etc.

Name
Fire

Parameters

Name Type Default Value Description

texture_unit_id unsigned
int 1 the texture unit id where the scene depth texture

will be bound

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 22 / 96

3.1.4.9. Hierarchical Particle System Technique

This is a technique for rendering a hierarchical particle system. A hierarchical particle system is a
particle system made of instances of a smaller particle system. It renders an image of the smaller
particle system (impostor image) and multiplies this image to achieve a bigger particle system. This
way less computation is needed to simulate large number of particles, while the trick is usually
unnoticeable.

Name
HPS

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

Start_frame unsigned
int 1

adds an offset to the current frame number to help
evenly distribute updates between frames (the
frame number of the first update)

Resolution unsigned
int 256 resolution of the impostor texture

texture_unit_id unsigned
int 0 the id of the texture unit state where the impostor

texture should be bound to

Perspective bool true sets if the impostor should be rendered with a
perspective projection or orthogonal

particle_script string "" the texture unit id where the scene depth texture
will be bound

Material string ""

use this specific material for the small particle
system while rendering the impostor - if empty
string it will use the material defined in the
particle script of the small particle system
(particle_script)

vparam_radius string ""
name of the GPU vertex program parameter where
the small particle system bounding radius should
be bound to - if empty string no parameter is
bound

fparam_radius string ""
name of the GPU fragment program parameter
where the small particle system bounding radius
should be bound to - if empty string no parameter

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 23 / 96

is bound

3.1.4.10. Light Illumination Volume Technique

This is a technique for rendering a light illumination volume of a particle system. Light illumination
volumes are used when the self shadowing of particle systems should be simulated. Each layer of the
volume represents the amount of transmitted light. The current implementation uses four grayscale
layers, and places these layers to the four channels of a 2D light volume texture. The GPU shader of
the pass defining this technique can use this texture to shadow the particles.

Name
IllumVolume

Parameters

Name Type Default Value Description

update_interval unsigned
int 1 update frequency (if 0 only updates once)

start_frame unsigned
int 1

adds an offset to the current frame number to help
evenly distribute updates between frames (the
frame number of the first update)

resolution unsigned
int 256 resolution of the light volume texture

texture_unit_id unsigned
int 2

the id of the texture unit state where the resulting
light illumination volume texture should be bound
to (in the pass defining this technique)

material string "Smoke_
IllumVolume"

the name of the material that is used while
rendering the light volume

use_hier_system bool false set this flag to true if the particle system is a
hierarchical particle system

impostor_texture_unit_id unsigned
int 0

the id of the texture unit state where the impostor
image of the smaller system should be bound to
(in the material used while rendering the light
volume) - only used if this is a hierarchical particle
system

lightmatrix_param_name string "lightView
Proj"

the name of the gpu vertex program parameter
where the light matrix should be bound to (in the
pass defining this technique)

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 24 / 96

3.1.4.11. Indirect texturing technique

Indirect texturing technique looks up textures to compute the texture coordinates for other textures.
We use indirect texturing to obtain high resolution leaf textures for billboard cloud trees, but their
application field is wider. The billboard cloud is the input geometry. The leaf impostor distribution
shows where the leaves are and how they are rotated. Based on their stored values, the rotated leaf
texture is looked up for color values.

Figure 1. Leaves distribution texture atlas and rotated leaf texture atlas. These texture atlases are
used in the Indirect texturing technique.

The shading context properties in Ogre3D are defined by an Ogre3D material script. The indirect
texturing technique uses the following material script to setup the rendering context.

/gametools/gtp/trunk/App/Demos/Illum/IBRBillboardCloudTrees/OGRE/media/chestnut/leaves/
chestnutLeavesMaterial.material

The indirect texturing material relies on a vertex shader and a fragment shader stored in the following
repository folder:

/gametools/gtp/trunk/App/Demos/Illum/IBRBillboardCloudTrees/OGRE/media/general/indirectTexturingDefaul
t_FP20.cg

/gametools/gtp/trunk/App/Demos/Illum/IBRBillboardCloudTrees/OGRE/media/general/
indirectTexturingDefault_VP20.cg

3.1.4.12. Postprocessing effects

The Ogre3D engine has a built-in post-processing framework which can be used to apply effects on
the final image like bloom and tone mapping. In order to support them, final rendering is not
performed directly onto the screen, but to render target textures of identical dimensions. Post
processing effects operate on these textures to generate the final image.

The compositor framework is driven by various compositor scripts. The textures used as render targets
of the final rendering can be defined in these scripts.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 25 / 96

Listing 1. Compositor script fragment to set render target texture.

For every render target there is a section governing the post-processing rendering process. This is
defined the same way as the rendering qualities of regular scene entities: through material scripts. Post
processing can be imagined as rendering a full-screen quadrilateral with the original final rendering
result as an input texture. The compositor scripts run in the order of being added to the compositor
manager object.

Listing 2. Adding compositor script to the compositor manager in the application.

For the bloom effect we first have to create an image containing only the pixels with high-luminance
value. Then, we have to filter this image in several passes to apply a low-pass treatment. Finally, we
simply add this filtered bloom image to the existing rendering of the original scene.

texture scene target_width target_height PF_FLOAT16_RGBA
texture cut 256 256 PF_FLOAT16_RGBA

CompositorManager::getSingleton().addCompositor(mWindow->getViewport(0),
 "GameTools/Glow");
CompositorManager::getSingleton().setCompositorEnabled(mWindow->getViewport(0),
 "GameTools/Glow", true);
CompositorManager::getSingleton().addCompositor(mWindow->getViewport(0),
 "GameTools/ToneMap");
CompositorManager::getSingleton().setCompositorEnabled(mWindow->getViewport(0),
 "GameTools/ToneMap", true);

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 26 / 96

Listing 3. Compositor script to render bloom.

For the tone mapping post-processing effect we have to render a luminance map. This luminance map
has to be scaled according to the appropriately filtered the local and global average luminance. Using
these luminance averages the final image can be rendered in the last pass.

 target rt0
 {
 input none
 pass render_quad
 {
 material GameTools/GlowBlurV
 input 0 cut
 }
 }

 target rt1
 {
 input none
 pass render_quad
 {
 material GameTools/GlowBlurH
 input 0 rt0
 }
 }

 target prev
 {
 input none
 pass render_quad
 {
 material GameTools/TextureCopy
 input 0 rt1
 }
 }

 target_output
 {
 input none
 pass render_quad
 {
 material GameTools/GlowAdd
 input 0 scene
 input 1 rt1
 }
 }
}
}

compositor GameTools/Glow
{
 technique
 {
 texture scene target_width \\
 target_height PF_FLOAT16_RGBA
 texture cut 256 256 PF_FLOAT16_RGBA
 texture rt0 256 256 PF_FLOAT16_RGBA
 texture rt1 256 256 PF_FLOAT16_RGBA
 texture prev 256 256 PF_FLOAT16_RGBA

 target prev
 {
 input none
 only_initial on
 pass render_quad
 {
 material GameTools/PostProcBlack
 }
 }

 target scene
 {
 input previous
 }

 target cut
 {
 input none
 pass render_quad
 {
 material GameTools/GlowCut
 input 0 scene
 input 1 prev
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 27 / 96

Listing 4. Compositor script for tone mapping.

Figure 2. Bloom and tone mapping results.

compositor GameTools/ToneMap
{
 technique
 {
 texture scene target_width \\
 target_height PF_FLOAT16_RGBA
 texture luminance 256 256 PF_FLOAT16_RGBA
 texture rt0 256 256 PF_FLOAT16_RGBA
 texture rt1 256 256 PF_FLOAT16_RGBA

 target scene
 {
 input previous
 }

 target luminance
 {
 input none
 pass render_quad
 {
 material GameTools/Luminance
 input 0 scene
 }
 }

 target rt0
 {
 input none
 pass render_quad
 {
 material GameTools/GlowBlurV
 input 0 luminance
 }
 }

 target rt1
 {
 input none
 pass render_quad
 {
 material GameTools/GlowBlurH
 input 0 rt0
 }
 }

 target_output
 {
 input none
 pass render_quad
 {
 material GameTools/ToneMap
 input 0 scene
 input 1 rt1
 input 2 luminance
 }
 }
}
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 28 / 96

3.1.5. Building modules with techniques in Ogre3D

3.1.5.1. Localized reflection and refraction module

Figure 3. A reflective and refractive sphere

The localized reflection and refraction module can display reflections and refractions more accurately
than classic environment mapping. The main concept of the tool is to create not only one cube map of
the environment but also another one storing the distance values from the center of the cube map. The
second cube map is called distance impostorcube map as it is a sampled representation of the
surrounding environment. This sampled data makes it possible to search for ray-object intersections
within the fragment shader without sending complex triangle data to this shader. Our fragment shader
code uses a secant search algorithm to find ray-object intersection points for both reflected and
refracted rays. Once a hit point is found an exact direction is given from where color values should be
read from the color cube map.

Listing 2 shows the Ogre3D material script of the sphere object shown in figure 3. As it needs two
cube maps (a color and a distance), two techniques should be defined: ColorCubeMap and
DistanceCubeMap. This will tell the illumination manager to update these cube maps with the given
frequency. In this case zero frequency means that the cube map should be refreshed only once in the
first frame. Note that this does not prevent the object from changing its orientation or position. The
sampling still remains valid and can give good results within a moderate range and with arbitrary
orientation, only the reference point (the center of the cube map when it was last refreshed) should be
known. That is why the DistanceCubeMap technique binds a variable named lastCenter - which
contains this position - to the actual fragment shader.

Both ColorCubeMap and DistanceCubeMap techniques create textures that will be bound to texture
unit states of the pass that defined by them (by default ColorCubeMap binds to the first while
DistanceCubeMap binds to the second texture unit state).

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 29 / 96

The materials and shader codes that are related to localized reflections and refractions can be found in
the repository in the following path:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPEnvMap\

Listing 5. Material script of a glass like surface using localized reflections and refractions

material GTP/EnvMap/Localized_Reflector_Refractor
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique ColorCubeMap
 {
 update_interval 0
 }
 RenderTechnique DistanceCubeMap
 {
 update_interval 0
 }
 }
 vertex_program_ref GTP/Basic/ShadedTex_VS
 {
 param_named_auto WorldViewProj
 worldviewproj_matrix
 param_named_auto World world_matrix
 param_named_auto WorldInv inverse_world_matrix
 }

 fragment_program_ref
 GTP/EnvMap/Localized_Refraction_PS
 {
 param_named_auto cameraPos camera_position
 param_named lastCenter float3 0 0 0
 param_named sFresnel float 0.104
 param_named sRefraction float 0.6667
 }
 //Cube map for reflections and refractions
 texture_unit
 {
 }
 //Cube map of distances
 texture_unit
 {
 filtering none
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 30 / 96

3.1.5.2. Multiple reflection and refraction module

Figure 4. A reflective teapot with multiple reflections.

The multiple reflection and refraction module extends the capabilities of the reflection and refraction
module. It builds on the same concepts namely the scene can be sampled by a distance impostor cube
map, but it goes further as it uses multiple distance impostor cube maps. Each distance impostor
samples a layer further from the reference point. An other extension is that not only the surrounding
environment but the reflective object itself is sampled in the maps. This enables us to search for ray
intersections even with the object itself so multiple ray bounces can be simulated.

Though different layers can be calculated with depth peeling, we used a simplified but much faster
approach. We store three cube maps: one for distant objects that does not contain reflective and
refractive objects – or their multiple reflections are not necessary to take into account – (this cube map
is identical to the DistanceCubeMap used in the localized reflection and refraction tool); and two
layers for the object itself. One layer stores the nearest surface points facing to the center of the object
and the other stores back facing polygons. These last two layers will store not only the distance values
but the normal vectors because this is a necessary information to determine outgoing ray directions
form the given surface point. To the determine the reflected or refracted color after multiple ray
bounces, we also need the color of the surfaces. For the distance environment we can use a color cube
map just like in the localized reflection and refraction tool. For the object itself we do not need color
information as the object reflects or refract light rays.

Listing 3 shows the Ogre3D material script of the teapot shown in figure 4. In this material four
techniques are defined. ColorCubeMap that renders the environment with its own color.
DistanceCubeMap that renders the environment with a material computing distance values.
ColorCubeMap that renders only the object with a material that writes normal and distance values for
front facing polygons, and another one which handles back facing polygons only.

The rendered cube maps are bound to the fragment shader of the material. Our fragment shaders use
linear search followed by a secant search to find intersection points in the cube map layers. The
materials and shaders related to multiple reflection and refraction can be found in the repository in the
following path:

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 31 / 96

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPAdvancedEnvMap\multibounce\

Listing 6. Material script of a surface that uses multiple reflections

 distance_calc false
 face_angle_calc false
 update_all_face true
 render_env false
 render_self true
 self_material GTP/MultiBounce/NormalDistanceCW
 }
 }
 vertex_program_ref GTP/Basic/Shaded_CPos_VS
 {
 param_named_auto WorldViewProj
 worldviewproj_matrix
 param_named_auto World world_matrix
 param_named_auto WorldInv inverse_world_matrix
 }
 fragment_program_ref
 GTP/MultiBounce/Reflection_PS
 {
 param_named_auto cameraPos camera_position
 }
 //Cube map of environment
 texture_unit
 {
 }
 //Cube map of environment distances
 texture_unit
 {
 filtering none
 }
 //Cube map of reflective object's normals and distances
 //back facing polygons only
 texture_unit
 {
 filtering none
 }
 //Cube map of reflective object's normals and distances
 //front facing polygons only
 texture_unit
 {
 filtering none
 }
 }
 }
}

material GTP/MultiBounce/Reflector
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique ColorCubeMap
 {
 resolution 1024
 update_interval 1
 distance_calc false
 face_angle_calc false
 update_all_face true
 }
 RenderTechnique DistanceCubeMap
 {
 resolution 1024
 update_interval 1
 distance_calc false
 face_angle_calc false
 update_all_face true
 }
 RenderTechnique ColorCubeMap
 {
 resolution 512
 layer 1
 texture_unit_id 2
 update_interval 1
 distance_calc false
 face_angle_calc false
 update_all_face true
 render_env false
 render_self true
 self_material GTP/MultiBounce/NormalDistanceCCW
 }
 RenderTechnique ColorCubeMap
 {
 resolution 512
 layer 2
 texture_unit_id 3
 update_interval 1
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 32 / 96

3.1.5.3. Caustics module

Figure 5. Refracting glass head casting caustics on a colored wall.

The main goal of the caustic module is to simulate caustic lighting effects caused by refractive objects
such as glass. The caustic generation has the following steps. First the caustic caster objects are
identified. For each object, a photon map is generated which stores the position of the photons that are
coming from a light source refracted by the caustic caster object and arriving at a caustic receiver
object. Now the photons can be drawn to the screen as point primitives or sprites but this would cause
artifacts so we took an other approach. The photons are rendered to a so called caustic cube map. This
cube map is similar to a cube map that is used in shadow mapping for a point light source but instead
of shadowing information it stores lighting information. If the caustic cube maps are rendered, caustic
receivers can use them to add additional lighting to their surface.

Listing 4 shows the Ogre3D material script of a glass head shown in figure 5. It defines the
ColorCubeMap and DistanceCubeMap techniques since rendering the head will require localized
refractions – just like in the localized reflection and refraction tool. The material also defines the
CausicCaster technique that tells the illumination manager to create a photon map and a caustic cube
map and refresh them with the given frequency. The technique defines the materials used in photon
map and caustic cube map rendering. It also defines that a distance impostor is used in the photon map
generation which makes hit point calculations more accurate (the distance impostor is bound to the
first texture unit of the material used in the photon map rendering).

Listing 5 shows the Ogre material script of the caustic receiver room wall. It defines the
CausticReceiver technique which will add additional passes – right after the pass that defined it – that
will add extra lighting to the object. The number of passes depends on the number of caustic casters
this receiver can receive caustics from (this can be set as a parameter of the caustics receiver
technique). For each pass, the caustic cube map of the actual caster is bound to the first texture unit of
the fragment shader or can be set as a parameter. The extra passes will use blending that adds the
lighting stored in the caustic cube map. The shaders and materials related to caustic generation can be
found in the following path of the repository:

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 33 / 96

/gametools/gtp/trunk /App/Demos/Illum/Ogre/Media/materials/GTPCaustic/

Listing 7. Material script of a glass object that casts caustics

material colorcube
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique CausticReceiver
 {
 max_caster_count 10
 pass_blending dest_colour one
 }
 }
 lighting off
 texture_unit
 {
 texture roomcdark.PNG
 }
 }
 }

material GTP/Caustic/Glass
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique ColorCubeMap
 {
 update_interval 0
 update_all_face true
 }
 RenderTechnique DistanceCubeMap
 {
 update_interval 0
 update_all_face true
 }
 RenderTechnique CausticCaster
 {
 update_interval 1
 photonmap_resolution 64
 distance_impostor true
 photon_map_material
 GTP/Caustic/PhotonMap_HitEnv
 caustic_cubemap_resolution 256
 caustic_map_material
 GTP/Caustic/CauCube_Triangles
 use_triangles true
 update_all_face true
 blur_caustic_cubemap true
 }

 vertex_program_ref GTP/Basic/Shaded_VS
 {
 param_named_auto WorldViewProj
 worldviewproj_matrix
 param_named_auto World world_matrix
 param_named_auto WorldInv inverse_world_matrix
 }
 fragment_program_ref
 GTP/EnvMap/Localized_Refraction_PS
 {
 param_named_auto cameraPos camera_position
 param_named lastCenter float3 0 0 0
 }
 param_named sFresnel float 0.1
 param_named sRefraction float 0.8
 }
 //Cube map of colors
 texture_unit
 {
 }
 //Cube map of distances
 texture_unit
 {
 filtering none
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 34 / 96

Listing 8. Material script of a surface that receives caustics

Figure 6. Caustics and environment mapping implemented in Ogre3D. The demo shows four reflecting
heads with different metal shaders rotating around a refracting head which casts caustics on the walls
and floor. The reflecting and refracting objects use localized environment mapping. The program uses

a caustic generating method. Also a glow effect was added to the scene.

Figure 7. Reflections, refractions, and caustics in Ogre3D.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 35 / 96

3.1.5.4. Diffuse inter-reflection module

Figure 8. Buddha illuminated by diffuse indirect lighting.

The diffuse inter-reflection module computes the lighting of an object with a cube map. It treats the
pixels of the cube map as virtual light sources an cycles them adding their contribution together. This
is very time consuming for a cube map with high resolution while using low resolution cube maps
would speed up calculation but cause artifacts as it does not contain enough information. Our approach
is to use a low resolution cube map that is a down sampled version of the high resolution cube map.
This down sampled cube map will contain enough information of the environment as it stores
interpolated values (each pixel can be treated as an area light source with an intensity of the average
intensity if the down sampled pixels).

Listing 6 shows the Ogre material script of the diffuse Buddha. This material defines the
ReducedColorCubeMap technique which tells the illumination manager to create a color cube map for
the object (if already not created) and a down sampled version of this cube map and refresh them with
the give update frequency. It also defines a DistanceCubeMap as the position of the virtual light
sources is also needed for accurate lighting. The down sampled cube map and the distance impostor
cube map are bound to the texture units of the pass that defined the techniques. The fragment shader
calculates indirect illumination using disc-to-point form factor approximation cycling through each
pixel of the down sampled cube map.

The shaders and materials related to diffuse indirect illumination can be found in the following path of
the repository:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPAdvancedEnvMap\diffuse\

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 36 / 96

Listing 9. Material script of diffuse inter-reflections

material GTP/Diffuse/Disc2Point
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique DistanceCubeMap
 {
 update_interval 1
 update_all_face false
 distance_calc false
 face_angle_calc false
 resolution 128
 }
 RenderTechnique ReducedColorCubeMap
 {
 update_interval 1
 reduced_resolution 4
 resolution 128
 distance_calc false
 face_angle_calc false
 update_all_face false
 }
 }

 vertex_program_ref GTP/Basic/Shaded_VS
 {
 param_named_auto WorldViewProj
 worldviewproj_matrix
 param_named_auto WorldInv
 inverse_world_matrix
 param_named_auto World
 world_matrix
 }
 fragment_program_ref GTP/Diffuse/Disc2Point_PS
 {
 param_named_auto cameraPos camera_position
 param_named lastCenter float3 0 0 0
 }
 //Cube map of colors
 texture_unit
 {
 }
 //Cube map of distances
 texture_unit
 {
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 37 / 96

3.1.5.5. Spherical billboards module

Figure 9. Ogre head inside a particle system rendered with spherical billboards. Clipping and
popping artifacts were removed by the spherical billboards method. The glow effect was also added.

The goal of the spherical billboards module is to eliminate billboard clipping and popping artifacts
occurring while rendering planar billboards. A typical application of billboard rendering is a particle
system. The spherical billboard module treats particles as spheres and computes the length a view ray
travels inside them. If this length is known, the opacity of each pixel covered by a particle can be
exactly calculated. To do this, the spherical billboard module needs a representation of the scene. This
will be given by a depth map taken from the frame buffer’s camera.

Listing 7 shows the Ogre3D material script of the particle system. The material defines the
SpericalBillboard technique which tells the illumination manager to render a depth map from the
camera, refresh it in each frame and bind it to the given texture unit state of the pass that defined the
technique. The fragment program of the pass will read depth values from the depth map, calculates
view ray length inside particles and the corresponding opacity. We should note here that the spherical
billboard module assumes that the particle system script defines the sprite renderer type (which uses
the SpriteParticleRenderer class provided by the GTP in Ogre3D changes).

The shaders for the spherical billboards module can be found in GTP_Sprite.hlsl in the following path
of the repository:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\ GTPParticles\

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 38 / 96

Listing 10. Material script of spherical billboards

material GTP/SBB/Basic
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique SphericalBillboard
 {
 texture_unit_id 1
 }
 }
 scene_blend src_alpha one
 depth_write off
 depth_check off
 vertex_program_ref GTP/Particles/SB_Sprite_VS
 {
 param_named_auto worldView worldview_matrix
 param_named_auto Proj projection_matrix
 param_named_auto width viewport_width
 param_named_auto height viewport_height
 }

 fragment_program_ref GTP/Particles/SB_Sprite_PS
 {
 param_named_auto farplane far_clip_distance
 param_named_auto nearplane near_clip_distance
 param_named color float4 3 3 3 1
 }
 texture_unit
 {
 anim_texture smokealpha.tga 32 2.0
 }
 //scene depth texture
 texture_unit
 {
 filtering none
 }
 texture_unit
 {
 texture planck.tga
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 39 / 96

3.1.5.6. Fire module

Figure 10. Fire and explosions in an Ogre3D game.

The fire module is an extension of the spherical billboard tool. It also requires a depth map from the
camera and uses it for the same purposes as the spherical billboard module. The main difference is that
the fire module renders the particles into a double render texture instead of the frame buffer. The first
texture stores the colors and the second texture stores offset values that will be used in post-processing
to add heat shimmering to the scene caused by fire particles.

Listing 11 shows the Ogre3D material script of the fire particle system depicted in figure 10. The
material defines the Fire technique that tells the illumination manager to create a depth map from the
camera, refresh it in each frame and bind it to the given texture unit of the pass that defined the
technique. The rendering will be redirected to a multiple render target with two targets. The fragment
shader will write color information to the first and offset values to the second render target.

Listing 12 shows the compositor script and the compositor’s material script used in the fire module.
The compositor material refers to the fire color and offset textures by name: the color texture will
always be named ILLUM_FIRE_COLOR_TEXTURE while the offset texture will be named
ILLUM_FIRE_HEAT_TEXTURE.

This module was used in the demo game called “CarDriving_BME”. The shaders, materials and the
compositor script related to this module can be found in the repository in the following files:

\gametools\gtp\trunk\App\Games\CarDriving_BME\Media\materials\scripts\ Fire.material

\gametools\gtp\trunk\App\Games\CarDriving_BME\Media\materials\ programs\ Fire.hlsl

\gametools\gtp\trunk\App\Games\CarDriving_BME\Media\materials\scripts\ FireHeat.compositor

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 40 / 96

Listing 11. Material script of fire

material Fire
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique Fire
 {
 texture_unit_id 1
 }
 }
 scene_blend src_alpha one one_minus_src_alpha
 depth_write off
 depth_check off

 vertex_program_ref FireVS
 {
 param_named_auto worldViewProj
 worldviewproj_matrix
 param_named_auto worldView worldview_matrix
 param_named_auto Proj projection_matrix
 param_named_auto width viewport_width
 param_named_auto height viewport_height
 }

 fragment_program_ref FirePS
 {
 param_named_auto farplane far_clip_distance
 param_named_auto nearplane near_clip_distance
 }
 texture_unit
 {
 anim_texture smokealpha.tga 32 2.0
 }
 texture_unit //scene depth texture
 {
 filtering none
 }
 texture_unit
 {
 texture planck.tga
 }
 texture_unit
 {
 texture gradient.tga
 }
 texture_unit
 {
 texture noise.tga
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 41 / 96

Listing 12. Material hear shimmering

compositor FireHeatCompositor
{
 technique
 {
 texture scene target_width target_height
 PF_FLOAT16_RGBA
 target scene
 {
 input previous
 }
 target_output
 {
 input none

 pass render_quad
 {
 material FireHeatCompositor
 input 0 scene
 }
 }
 }
}

material FireHeatCompositor
{
 technique
 {
 pass
 {
 vertex_program_ref GameTools/PostProc1_VS
 {
 }
 fragment_program_ref FireHeatCompositorFP
 {
 param_named_auto width viewport_width
 param_named_auto height viewport_height
 }
 texture_unit //scene
 {
 }
 texture_unit
 {
 texture ILLUM_FIRE_COLOR_TEXTURE
 }
 texture_unit
 {
 texture ILLUM_FIRE_HEAT_TEXTURE
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 42 / 96

3.1.5.7. Hierarchical particle system with illumination volume module

Figure 11. Hierarchical particle system with self-shadowing.

The module called ‘hierarchical particle system with illumination volume’ renders a particle system
composed of multiplied instances of another particle system and simulates light absorption within the
media.

Listing 13 shows the material of the hierarchical particle system in figure 11. The material defines the
SphericBillboard technique and uses a similar approach to remove billboard artifacts as the spherical
billboard module (see section 3.1.5.5). It defines the HPS (stands for hierarchical particle system)
technique that tells the illumination manager to render an impostor image of the particle system that
should be multiplied (this impostor image stores color and depth information). This texture will be
bound to the given texture unit of the pass that defined the technique.

The material also defines the technique IllumVolume which tells the illumination manager to render
the particle system to be multiplied to a so called illumination volume (or light volume) texture. This
texture has four “layers” stored in the four channels of the texture and each layer absorbs more and
more light according to the density and current position of the particles. This texture will be bound to
the desired texture unit of the pass that defined the technique.

The fragment shader of the material uses the impostor image of the particle system to color the
particles; calculates exact opacity based on the scene depth map, the impostor image and position of
the particle system; and finally it darkens the colors according to the absorbed light read from the
illumination volume texture.

The shaders and materials related to the hierarchical particle system with illumination volume module
can be found in the repository in the following path:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPParticles\

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 43 / 96

Listing 13. Material script of hierarchical particle systems

material GTP/HPS/Smoke_L_Depth_Illum
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique HPS
 {
 particle_script GTP/HPS/Smoke_Little
 perspective false
 vparam_radius baseRadius
 update_interval 1
 }
 RenderTechnique SphericalBillboard
 {
 texture_unit_id 1
 }
 RenderTechnique IllumVolume
 {
 material GTP/HPS/Smoke_IllumVolume
 update_interval 1
 texture_unit_id 2
 resolution 128
 lightmatrix_param_name lightViewProj
 }
 }
 depth_check off
 depth_write off
 scene_blend alpha_blend

 vertex_program_ref
 GTP/HPS/Large_Depth_Illum_VS
 {
 param_named_auto worldView worldview_matrix
 param_named_auto worldViewInv
 inverse_worldview_matrix
 param_named_auto Proj projection_matrix
 param_named_auto width viewport_width
 param_named_auto height viewport_height
 param_named baseRadius float 1
 }
 fragment_program_ref
 GTP/HPS/Large_Depth_Illum_PS
 {
 }
 //impostor texture
 texture_unit
 {
 }
 //scene depth texture
 texture_unit
 {
 filtering none
 }
 //Light illumination volume texture
 texture_unit
 {
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 44 / 96

3.1.5.8. Light path map module

Figure 12. Real-time diffuse relighting with light path maps

The path map module adds indirect illumination based on PRM textures computed by the path map
preprocessor. Listing 14 shows the Ogre3D material script of an object using the path map tool. The
material defines the PathMap technique which creates an extra pass that adds the indirect illumination.
The pre-computed PRM texture of the object is automatically bound to the new pass’ first texture unit
by the illumination manager. The material also uses the depth shadow mapping module (see section
463.1.5.9).

The shaders and materials related to the path map module can be found in the repository in the
following path:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPPathMap

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 45 / 96

Listing 14. Material script of the path map indirect illumination

material PRMDemo/Base
{
 technique maintechnique
 {
 pass mainpass
 {
 IllumTechniques
 {
 RenderTechnique PathMap
 {
 pass_blending add
 }
 RenderTechnique DepthShadowReceiver
 {
 max_light_count 2
 vertex_program_name GTP/Basic/LightCPos_VS
 fragment_program_name
 GTP/Basic/SM/Dist_VSM_PS
 set_light_view true
 set_light_farplane true
 light_viewproj_param_name LightViewProj
 light_view_param_name LightView
 light_farplane_param_name lightFarPlane
 world_view_proj_param_name WorldViewProj
 world_param_name World
 pass_blending modulate
 }
 }

 vertex_program_ref GTP/Basic/ShadedTex_VS
 {
 param_named_auto WorldViewProj
 worldviewproj_matrix
 param_named_auto World world_matrix
 param_named_auto WorldInv inverse_world_matrix
 }
 fragment_program_ref
 GTP/Basic/Shaded/TexturedOneLight_PS
 {
 param_named_auto lightPos light_position 0
 param_named_auto lightDir light_direction 0
 param_named_auto lightColor light_diffuse_colour 0
 param_named_auto lightPower light_power 0
 }
 texture_unit color
 {
 colour_op replace
 }
 }
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 46 / 96

3.1.5.9. Shadow mapping module

The shadow mapping module implements the shadow mapping algorithm. It implements methods that
enhance the quality of traditional shadow mapping like light space perspective shadow mapping and
variance shadow mapping.

Listing 16 shows the material script of a shadow receiver object. It defines the DepthShadowReceiver
technique that will add additional passes after the pass that defined the technique. Each pass will
receive shadow from a light source. The number of passes depends on the number of light sources this
object can receive shadows from (can be set with a technique parameter). The shadow maps of the
light sources will be bound to the first texture unit of the additional passes. The vertex and fragment
shaders used in shadow receiving passes can be set as a parameter, as different light types and methods
(like variance shadow mapping) require different shaders.

There are also some additional parameters that should be set using the illumination manager in the
application’s code. Listing 15 shows the parameters used in the scene in figure 13.

The shaders related to shadow mapping can be found in the repository in the following file:

\gametools\gtp\trunk\App\Demos\Illum\Ogre\Media\materials\GTPBasic\GTPShadowMap_PS.hlsl

Figure 13. Soft shadows in Ogre3D

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 47 / 96

 Listing 15. Material script of the path map indirect illumination

Listing 16. Material script of the path map indirect illumination

material shadowReciever
{
 technique
 {
 pass
 {
 IllumTechniques
 {
 RenderTechnique DepthShadowReceiver
 {
 max_light_count 1
 vertex_program_name GTP/Basic/LightVPos_VS
 fragment_program_name
 GTP/Basic/SM/Depth_PS
 set_light_viewproj true
 set_light_view false
 set_light_farplane false
 world_view_proj_param_name WorldViewProj
 world_param_name World
 light_viewproj_param_name LightViewProj
 pass_blending modulate
 }
 }
 }
 }

OgreIlluminationManager::getSingleton().setShadowMapSize(700);
OgreIlluminationManager::getSingleton().setFocusingSM(true);
OgreIlluminationManager::getSingleton().setUseLISPSM(true);
OgreIlluminationManager::getSingleton().setBlurShadowMap(true);
OgreIlluminationManager::getSingleton().setShadowMapMaterialName("GTP/Basic/DepthCCW");

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 48 / 96

3.1.5.10. Rain rendering module

This module introduces rain animation and rendering. It can be found in the following repository
folder:

/gametools/gtp/trunk/App/Demos/Illum/Rain/

The rain animation uses a GPGPU particle system. Particles' positions are stored in textures, and
updated through shaders. Rendering of the raindrops uses approximate refraction. A wide angle view
of the scene is captured to a texture, which is mapped onto the drops according to the optical deviation
occurring inside the drops.

This technique allows realistic integration of thousands of raindrops in a game scene. For better
integration of the technique, all the main parameters influencing the appearance and total count of the
drops are defined in “CommonRain.h” file, and can easily be modified.

Two rendering modes are provided: the first proposes roughly spherical raindrops, using pre-computed
masks outlining the physical shape of raindrops. The second rendering mode extends the first one with
retinal persistence handling. Particles are shaped into streaks, and rendered by computing a mean of a
few sample overlapping positions of the moving drop creating the visual impression of a streak.

Figure 14. Rain module using regular raindrops and simulating retinal persistence.

3.1.5.11. Billboard cloud trees module

The billboard cloud tree method is based on the replacement of complex foliage by a few textured,
semi-transparent quadrilaterals. We have implemented two modules based on this idea.

• Billboard trees generated by standard texturing uses only diffuse color texture atlas and solutions
available in the Ogre3D framework. This technique is for low-end graphic cards.

 Standard texturing material:

/gametools/gtp/trunk/App/Demos/Illum//IBRBillboardCloudTrees/OGRE/media/chestnut/leaves/
chestnutLeavesMaterial.material

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 49 / 96

Standard texturing shaders:

/gametools/gtp/trunk/App/Demos/Illum//IBRBillboardCloudTrees/OGRE/media/general/

diffuseTexturing_FP20.cg

diffuseTexturing_FP20.cg

• Billboard trees generated with indirect texturing exploits the indirect texturing technique. It uses
the rotated leaf texture atlas and the leaves distribution texture atlas in order to have high
resolution rendered leaves.

The billboard tree rendering module using indirect texturing has been integrated in several demo
games using Ogre3D engine.

Figure 15. Right: billboard tree rendering in a demo of the public racing game Rigs of Rods with
lighting and shadows. Left: a landscape scene demo with realistic lighting, using the indirect texturing

technique with shadows and pre-computed obscurances for the ambient lighting.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 50 / 96

Figure 16. Left: a close view of a forest using an extended version of the indirect texturing called
multi-layered indirect texturing. Right: a far view of a landscape scene demo with realistic lighting of

40000 trees.

Figure 17. Billboard trees with and without obscurances based illumination (the darker trees have
been rendered with obscurances, the lighter ones without it).

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 51 / 96

3.2. SHARK3D VERSION OF ILLUMINATION MODULES
Shark3D terminology is somewhat different from what we have used in the general description or the
Ogre3D version of the illumination modules. The description about rendering properties assigned to
objects is not referred to as a material, but as a shader. For distinction, programs running on the vertex
and fragment processors of the graphics card are called GPU programs. The implementation building
block, instead of the technique, will be the shader component. Nevertheless, they serve the same role:
assigned to objects, they encapsulate the rendering passes, which may produce resources for other
components, or perform final rendering to the screen. However, unlike techniques, shader components
do not include fixed GPU programs. The same shader component with different GPU programs can be
the equivalent of different techniques.

GPU programs are written in HLSL, shader components in C++, and the composition of a complete
shader uses the Snake language. A shader script is assigned to every actual or abstract object in the
scene (meshes, light sources, post processing effects).

3.2.1. Implemented shader components of the Shark3D version

The low level building blocks are the shader components which are written in C++. In the following
we detail the components that implement various rendering techniques.

3.2.1.1. eng_shader_std.paintmesh

This component is a core Shark3D component, and it has not been implemented as a part of the WP.
However, it is listed here for the sake of completeness, as several GTP shader components rely on
paintmesh to render objects. Typically, a GTP component generating a resource texture for later GTP
components will trigger paintmesh with appropriate GPU programs to render scene objects. See
Section 3.2.3 for how this is done in practice.

3.2.1.2. eng_shader_special.worldmat

This component writes out the actual world matrix into a parameter. This is to replace the original
malfunctioning Shark3D component of the same purpose.

Parameters:

Name Description

env Shader environment object. Usually, this parameter should be "shaderenv".

methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

worldmat_var The resulting matrix is stored in the variable of this name. Must be of type
mat4x4f.

inverse Sets if the matrix should be inverted.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 52 / 96

Listing 17. Shader script chunk for eng_shader_special_worldmat.

3.2.1.3. gtp_shader.causticcube

This component, with the appropriate GPU programs (see gtp_caustic_cubemap_point in Section
3.2.2), renders the caustic caster cube map from a photon hit texture. The component itself only
generates a point primitive for every pixel of the photon hit texture. This is done six times, in order to
render to the six faces of the caustic caster cube map. When rendering, the vertex program will move
the generated primitives to the appropriate hit positions, and the fragment program will render photon
sprites. If triangle rendering is used instead of point rendering, this component generates a grid.

Parameters:

Name Description

env Shader environment object. Usually, this parameter should be "shaderenv".

methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

rank Rank of the shader in the rendering sequence. Shaders having a smaller rank
are rendered first

iter_start Iteration start value.

iter_end Iteration end value.

iter_step Iteration step.

iter_width_scale Scale the image by this scale each iteration.

iter_height_scale Scale the image by this scale each iteration.

destprop_antialias Render the filtering with antialiasing

width_scale Requested final horizontal scaling factor.

height_scale Requested final vertical scaling factor.

passinfo_var This variable is a name for the float4-vector containing information about the

{
ident "gtp_shader.worldmat"
param
{

env "shaderenv"
methods "main_method"
worldmat_var "worldMat"

}
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 53 / 96

iteration. The first component of the vector contains the current iteration
number, the second the total number of iterations.

shaderprog_ident Shader program used for the smoothing iterations.

shaderprog_param_array Defines which variables are passed to the shader program

src_array Source array.

des_array Destination array.

update_interval The interval between two cube map updates.

start_frame The first update was performed in this frame.

update_all_faces Update the whole cube map or only the next face.

use_points Sets if triangles (instead of sprites) should be rendered into the caustic cube
map.

photon_count The resolution of the photon map.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 54 / 96

Listing 18. Shader script chunk for gtp_shader_causticcube.

3.2.1.4. gtp_shader.createtex

This component can be used to generate a new texture in the shader. This is necessary to create render
target textures which can be kept over several frames or during the entire lifetime of an object. This
shader component should only be invoked once for every texture to be generated.

Parameters:

Name Description

env Shader environment object. Usually this parameter should be "shaderenv".

methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

texprop_rendertarget Use this texture as render target.

texprop_cube Cube map. Mutually exclusive with texprop_volume.

{
ident "gtp_shader.causticcube"
param
{

env "shaderenv"
methods "caustic_cast_method"
rank -7700
iter_start 0
iter_end 0
iter_step 0
width_scale 1.0
height_scale 1.0
destprop_antialias 1
passinfo_var ""
src_array "photonmap"
update_interval 1
update_all_face 1
start_frame 0
photon_count 32
use_points 1
dest_array
{

from_var "cauCubeMap"
to_var "cauCubeMap"
texprop_restrusage 0
texprop_depth 0
texprop_float 0
texprop_comp 4
texprop_bitspercomp 8
samplermode_filter 0
samplermode_clamp 1

}
shaderprog_ident
"levelutil/shader/prog/gtp_caustic_cubemap_point.s3d_shaderprog_run"
shaderprog_param_array
{
}

}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 55 / 96

texprop_volume 3d texture. Mutually exclusive with texprop_cube.

texprop_mipmap If not set, there are no mipmaps. If set, use mipmaps down to the smallest
possible size.

texprop_float Use float representation if possible.

texprop_signed Use signed representation if possible.

texprop_restrusage Request a texture for "restricted usage".

texprop_compressed Allow compression of this texture.

texprop_dynamic Prefer fast texture upload to fast rendering. For example, this may disable
texture swizzling.

texprop_alpha_mask Alpha value is only zero and one.

texprop_comp The number of components in the texture.

texprop_bitspercomp The number of bits in each component.

width The width of the texture.

height The height of the texture.

depth The color depth of the texture.

texchan_var Variable where texture is being stored in for use by shader components within
this group.

samplermode_clamp Clamp the texture in the sampler.

samplermode_filter Filter the texture in the sampler.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 56 / 96

Listing 19. Shader script chunk for gtp_shader_createtex.

3.2.1.5. gtp_shader.cubetexfilter

This component renders a full screen quad for each face of the cube map.

Parameters:

Name Description

env Shader environment object. Usually this parameter should be "shaderenv".

methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

rank Rank of the shader in the rendering sequence. Shaders having a smaller rank are
rendered first.

shaderprog_ident Shader program used for the smoothing.

shaderprog_param_array Defines which variables are passed to the shader program.

src_array Source array.

dest_array Destination array.

update_interval The interval between two filtering step.

start_frame The first update performed in this frame.

update_all_face Update the whole cube map or only the next face.

{
ident "gtp_shader.createtex"
param
{

env "shaderenv"
methods "init_method"
texchan_var "photonmap"
width 32
height 32
texprop_rendertarget 1
texprop_float 1
texprop_comp 4
texprop_bitspercomp 32
samplermode_clamp 1
samplermode_filter 0

}
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 57 / 96

Listing 20. Shader script chunk for gtp_shader_cubetexfilter.

3.2.1.6. gtp_shader.envmap

This component renders an environment map by rendering six images of the surrounding environment
onto the six faces of a cube map. Whether the faces of this cube should be aligned according to the
axes of the world or view coordinate system can be selected. The user can also define the update
frequency of the cube map, determining in every how-many-frames it has to be re-rendered.

What information will actually be rendered into the cube map depends on the paintmesh shader
component in the shaders of rendered meshes. The environment map shader component will just
trigger them to draw the meshes.

Parameters:

Name Description

Env Shader environment object. Usually this parameter should be "shaderenv".

Methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

{
ident "gtp_shader.cubetexfilter"
param
{

env "shaderenv"
methods "main_method"
rank -8000
iter_start 0
iter_end 0
iter_step 0
width_scale 1.0
height_scale 1.0
destprop_antialias 0
passinfo_var ""
src_array "dist"
update_interval 0
dest_array
{

from_var "filtereddist"
to_var "filtereddist"
texprop_restrusage 0
texprop_depth 0
texprop_float 0
texprop_comp 4
texprop_bitspercomp 0
samplermode_filter 1
samplermode_clamp 1

}
shaderprog_ident
"levelutil/shader/prog/gtp_reduce_cubemap.s3d_shaderprog_run"
shaderprog_param_array
{
}
}

}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 58 / 96

rank Rank of the shader in the rendering sequence. Shaders having a smaller rank are
rendered first.

proj_neg_z The near clipping plane.

proj_pos_z The far clipping plane.

max_ext Maximal texture width and height.

ext_dist_scale Distance factor.

max_recursion Maximal number of mirror recursions. For a single reflection, use 1.

enum_trigger Trigger used for rendering the mirror image.

mesh_var Name of the variable containing the mesh which is rendered.

destprop_antialias Render the filtering with anti-aliasing.

dest_array Destination array.

update_all_faces Update the whole cube map or only the next face.

world_space If set the cube map is generated in world space instead of view space.

update_interval The interval between two filtering step.

start_frame The first update performed in this frame.

last_center The name of the output variable to store the last center position of the cube
map.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 59 / 96

Listing 21. Shader script chunk for gtp_shader_envmap.

3.2.1.7. gtp_shader.focusedprojmat

This component creates a projection matrix to help focusing on a given object. When rendering a
photon map for caustics, this projection matrix is helpful to set the camera looking tightly at the
caustic caster object.

Parameters:

Name Description

env Shader environment object. Usually this parameter should be "shaderenv".

methods Methods are used internally within a shader to execute different rendering
passes and other kinds of operations.

destmat_var Name of the variable containing the result matrix.

mesh_var Name of the variable containing the mesh which is rendered.

centerpoint_var The center of the focused object.

{
 ident "gtp_shader.envmap"
 param
 {
 env "shaderenv"
 methods "main_method"
 rank -90000
 max_ext 256
 max_recursion 2
 ext_dist_scale 20.0
 proj_neg_z 0.1
 proj_pos_z 100.0
 enum_trigger "mirror_trigger"
 destprop_antialias 0
 mesh_var "mesh"
 update_interval 1
 update_all_face 0
 start_frame 1
 last_center_var "lastCenter"
 world_space 1
 dest_array
 {
 from_var "envmap0"
 to_var "envmap0"
 texprop_restrusage 0
 texprop_depth 0
 texprop_comp 3
 texprop_float 0
 samplermode_filter 0
 samplermode_clamp 1
 }
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 60 / 96

Listing 22. Shader script chunk for gtp_shader_ focusedprojmat.

3.2.1.8. gtp_shader.mainenum

This component enumerates the objects which are visible from the camera into a variable. This is
useful if an object needs to trigger potentially all other objects in the scene. For instance, a caustic
caster object, after rendering its caustic caster cube map, triggers potential caustic receivers to render
caustics.

Parameters

Name Description

env Shader environment object. Usually this parameter should be
"shaderenv".

methods Methods are used internally within a shader to execute different
rendering passes and other kinds of operations.

coll_var Name of the output variable to contain the list of the visible objects from
the camera.

Listing 23. Shader script chunk for gtp_shader_mainenum.

3.2.2. GPU programs in Shark3D

The core that makes a rendering shader component operational is the GPU program. The Shark3D
shader program files define the vertex and fragment programs and their parameters for the target
platform. The shader program can contain multiple definitions for multiple environments (for example

{
 ident "gtp_shader.focusedprojmat"
 param
 {
 env "shaderenv"
 methods "caustic_cast_method"
 mesh_var "mesh"
 destmat_var "lightViewProj"
 centerpoint_var "light_cenrange"
 }
 }

{
 ident "gtp_shader.mainenum"
 param
 {
 env "shaderenv"
 methods "main_method"
 coll_var "recievers"
 }
}

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 61 / 96

DirectX9/HLSL and OpenGL/glsl), with links to the appropriate GPU shader. Our shader programs
contain only the DirectX9 definition as target environment.

In the following we list the shader programs and the typical shader components from which they are
invoked.

• gtp_reduce_cubemap
o Filters the cube map into a cube map of reduced resolution.
o Used in: gtp_shader.cubetexfilter (see 3.2.1.5)
o gtp_reduce_cubemap_d3d9_hlsl_vs2x0
o gtp_reduce_cubemap_d3d9_hlsl_ps3x0

• gtp_envmap
o Renders a reflective, metallic object using the approximate Fresnel method. It takes a

color and distance cube map as inputs, and performs localized lookup for approximate
ray-tracing reflections.

o Used in: eng_shader_std.paintmesh triggered from gtp_shader.envmap (see 3.2.1.6)
o gtp_envmapSimple_d3d9_hlsl_vs1x1
o gtp_envmapSimple_d3d9_hlsl_ps1x1

• gtp_distance_impostor
o Stores distances from the camera. This is useful for rendering a distance cube map.
o Used in: eng_shader_std.paintmesh triggered from gtp_shader.envmap (see 3.2.1.6)
o gtp_distance_impostor_d3d9_hlsl_vs3x0
o gtp_distance_impostor_d3d9_hlsl_ps3x0

• gtp_diffuse
o Gathers indirect illumination with the use of the downsampled cube map.
o Used in: eng_shader_std.paintmesh during final rendering.
o gtp_diffuse_d3d9_hlsl_vs2x0
o gtp_diffuse_d3d9_hlsl_ps3x0

• gtp_caustic_receive
o Gathers caustic lighting from a caustic cube map, and renders it onto the screen,

compositing caustic lights with the existing scene.
o Used in: eng_shader_std.paintmesh triggered from eng_shader_std.collexec, with a

collection of objects populated by gtp_shader.mainenum (see 3.2.1.8)
o gtp_caustic_recieve_d3d9_hlsl_vs2x0
o gtp_caustic_recieve_d3d9_hlsl_ps2x0

• gtp_caustic_cubemap_point
o Generates the caustic cube map. Every vertex is assumed to be a point primitive. The

vertex program moves the primitives to the positions read from an input photon hit
texture. The pixel program renders the caustic snippet sprites.

o Used in: gtp_shader.causticcube (see 3.2.1.3)
o gtp_caustic_cubemap_point_d3d9_hlsl_vs3x0
o gtp_caustic_cubemap_point_d3d9_hlsl_ps3x0

• gtp_cau_photonmap
o Generates the photonmap, the texture that contains photon hit positions. It stores

photon hits positions in cube map space.
o Used in: eng_shader_std.paintmesh triggered by a light source, projection matrix set

as returned by gtp_shader.focusedprojmat (see 3.2.1.7)
o gtp_cau_photonmap_d3d9_hlsl_vs3x0

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 62 / 96

o gtp_cau_photonmap_d3d9_hlsl_ps3x0
• gtp_gen_shmap_indirect_texturing

o Generates the shadow map for the billboard trees
o Used in: eng_shader_std.paintmesh in final rendering.
o gtp_gen_shmap_indirect_texturing_d3d9_hlsl_vs2x0
o gtp_gen_shmap_indirect_texturing_d3d9_hlsl_ps2x0

• gtp_indirect_texturing_shmap
o Renders the billboard trees with shadow mapping, using the shadow map generated by

gtp_gen_shmap_indirect_texturing
o Used in: eng_shader_std.paintmesh in final rendering.
o gtp_indirect_texturing_shmap_d3d9_hlsl_vs2x0
o gtp_indirect_texturing_shmap_d3d9_hlsl_ps2x0

3.2.3. Building modules with shader components in Shark3D

With all the shader components and GPU programs available, the Shark3D shaders realizing
illumination modules can be composed in the Shark3D Snake script language, using the chucks
invoking the components. The shader scripts are directly assigned to the objects and control the
rendering process.

3.2.3.1. Localized reflection module

Localized reflections are based on environment maps augmented by distance information: the distance
impostors. The environment map of its surroundings has to be generated for the reflective, metallic
object. Then, the object can be rendered to the screen by performing iterative lookups to find reflected
where reflected eye rays hit the environment, delivering approximate ray-tracing results.

The localized reflections module is realized using two shaders. The ordinary shader is used for every
object in the scene. Whenever an object has to be rendered to environment cube map with distance
information, it will receive the gtp_distance_impostor trigger. The shader responds to the trigger by
running a paintmesh component with the gtp_distance_impostor shader program, rendering distances.

Listing 24. Distance impostor trigger.

 {
 triggers "gtp_distance_impostor_trigger"
 method "gtp_distance_impostor_method"
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 63 / 96

 Listing 25. Paintmesh component in ordinary shader for localized reflections

The second shader, ordinary_copper, is the one which is assigned to the metallic object. Its tasks are
to create the color and distance cube map textures once, administer their update by triggering other
objects to be rendered into them, and render the object onto the screen with localized reflections. The
cube maps are created using the gtp_shader.createtex component.

Listing 26. Creating the cube map.

To render the environment to this cube map, you have to use the gtp_shader_envmap component. It
has to send the gtp_distance_impostor_trigger to all the objects in the scene.

 {
 ident "eng_shader_std.paintmesh"
 param
 {
 env "shaderenv"
 methods "gtp_distance_impostor_method"
 rank 12000
 insp_ident "insp_shader_mesh"
 cull_mode "back"
 depth_test "less_equal"
 depth_write 1
 mesh_var "mesh"
 texchan_var_array
 tex_attr_var_array "attr0"
 attrmat_var_array ""
 use_vertex_bone_wgh 1
 use_vertex_bone_subscr 1
 use_vertex_point 1
 color 1.0 1.0 1.0
 shaderprog_ident
 "levelutil/shader/prog/gtp_distance_impostor.s3d_shaderprog_run"
 shaderprog_param_array
 }
 }

 {
 ident "gtp_shader.createtex"
 param
 {
 env "shaderenv"
 methods "init_method"
 texchan_var "envmap0"
 width 128
 height 128
 texprop_rendertarget 1
 texprop_cube 1
 texprop_float 0
 texprop_comp 4
 texprop_bitspercomp 8
 samplermode_clamp 0
 samplermode_filter 1
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 64 / 96

Listing 27.Rendering the distance cube map.

As our final rendering component works with world space coordinates to find localized reflections, we
need to compute the world matrix using the gtp_shader.worldmat component.

Listing 28. Acquiring the world space transformation.

The final rendering component is the eng_shader_std.paintmesh component with the localized
environment mapping shader program gtp_shader.envmap.

 {
 ident "gtp_shader.envmap"
 param
 {
 env "shaderenv"
 methods "main_method"
 rank -90000
 max_ext 128
 max_recursion 1
 ext_dist_scale 20.0
 proj_neg_z 0.1
 proj_pos_z 100.0
 enum_trigger "gtp_distance_impostor_trigger"
 destprop_antialias 0
 mesh_var "mesh"
 update_interval 1
 update_all_face 0
 start_frame 1
 last_center_var "lastCenter"
 world_space 1
 dest_array
 {
 from_var "dist"
 to_var "dist"
 texprop_restrusage 0
 texprop_depth 0
 texprop_comp 1
 texprop_float 1
 samplermode_filter 0
 samplermode_clamp 1
 }
 }
 }

 {
 ident "gtp_shader.worldmat"
 param
 {
 env "shaderenv"
 methods "main_method"
 worldmat_var "worldMat"
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 65 / 96

Listing 29. Final rendering component

 {
 ident "eng_shader_std.paintmesh"
 param
 {
 env "shaderenv"
 methods "main_method"
 rank 12000
 insp_ident "insp_shader_mesh"
 cull_mode "back"
 depth_test "less_equal"
 depth_write 0
 mesh_var "mesh"
 texchan_var_array "envmap0" "dist"
 tex_attr_var_array "attr0"
 attrmat_var_array ""
 use_vertex_bone_wgh 1
 use_vertex_bone_subscr 1
 use_vertex_point 1
 use_vertex_normal 1
 use_vertex_coloralpha 0
 shaderprog_ident
 "levelutil/shader/prog/gtp_envmap.s3d_shaderprog_run"
 shaderprog_param_array
 {
 src_var "lastCenter"
 dest_progvar "lastCenter"
 }
 {
 src_var "worldMat"
 dest_progvar "worldMat"
 }
 {
 src_var "worldMatIT"
 dest_progvar "worldMatIT"
 }
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 66 / 96

Figure 18. Room with a diffuse horse reflected on a metal sphere.

3.2.3.2. Diffuse reflection module

To create a diffuse shaded object you have to render a color and a distance cube map from the object
the same way we did for metallic reflections. During final rendering, these environment maps have to
be convolved with the diffuse reflection distribution function to get their contribution to the
illumination of the diffuse surface. To make this real-time, this is performed on reduced size, pre-
filtered cube maps. This is implemented in the ordinary_diffuse shader, using the
gtp_shader.cubetexfilter component.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 67 / 96

 Listing 30. Reducing the cube map in the diffuse shader.

Final rendering of the reflective diffuse object is done with a simple paintmesh component again, but
setting the gtp_diffuse shader program.

Figure 19. Diffuse horse in a test scene.

{
 ident "gtp_shader.cubetexfilter"
 param
 {
 env "shaderenv"
 methods "main_method"
 rank -8000
 iter_start 0
 iter_end 0
 iter_step 0
 width_scale 1.0
 height_scale 1.0
 destprop_antialias 0
 passinfo_var ""
 src_array "dist"
 update_interval 0
 dest_array
 {
 from_var "filtereddist"
 to_var "filtereddist"
 texprop_restrusage 0
 texprop_depth 0
 texprop_float 0
 texprop_comp 4
 texprop_bitspercomp 0
 samplermode_filter 1
 samplermode_clamp 1
 }
 shaderprog_ident
 "levelutil/shader/prog/gtp_reduce_cubemap.s3d_shaderprog_run"
 shaderprog_param_array
 {
 }
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 68 / 96

3.2.3.3. Caustics module

The communication chain of the caustics module is the most complicated. It starts with the light
source. The shader of the light source should find nearby caustic casters, and trigger them to perform a
chain of operations:

o A caustic caster should set up a render camera at the light source, focused on the caustic
caster object itself.

o Using this setup, it should render the photon hit positions texture, a texture resource
containing the cube map coordinates of refracted, exiting photons.

o Then, the caustic caster cube map has to be rendered, by splatting snippets to photon hit
locations onto all six cube map faces.

o The caustic caster has to gather all visible objects.

o It has to send them the trigger to receive caustics.

o Caustic receivers have to render themselves with light from the caustic caster map projected
onto them.

Triggering caustic casters from the light is realized by adding an eng_shader.collexec chunk to the
light shader, sending caustic_cast_trigger to objects within range. This is done in our
caustic_caster_light shader.

Listing 31. Triggering the visible caustic caster objects from the light.

As defined in the shader caustic_caster, the triggered caustic caster creates a photon map. It uses
gtp_shader.focusedproj to compute projection matrix, then renders everything by triggering a
paintmesh chunk with the gtp_cau_photonmap shader program. From the photon map, it generates
the caustic cube map using the component gtp_shader.causticcube.

 {
 ident "eng_shader_std.collexec"
 param
 {
 env "shaderenv"
 methods "main_method"
 coll_var "casters"
 rank -8000
 exec_trigger "caustic_cast_trigger"
 exec_param_array
 {
 src_var "light_cenrange"
 dest_extvar "ext_light_cenrange"
 }
 {
 src_var "recievers"
 dest_extvar "recievers"
 }
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 69 / 96

Listing 32. Generating caustic cube map.

With the caustic cube map ready, the caster sends the caustic_receive_trigger triggers to the receivers.

{
 ident "gtp_shader.causticcube"
 param
 {
 env "shaderenv"
 methods "caustic_cast_method"
 rank -7700
 iter_start 0
 iter_end 0
 iter_step 0
 width_scale 1.0
 height_scale 1.0
 destprop_antialias 1
 passinfo_var ""
 src_array "photonmap"
 update_interval 1
 update_all_face 1
 start_frame 0
 photon_count 32
 use_points 1
 dest_array
 {
 from_var "cauCubeMap"
 to_var "cauCubeMap"
 texprop_restrusage 0
 texprop_depth 0
 texprop_float 0
 texprop_comp 4
 texprop_bitspercomp 8
 samplermode_filter 0
 samplermode_clamp 1
 }
 shaderprog_ident
 "levelutil/shader/prog/gtp_caustic_cubemap_point.s3d_shade"
 & "rprog_run"
 shaderprog_param_array
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 70 / 96

Listing 33. Triggering the receivers.

As the final step, the caustic receiver objects, being triggered by the casters, execute a paintmesh
chunk with the gtp_caustic_recieve shader program, to render themselves with the caustic cube map
lighting projected onto them.

 {
 ident "eng_shader_std.collexec"
 param
 {
 env "shaderenv"
 methods "main_method"
 coll_var "recievers"
 rank 13500
 exec_trigger "caustic_recieve_trigger"
 exec_param_array
 {
 src_var "lastCenter"
 dest_extvar "lastCenter"
 }
 {
 src_var "cauCubeMap"
 dest_extvar "cauCubeMap"
 }
 }
 }

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 71 / 96

Figure 20. Caustics, reflection and shadows.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 72 / 96

3.2.3.4. Billboard cloud trees module

The billboard tree technique has been integrated in a Shark3D using depth shadow mapping and
realistic lighting.

Figure 21. The billboard tree technique in a Shark3D demo with hundreds of trees.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 73 / 96

4. FILE FORMATS

In order to facilitate data exchange between preprocessors and engine-integrated modules, as well as to
be able to model and import complete scenes, a file interface had to be specified. The core of this is
the level description. It consists of a text file (called the level file), referencing mesh files, which are
typically in the Ogre3D XML format. The level file describes where instances of meshes (called
entities) are located, and various parameters governing preprocessing of meshes and entities.
Preprocessors operate on these inputs. As Ogre3D mesh files do not include shading information other
than the names of materials, and parsing all the material scripts in a standalone preprocessor is not
feasible, basic material properties are also stored in a file called the material file. This lists basic
textures or colors that can be used in preprocessors.

Preprocessors output data in similar format, plus special technique-related information. They might
process meshes into other meshes, augment level files with mesh or entity-specific information, and
produce texture files.

The following files can be generated by Maya or by the preprocessors.

4.1. COLLADA FILE [MEDIA*.DAE]
Collada scene file format is used by the Billboard Tree Preprocessor to export the simplified billboard
cloud meshes to the standard DCC tools in order to do the scene composition. The Collada file format
is good as an intermediate format for transporting general data from one digital content creation
(DCC) tool to another. In the billboard cloud tree technique it is only used to export the geometric
information.

4.2. LEVEL FILE [MEDIA*.LEVEL]
Lists meshes and entities. Every entry starts with the keyword ‘mesh’ or ‘entity’, followed by a unique
name, and, between curly braces, a set of attributes.

Mesh attributes:

o ogrefile Binary Ogre3D mesh file name.

o ogreXMLfile XML Ogre3D mesh file name.

o xfile DirectX mesh file name. (alternative to Ogre3D meshes)

o pathmapresolution PRM tile resolution for Path Map generation.

o divide Number of mesh segments to be created by the preprocessor.

Entity attributes

o mesh mesh name

o transformation modeling transformation as a 4x4 matrix

o pathmapclusters number of clusters relevant to subentities of this entity

o pathmapfile output texture file name stub

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 74 / 96

4.3. MATERIAL FILE [MEDIA*.MATERIALS]
XML file that describes Ogre3D materials for the Path Map preprocessor. For every material name, a
texture name or a solid color is given. Between the root <materials> and </materials> tags, material
entries are listed. The ‘name’ attribute specifies the name of the material, which is used in the Ogre3D
mesh files. The ‘texture’ attribute gives the image file used as a primary texture, and the ‘color’
attribute specifies a solid color.

4.4. MESH FILES [MEDIA*.MESH.XML, PROCESSEDMESHES*.MESH.XML, *.MESH]
Ogre3D meshes are used in the Path Map preprocessor, the Billboard cloud preprocessor, the
Obscurances preprocessor, and they are loaded into the Ogre3D engine when running the integrated
modules. Meshes are both input and output. The Ogre3D XML converter tool bundled with Ogre3D
can be used to convert between XML and binary formats. A batch file invoking the Ogre3D XML
converter is also provided along the Maya exporter scripts (see in Section 5).

4.5. ENTRY POINTS FILE [PRM\PRMENTRYPOINTS.TEXT]
This file is output by the Path Map preprocessor. It lists entry points with their position, normal and
generation probability, then the number of entry points per cluster. This information is required to
compute the PRM weighting for the final rendering using the PRM textures.

4.6. PRM TEXTURES [PRM*DDS]
The Path Map preprocessor outputs the textures required for indirect illumination rendering to 16bit
depth RGBA DDS format. Every file name is composed from the ‘pathmapfile’ stub given in the level
file for the entity, suffixed by an underscore and the number of the subentitity. Using the Maya
exporter the entity name will be identical to the file name, and this is always recommended.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 75 / 96

5. MAYA SCENE EXPORTER
We have developed a MEL script that can export a Maya scene into our .level file format. This script
assumes that you have installed the Ogre3D Maya exporter plugin, as it saves the objects in Ogre3D
.xml file format. For further information about installing and using the Ogre3D Maya exporter plugin
please refer to the Ogre3D documentation.

The name of the script file is:

"GTPSceneExport.mel"

This Maya script file should be copied into Maya's default script folder:

"My Documents\maya\7.0\scripts\"

The following line should be added to userSetup.mel located in Maya7.0 script folder:

source GTPSceneExport;

After executing Maya a new menu should appear named "GTP" (if the Ogre3D plugin is installed
properly the "Ogre" menu should also be present):

Figure 22. Maya menu bar with Ogre and GTP menus.

If we have a scene ready to export we can use the "GTP" menu's "Export Scene" entry:

Figure 23. Export scene menu option.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 76 / 96

This will show the "GTP Scene Exporter" window:

Figure 24. The GTP scene exporter dialog.

The controls have the following meanings:

General Controls:

• Output Directory: The directory where all output files will be created. Default: the Maya
scene file directory.

• Scene File Name: The name of the level file to export. Default: Maya file name with .level
extension

MaterialControls:

• Export Materials: If turned on the materials used by the object will be saved in an Ogre3D
material file. Same as turning on the "Export materials to Ogre .material file" checkbox in the
Ogre3D exporter. Default: off

• Material File Name: The name of the Ogre3D .material file to export. Only active if "Export
Materials" is turned on. Default: Maya scene file name with .material extension.

• Material name prefix: The material exporter exports the materials with a name identical to
their names used in Maya. This prefix will be added to the material name so you can avoid
name duplications among different levels. Only active if "Export Materials" is turned on.
Default: Maya scene file name.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 77 / 96

Mesh Controls:

• Export Meshes: If turned on all shapes will be exported to an Ogre3D .xml file. The file
names will be the name of the shape used in Maya. Note that the shapes are exported and not
the transforms, so if two objects share the same shape in the Maya scene (e.g. they were
created with an instance duplication) only one shape will be exported. The exported data are in
object space, all transformations are saved in the .level file. The exported mesh data will
contain vertex positions, normals and texture coordinates. Default: on.

• Create Binary Mesh Files: If turned on binary Ogre3D .mesh files will be created from the
.xml files. Only active if "Export Meshes" is turned on. Default: on.

• Build Edge List: If turned on edge information for shadow volume computation will be
stored in the binary .mesh files. Only active if "Create Binary Mesh Files" is turned on.
Default: off

• Build Tangent Vectors: If turned on tangent vectors (for normal mapping) will be computed
and stored in the binary .mesh file. Only active if "Create Binary Mesh Files" is turned on.
Default: off.

• Ogre Dir: The full path where the Ogre3D dlls and the OgreXMLConverter.exe are located.
These files are essential for binary mesh creation. Only active if "Create Binary Mesh Files" is
turned on. Default: "%OGRE_PATH%/Samples/Common/bin/Release" (where OGRE_PATH
is a system variable defining the Ogre3D root directory, this variable should be set if the
Ogre3D version of illumination modules is used)

See Path Map Options in section 6.3.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 78 / 96

6. LIGHT PATH MAPS PREPROCESSOR
The Path Map preprocessor implements the Light Path Map approach for indirect lighting. Its purpose
is to add realism to computer games by computing dynamically changing indirect illumination. It is an
improvement over ambient lighting or static light maps. Global illumination computations are
performed in a preprocessing step, using ray casting and indirect photon mapping (the virtual light
sources method). The contributions of virtual light samples are computed on the GPU, with depth
mapping. Instead of computing a single light map, multiple texture atlases (constituting the PRM) are
generated for the scene objects, all corresponding to a cluster of indirect lighting samples. Then these
atlases are combined according to actual lighting conditions. Weighting factors depend on how much
light actually arrives at the sample points used for PRM generation. This computation is also
performed in a GPU pass.

The final result will be a plausible rendering of indirect illumination. Indirect shadows and color
bleeding effects will appear. Indirect illumination will change as the light sources move. However, this
comes at the price of fetching data from all PRM texture panes (clusters of indirect illumination)
instead of just fetching a light map color. This limits the number of panes we can use. The accuracy
will depend on a number of factors:

• The number of samples (entry points). Increasing this number will make preprocessing longer,
but not influence rendering times. This is a command line parameter of the preprocessor.

• The number of independent entry point clusters. This is a command line parameter (see
section 6.1) of the preprocessor. The number should be larger for larger scenes, and a higher
number of clusters generally allows for more accuracy. However, a single piece of surface will
not use all of these clusters, but only the most relevant few. If these represent too little a
fraction of the actual significant clusters, undesirable edges may appear between surface
elements using different clusters. A low number of overall clusters will produce nice indirect
illumination, although with less fidelity to the changes of actual lighting.

• The number of entry point clusters taken into account when rendering an object. This value
can be different for every object, even for those which share the same base mesh. It can be
specified in Maya, and it is exported to the level file. This number should be comparable to the
number of overall clusters insofar as the area from where indirect lighting may reach the
surface is comparable to the complete level. A reasonable maximum is 32, more than this will
not be processed by the visualization built in the preprocessor.

• The resolution of the PRM atlas. This value can be different for every mesh, but it is the same
for all objects sharing that mesh. The resolution has to be high enough to accommodate for a
UV atlas of the mesh, but, as indirect illumination tends to be low-frequency, even 16x16 or
32x32 might be a sufficient size.

• How many parts to segment a mesh into. As a mesh might be huge, it is possible that different
parts receive indirect illumination from very different entry point clusters. If the mesh is
treated as one, only a limited number of entry points can be considered, leaving the object dark
in all but very specific lighting scenarios. Therefore, the preprocessor segments meshes into
the number of sub-meshes given in Maya, exported to the level file. Individual segments can
have different relevant clusters, so every part of the object will have indirect illumination.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 79 / 96

More segments always mean more accuracy, but every segment will have its own PRM
texture, with the resolution specified for the object. With more segments, the resolution should
be lowered. However, as there are technical limits to how small a UVAtlas can be, heavy
segmentation cannot be achieved without increasing preprocessing time.

The program performs three tasks: segment the meshes, compute the PRM, and use it to display the
scene with indirect illumination. The PRM, along with the location of the sample points, is saved to
files, and does not need to be computed every time. The final rendering is also implemented in the
Ogre3D engine, where it can be combined with other effects. The final rendering in the preprocessor
can be considered a preview.

The program is a standalone DirectX 9.0 application, compiles under Visual C++ 2003 with DirectX
SDK December 2006. The source code and the precompiled pathmap.exe can be found in the GTP
repository in the following path:

/gametools/gtp/trunk/App/Demos/Illum/pathmap/

6.1. RUNNING THE PATH MAP PREPROCESSOR
The program can be controlled by the following command line options:

pathmap.exe [s|p/v] -D <media input directory>
 -L <level file>

-M <materials file>
-O <mesh output dir>
-P <prm out put dir>
-E <number of entry points>
-C <number of clusters>
-S <shadow map resolution>
-U

Operations
s - Segment input meshes: creates new versions of input meshes, and outputs them to the <mesh

output dir> . These processed meshes will contain smaller submeshes, to which PRM textures
will be assigned.

p - Precompute PRM textures. Outputs textures (hdr format), a new level file (with cluster
assigment info), and an entry point file.

sp - Do both of the above.
v - Do neither of the above, only load and visualize results.

Switches
D - directory for input files (level file, material file, meshes in .x or Ogre3D xml format, texture

images)
L - file name of level file (txt file listing meshes and entities)
M - file name for material file (txt file listing material name - color texture pairs)
O - output directory for segmented meshes and the new level file (this is also the input directory for

the same files if operation 's' is not specified)
P - output directory for PRM textures and the entry point file. (this is also the input directory for

the same if operation 'p' is not specified)

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 80 / 96

E - number of entry points. Must be equal to 4096×n.
C - number of entry point clusters overall. How many of them influences a single entity is given in

the level file.
S - depth map resolution used for indirect illumination precomputation.
U - specifies entry point sampling proportional to surface area. By default, all objects receive the

same number of entry points (to have more on more complex ones).

Level files and material files can be generated with the "GTP Scene Exporter" MEL script provided
with the illumination modules. For information about exporting objects into .level files see Maya
export scripts in Section 75.

6.2. CONTROLS USED IN PATH MAP PREVIEW RENDERING
After preprocessing, or if no preprocessing tasks are specified, the Path Map preprocessor will
visualize the scene with or without Path Map indirect illumination. This provides a way to verify
results and compare them to classic techniques. A single spot light source is used for illumination, and
a simple hard shadow map is used for direct shadows. Note that the final PRM weighting can be
computed for more complex lighting and any shadow algorithm.

Both the camera and the light source can be moved according to the solution standard in DirectX
applications: W, A, S, D keyboard buttons and the mouse. Whether the camera or the light source is
moved is specified by the on-screen checkbox ‘Move light’. It is possible to render the screen from the
viewpoint of the camera, by checking ‘Look from light’. It is easier to navigate the light while using
its viewpoint. ‘Turbo’ will change the speed of movement for both the camera and the light source.
Checking ‘Entry points’ will show the sample points on the surface of the scene objects, color coded
according to the cluster they belong to. ‘Cruise’ will send the light moving on a preprogrammed path,
with is only meaningful for the default space station scene.

The ‘Tone scale’ slider sets the lighting intensity. It scales both direct and indirect illumination, be it
ambient or PRM. The ‘Lighting mode’ slider can be used to choose from four lighting modes: direct
illumination only, direct illumination with an ambient term, direct illumination with PRM, and PRM
indirect contribution only. The ‘Torch distance’ slider allows adding some offset to the render camera
when looking from the light. If ‘Move light’ is also set, this creates torch-like lighting, with some
shadows visible, as opposed to the basic headlight setup, where you cannot see shadowed areas.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 81 / 96

Figure 25. The dwarf chamber with direct, direct plus ambient, direct plus PRM indirect, and the
PRM contribution only. The classic ambient solution is insensitive to the actual position of the light

and the direction of the indirect illumination. PRM provides a more distinction and realism.

6.3. PATH MAP ATTRIBUTES IN MAYA
The path map preprocessor requires some addition information about the meshes, which are not
provided in the Ogre3D .xml format and they don't have a representation in Maya either. These
attributes can be set with a command located in the GTP menu and they will be saved in the .level file:

Figure 26. Setting Path Map attributes in Maya..

The "Add Path Map attributes" command adds these attributes to the selected objects (they appear
under "Extra Attributes").

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 82 / 96

For shapes two extra attributes are added:

Figure 27. Shape attributes governing Path Map generation.

• Photon Map Resolution: The path map resolution for this geometry.

• Photon Map Subdivision: The number of segments this geometry should be divided into.

For transforms one extra attribute is added:

Figure 28. Transform attributes governing the number of relevant clusters to an object.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 83 / 96

• Path Map Clusters: The number of clusters that are relevant to this object.

These attributes will be saved in the .level file after exporting the scene using the Export Scene
command in the GTP menu.

Figure 29. Exporting a scene from Maya.

This will show the "GTP Scene Exporter" window:

Figure 30. The GTP scene exporter dialog.

For information about the options not related to path map see Exporting Scenes from Maya.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 84 / 96

Path Map Options:

• Export Path Map Attributes: If turned on, path map attributes will be saved in the .level file.
Default: off.

• Export Path Map Materials: If turned on all materials present in the scene will be saved to a
format that can be used by pathmap.exe. These materials will use the first texture channel of
the Maya material -or it's diffuse color if no textures are assigned- to display objects. Only
active if "Export Path Map Attributes" is turned on. Default: off.

• Path Map Material File: The name of the material file where materials for pathmap.exe will
be saved. Only active if "Export Path Map Materials" is turned on. Default: Maya scene file
name with .materials extension

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 85 / 96

7. OBSCURANCES PREPROCESSOR

The obscurances preprocessor is an off-line program to generate lightmaps describing the indirect
illumination using the obscurances algorithm. The obscurance algorithm approximates radiosity, but
involves a much lower computational cost. Its main advantage lies in the fact that this technique
considers only neighboring interactions instead of attempting to solve all the global ones. Another
advantage of this algorithm is that it is decoupled from direct illumination computation, thus it bakes
only indirect illumination into textures while allows completely dynamic lighting when direct
reflections are computed. The obscurances algorithm can deal with any number of moving light
sources and generates color bleeding as well.

Figure 31. Final results generated by the obscurances method.

The obscurance preprocessor can be found in the Obscurances directory of the repository.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 86 / 96

7.1. IMPLEMENTATION OF THE OBSCURANCES PREPROCESSOR
The obscurances preprocessor is a standalone and multiplatform application that allows us to load
Ogre3D mesh and XML files and generates an image file containing the obscurance information. This
image file can be applied to Ogre scenes as a lightmap. All the libraries used in this application are
multiplatform, the GUI is made using wxWidgets library, for the graphical stuff we use the OpenGL
API and GLSL and for the XML parsing process we use the TinyXML library.

The most important classes of the application are vcObscuranceMap and CMesh. The first
contains all the necessary information and functionality to compute the obscurance map and has a
method that returns a pointer to the resulting image (vcObscurerGenerateImage). CMesh
contains the geometry of the scene and carries the scene parsing plus the hardware-accelerated
structures used in the process to generate the obscurance map.

Some of the parameters that can affect the performance of the application and the image quality of the
result are already adjusted. The number of directions taken is set to 180 (3 steps × 60 directions / step),
but this number can be modified changing the step and iteration variables in the code. Changing steps
is not a problem. The greater the number, the better the result, but it takes longer to finish. Care should
be taken when the iterations per step is increased since high values can result in some image glitches
due to saturation of the fp16 values used for accumulative blending.

Another variable that can be changed is dmax that represents the maximum distance where light
interactions are computed. The default is 0.3. The variable can be found in the RenderTransfer
function.

Another parameter that can be tweaked is the relative resolution between the projection planes used to
calculate the obscurance transfer and the resolution of the resulting obscurance map. This can be done
in vcObscurerGenerateImage at the definition of ResX and ResY. Now they are set to 2.0 so
the projection images have double the resolution of the desired obscurance map. This can be changed
to 4.0 or 8.0 but then the number of iteration should be decreased to avoid the saturation of fp16
buffer used for accumulation.

Finally, there can be some problems while filtering the obscurance map. There are three ways to solve
that:

• The first method is to expand the charts of the resulting obscurance map.

• In the first method the obscurance map created by the application is normalized (RGB
components are divided by A component). If the application does not normalize components
and the normalization is done on the GPU just before rendering the model with obscurances,
filtering problems will be avoided and chart expansion will not be necessary anymore.

• A third solution can be not using the hardware filtering and program the filtering in the shader.
This filtering shader should discard all the samples with zero alpha component.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 87 / 96

7.2. RUNNING THE OBSCURANCES PREPROCESSOR
The GPUObscurances Generator Program has a very simple GUI. This graphical interface guides the
user through four steps in order to set up the parameters needed to calculate the lightmap.

Figure 32. GUI of the obscurances preprocessor.

In order to generate the obscurance map, the user must perform the following steps:

• The first step is selecting the mesh. The mesh must be in Ogre3D XML format. After selecting
the model, its data will be parsed by the TinyXML library and stored in the application
internal storage structure.

Figure 33. Model Selection.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 88 / 96

• In the second step the obscurance map file should be specified. The generated image will be in
*.bmp format.

Figure 34. Obscurance map saving.

To store the obscurance map in bitmap format we also use the wxWidgets library.

• The third step lets the user choose the desired image resolution.

Figure 35. Selecting Obscurance map resolution.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 89 / 96

• Finally, pushing the start button, a progress bar will appear while the obscurance generation
process is being performed.

Figure 36. Obscurances generation progress bar.

After completion of the progress bar, the obscurance map is stored as a *.bmp file in the
destination folder chosen in step 2.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 90 / 96

8. BILLBOARD TREE PREPROCESSOR

The Billboard Tree Preprocessor provides a set of tools for creating and previewing 3D tree. The
generated tree is represented by a set of billboards, called billboard cloud. The billboards are built
automatically by a clustering algorithm. Unlike classical billboards, the billboards of a billboard cloud
are not rotated when the camera moves, thus the expected occlusion and parallax effects are provided.
On the other hand, this approach allows the replacement of a large number of leaves by a single semi-
transparent quadrilateral, which considerably improves the rendering performance. A billboard cloud
well represents the tree from any direction and provides accurate depth values, thus the method is also
good for shadow algorithms. The billboard cloud decomposes the original object into subsets of
patches and replaces each subset by a billboard. These billboards are fixed and the final image is the
composition of their images.

The Billboard Tree Preprocessor have been developed using the Ogre3D engine, it is compatible
with both OpenGL and Direct3D, and requires the following dependencies.

• Ogre3D

• Boost

• FCollada

• ImageDebugger

These dependencies can be found in the following repository folder:

www.gametools.org/repos/gametools/NonGTP/

In the figure below the complete production pipeline is shown.

Figure 37. Billboard tree generation and production pipeline.

The main documentation is divided into two manuals in the following folders.

The user manual covers all the features available in this preprocessor:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/doc/userManual/

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 91 / 96

The developer manual it is basically a Doxygen documentation of the main components of this
preprocessor. This documentation is useful if the user wants to extend the application in some specific
way:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/doc/devManual/

All the media files used during the billboard generation can be found at:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/media

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/media

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/media

The media folder is the default folder where you will find the textures, meshes, and shaders used by
this preprocessor.

• The default shaders are placed in media/general.

• There is a sample tree in media/chestnut and a sample configuration file in
/media/chestnut/leaves that shows how to process the sample tree.

Project make files folder:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/scripts/IBRBillboardCloudTreeGenerator.sln

Source code folders:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/include/

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/src/

8.1. RUNNING THE BILLBOARD TREE GENERATOR
The process of creating a billboard cloud tree consists of the following steps:

1. The 3D content creator creates a high detailed polygonal tree with some available tools, such
as Xfrog or PovTree.

2. The high detailed tree model should be decomposed into the leaves and the trunk.

3. The leaves model is converted to the Ogre3D Mesh file format. We have provided exporters
available for Maya or 3ds Max for this conversion.

The trunk model is not processed with the generator tool and the designer must create a set of
detail levels of the original mesh using a simplification software, for example, the tools of the
geometry WP. The Billboard Tree Preprocessor receives as input the leaves and the texture used
to map each leaf.

The output generated is a billboard cloud mesh and three texture atlases as described here:

• The billboard cloud model that replaces the original leaves model.

• The texture atlas that contains the colors of all leaves. This texture will be used by lower-end
graphics hardware with standard texture mapping.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 92 / 96

• The rotated leaf texture atlas contains the leaf placed with different orientations.

• The leaves distribution atlas texture. This texture will be used with the rotated leaf texture
atlas in the technique called indirect texturing.

Figure 38. Sample polygonal tree decomposed in two models. The leaves model will be processed with
the Billboard Tree Preprocessor.

The Billboard Tree Preprocessor is a command line application managed through configuration files.
For each kind of tree, we should create a configuration file. The application must have as input
parameter the configuration file as shown here:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/bin/Release

IBRBillboardCloudTreeGeneratorCmd.exe −cfg . . / . . /media/chestnut/leaves/sample.cfg

Configuration file description:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/OGRE/media/chestnut/leaves/sample.cfg

The configuration file contains all the parameters needed to obtain the desired output, including

• The media folder parameters.

• The input file parameters.

• The output file parameters.

• The user custom parameters.

• Input folders.

• Temporary folders.

• Output folders.

• Rotated leaf texture atlas parameters:

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 93 / 96

This is the sample input leaf texture filename
Diffuse Color Entity Texture Name chestnutLeaf.png
The output texture atlas file name
Diffuse Color Entity Texture Atlas Name chestnutRotatedLeafAtlas.png
The output texture atlas bit range (8 bits , 16 bits , 32 bits per channel)
Diffuse Color Entity Texture Atlas Bit Range 8
The output texture atlas size in pixels
Diffuse Color Entity Texture Atlas Size 512
The number of textures with different leaf orientations we want
Diffuse Color Entity Texture Atlas NumSamples 16

• Diffuse color texture atlas parameters:
The output texture atlas file name
Diffuse Color Texture Atlas Name diffuseColorAtlas.png
The output texture atlas bit range (8 bits , 16 bits , 32 bits per channel)
Diffuse Color Texture Atlas Bit Range 8
The output texture atlas size in pixels
Diffuse Color Texture Atlas Size 1024
The size that must have each billboard texture in the texture atlas
Diffuse Color Texture Size 16

• Leaves distribution texture atlas parameters:
The output texture atlas file name
Indirect Texture Atlas Name indirectTextureAtlas.png
The output texture atlas bit range (8 bits , 16 bits , 32 bits per channel)
Indirect Texture Atlas Bit Range 8
The output texture atlas size in pixels
Indirect Texture Atlas Size 1024
The size for each billboard texture in the texture atlas
Indirect Texture Size 16

• User custom parameters:
This is the maximum number of billboards desired
EntityClusters MaxClusters 1024

Note that the Billboard Tree Preprocessor has more custom parameters. Refer to the user manual
included with the tool.

The Billboard Tree Preprocessor has three different view modes:

• Diffuse Color Texture Atlas View Mode: This view mode shows the diffuse color texture atlas
generation process, and each billboard plane with its texture mapped leaves.

• Indirect Texture Atlas View Mode: This view mode shows the leaves distribution impostor
texture atlas generation.

• Rotated Leaf Texture Atlas View Mode: This view mode shows the rotated leaf texture atlas.

• Billboard Cloud Final View Mode: In this mode you can look at your billboard cloud mesh
using indirect texturing or standard texture mapping techniques, is good to check that the
resulting billboard cloud tree has been generated correctly. Here we can apply a tweak to the
indirect texturing leaf position.

Views controls:

• Key F1: Enable Diffuse Color Texture Atlas View Mode.

• Key F2: Enable Indirect Texture Atlas View Mode.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 94 / 96

• Key F3: Enable Rotated Leaf Texture Atlas View Mode.

• Key F4: Enable Billboard Cloud Final View Mode.

• SPACE: This key iterates along all the billboards generated to see how each group of leaves has
been placed on them. This key is working only in the Diffuse Color Texture Atlas View
Mode and Indirect Texture Atlas View Mode.

Navigation controls:

These controls are enabled only in the Billboard Cloud Final View Mode. With them you can go
around the billboard cloud.

• Key E/Key D: Accelerate/Brake

• Key S/Key F: Turn

• Key PGUP/Key PGDOWN: Shift

8.2. BILLBOARD TREE PLUGIN IN MAYA
The billboard tree preprocessor has been integrated into Maya. The Billboard Tree Maya
plug-in can be found at:

/gametools/gtp/trunk/Lib/Illum/IBRBillboardCloudTrees/Maya

The Billboard Tree Plugin have been developed for improving the integration of the billboard cloud
generation process with Maya Unlimited 5.0, 6.0, and 7.0.

Before starting to work with the plug-in, we should check if the Billboard Cloud Generator Plug-in is
loaded. For checking this, we can click on the Windows-Settings/Preferences-Plug-in Manager. . . . If
we cannot find the plug-in called BillboardCloudGenerator.mll, then we should load it executing the
following steps:

1. Click on the Browse button, search the plug-in package folder bin/release/.

2. We find the file called BillboardCloudGenerator.mll and open it.

3. Now this plug-in will appear in the Maya plug-in list.

We should check if the loaded checkbox of the plug-in is marked. When the plug-in is loaded, another
Maya window is created that logs all steps executed by the plug-in. This output window is very useful
to check if there have been errors caused by the plug-in.

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 95 / 96

Figure 39. Main icons of the Billboard Tree Plugin.

Figure 40. Output log Billboard Cloud Plug-in window.

The steps necessary to use the Billboard Tree Plugin are also shown in the billboard tree
generation video tutorial available in the repository:

www.gametools.org/projects_udg/gt_ibr/videos/gtIBRGeneration.wmv

8.3. MODELLING BILLBOARD CLOUD TREES IN 3DS MAX
The Billboard Tree Preprocessor is able to export the foliage billboards in a 3D interchange format
called Collada, which enables us to use the simplified trees in several professional tools, such as 3ds
Max or Maya Unlimited. The following folder contains a .max sample file with sample billboard cloud
trees with all the rendering properties detailed in this section. Those files can be exported to Ogre3D
or other game engines, such as Shark3D.

/gametools/gtp/trunk/App/Demos/Illum/IBRBillboardCloudTrees/3dsMax/indirectTexturing/

Doc. Identifier:

GameTools-5-D5.4-03-1-1-
Finished Illumination

Modules.doc

FINISHED MODULES FOR ILLUMINATION

Date: 15/03/2007

IST-2-004363 RESTRICTED RE 96 / 96

We have developed an indirect texturing 3ds max Effect File to allow interactive previsualizations of
the game scenes inside 3ds max with the indirect texturing technique. This will allow designers to
control the final scene appearance in the scene composition process. The indirect texturing Effect File
contains the shading properties to be used to render the billboard trees inside 3ds max.

When the designer loads the Collada files of the billboard trees generated by the Billboard Tree
Preprocessor, they will appear as shown below without the final shading properties.

Figure 41. Left: Billboard tree without the indirect texturing technique being used. Right: Billboard
tree using the indirect texturing Effect File.

In order to use the indirect texturing Effect File to enable the expected foliage appearance the user
should activate the material window (Key M), open the Material/Map Browser and choose DirectX 9
Shader. Then the user has to load the following indirect texturing Effect File:
/gametools/GTP/trunk/App/Demos/Illum/IBRBillboardCloudTrees/3dsMax/indirectTexturing/
indirectTexturingLighting.fx

The billboard cloud meshes will appear shaded with the foliage textures using the indirect texturing
technique. After scene composition, the forest scenes can be exported to the game engines such as
Ogre3D using the respective game scene exporters.

