
Finished modules for geometry

2

Contents

1 Introduction 7

1.1 Overview . 7

1.2 Developed models . 8

1.3 Document organization . 8

2 GeoTool usage 9

2.1 Introduction . 9

2.2 Description . 9

2.3 User Interface . 10

2.3.1 Basic operations . 11

2.3.2 Simple operations . 12

2.3.3 Complex operations . 13

2.4 LOD Generation . 15

3 The Geometry Programming guide 17

3.1 Introduction . 17

3.2 Concepts . 17

3.3 Usage . 18

3.3.1 The IndexData interface 18

3.3.2 Initialization . 19

3.3.3 Changing the LOD . 20

4 Runtime module integration 23

4.1 Introduction . 23

4 CONTENTS

4.2 Integration into Ogre . 23

4.2.1 Demos . 24

4.3 Integration into Shark3D . 26

4.3.1 Demo . 27

5 LodStrips multiresolution module 29

5.1 Introduction . 29

5.2 Geometry::LodStripsLibrary Class Reference 29

5.2.1 Detailed Description . 31

5.2.2 Constructor & Destructor Documentation 31

5.2.3 Member Function Documentation 31

6 LodTree multiresolution module 33

6.1 Introduction . 33

6.2 Geometry::LodTreeLibrary Class Reference 35

6.2.1 Detailed Description . 36

6.2.2 Constructor & Destructor Documentation 36

6.2.3 Member Function Documentation 36

7 LodManager module 39

7.1 Introduction . 39

7.2 Geometry::LodManager Class Reference 39

7.2.1 Detailed Description . 40

7.2.2 Constructor & Destructor Documentation 41

7.2.3 Member Function Documentation 41

8 Stripi�cation module 43

8.1 Introduction . 43

8.2 Geometry::MeshStripi�er Class Reference 44

8.2.1 Detailed Description . 45

9 Simpli�cation module 47

9.1 Introduction . 47

CONTENTS 5

9.1.1 Simpli�cation for general meshes 47

9.1.2 Foliage simpli�cation . 49

9.2 Geometry::GeometryBasedSimpli�er Class Reference 49

9.2.1 Detailed Description . 50

9.2.2 Constructor & Destructor Documentation 50

9.2.3 Member Function Documentation 51

9.3 Geometry::ViewPointDrivenSimpli�er Class Reference 51

9.3.1 Detailed Description . 52

9.3.2 Member Function Documentation 52

9.4 Geometry::TreeSimpli�er Class Reference 52

9.4.1 Detailed Description . 53

9.4.2 Constructor & Destructor Documentation 54

9.4.3 Member Function Documentation 54

10 Helper classes reference 55

10.1 Introduction . 55

10.2 Geometry::Mesh Class Reference 56

10.2.1 Detailed Description . 57

10.3 Geometry::SubMesh Class Reference 58

10.3.1 Detailed Description . 59

10.3.2 Member Data Documentation 59

10.4 Geometry::VertexBu�er Class Reference 60

10.4.1 Detailed Description . 61

6 CONTENTS

Chapter 1

Introduction

1.1 Overview

One of the main problems of interactive graphics applications, such as computer
games or virtual reality, is the geometric complexity of the scenes they represent.
In order to solve this problem, di�erent modelling techniques by level of detail
have been developed, trying to adapt the number of polygons of the objects to
their importance inside the scene. The application of these techniques is com-
mon in standards such as X3D, graphic libraries such as OpenInventor, OSG,
and even in game engines such as Torque, CryEngine, etc., where models with
continuous levels of detail, based mainly on Progressive Meshes, are introduced.

The tendency in the recent years has been to improve the features of contin-
uous models by using the possibilities o�ered by the graphics hardware to the
maximum, with the intention of competing with discrete models that, although
more limited, are perfectly adapted to current graphics hardware. Speci�cally,
researchers have worked on the representation of multiresolution models which
use triangle strips to accelerate visualization by means of vertex arrays located
in the GPU. The fundamental problem of these techniques is the fact that a
continuous model needs to make changes in the list of indexes of the primitives
it draws, and carrying out this kind of operations causes graphics hardware to
lower its performance.

Nevertheless, the multiresolution models available nowadays are not always suit-
able for all kind of meshes. Many of the current interactive applications such
as �ight simulators, virtual reality environments or computer games take place
in outdoor scenes, where the vegetation is an essential component. The lack of
trees and plants can detract from their realism. Tree modelling has been widely
investigated, and its representation is very realistic. However, tree models are
formed by such a vast number of polygons that real-time visualization of scenes
with trees is practically impossible, and it is necessary to resort to some method

8 Introduction

that diminishes the number of polygons that form the object, such as multireso-
lution modeling. But the multiresolution models that have appeared up to now
deal with general meshes and do not work properly with this kind of meshes.

1.2 Developed models

We have developed two di�erent multiresolution models to face this problem: a
model for generic meshes (LodStrips) and a model speci�cally designed to han-
dle trees and plants (LodTrees). We also needed to create a set of stripi�cation
and simpli�cation algorithms, as a base for the creation of our multiresolution
models. We also have developed a module designed to e�ciently use the pre-
vious multiresolution algorithms in massive scenes while preserving the overall
performance and avoiding sudden stalls in the graphics pipeline. Finally, a
module (LodManager) to handle e�ciently large scenes composed of hundreds
of multiresolution objects has been developed.

To make easy the construction of multiresolution objects a stand-alone applica-
tion has been developed: the GeoTool. This application can also be used as a
front-end tool to use the developed modules: stripi�cation, simpli�cation, and
multiresolution construction and visualization.

In order to prove the validity of our algorithms in real world engines and soft-
ware, we have developed some demos that demonstrate the integration in the
Ogre and Shark engine.

1.3 Document organization

This document is organized according to the developed modules commented pre-
viously. For each module, an explanation about the theory involved is provided
as well as the speci�cation of the �nal API.

First, a quick guide that shows how to use the Geotool is presented, including
a chapter showing how to create multiresolution models. After that, the mul-
tiresolution programming guide is presented. This shows how to integrate the
multiresolution run-time modules into existing aplications. the next chapter
describes the integration of our modules into the Ogre and Shark 3D engines.
The rest of the chapters are intended as a reference guide of the most important
classes of the geometry modules.

Chapter 2

GeoTool usage

2.1 Introduction

This is a standalone application used to review the performance of the Game-
Tools Geometry Library and a useful tool to quickly generate multiresolution
models.

2.2 Description

GeoTool is a multiplatform, portable and engine independent tool that allows
us to manipulate meshes and build multiresolution models. It can also perform
more basic operations such as mesh simpli�cation or stripi�cation. The appli-
cation uses the FLTK toolkit to provide a portable graphical user interface, and
the OpenGL real-time rendering API.

The application uses the Ogre mesh �le format to load and store geometry data.
This �le format supports mesh models composed by any number of sub-meshes.
Each sub-mesh can be represented by any rendering primitive (a triangle list or
a triangle strip). This is useful to store trees with the LODTree model, because
the trunk must be represented by triangle strips and the leaves by triangle lists.
Moreover, the Ogre �le format supports bones and skeletal animations.

GeoTool allows the user to perform three di�erent types of operations:

Basic operations: these operations involve �le, edit and render operations.
The rendering primitive can be changed (wire mode, solid mode) as well
as the lighting surface parameters (�at and smooth). The rendering view-
point can also be changed in order to focus on the desired region of the
model. Moreover, the application can load a previously computed LOD-

10 GeoTool usage

Figure 2.1: The GeoTool application

Strips or LODTree model and render it.

Simple operations: these operations involve mesh stripi�cation and simpli�-
cation. These are catalogued as simple operations because they are done
in a single step and return a transformed standalone mesh. Two di�er-
ent simpli�cation approaches are available: geometry-driven simpli�cation
and viewpoint-driven simpli�cation.

Complex operations: these operations are LODStrip construction and
LODTree construction. Internally, these complex operations perform some
simple operations such as stripi�cation, simpli�cation and vertex reorder-
ing. It is important to note that they are much more time consuming than
basic operations. They take a mesh as input, then they construct a new
mesh with the associated multiresolution sequence, and save the result to
disk. We will explain this process in more detail in the following sections.

2.3 User Interface

The user interface of GeoTool has been designed to be easy to use. The menu
bar across the top manages all the operations that can be performed on a mesh.

The main window in the center shows the current render state, which can be
changed using the Render menu. The panel on the right shows a more detailed
view of the current selected action. For example, when the simplify option
becomes selected, the panel on the right shows more information and options
about the selected action.

The status bar on the bottom of the application shows some information about
the loaded model, such as its vertices, strips and triangle count.

2.3 User Interface 11

Figure 2.2: The simplify menu

2.3.1 Basic operations

This section the explains basic operations performed by the GeoTool application.
The �rst three menus File, Edit and Render, perform basic operations.

• File Menu

Open: Shows a dialog to open an Ogre mesh �le and load it into the
application.

Save (As): Saves the current mesh into an Ogre mesh �le.

Load Textures: Allows to select the texture of the entire model. In
addition, it allows us to select the texture of for a single submesh.

Quit: Terminates the application.

• Edit Menu

Undo: Gets the current mesh back to its previous state.

Fit: Modi�es the current view to �t the loaded mesh inside the screen.

Rotate/Pan: Selects the action to be taken when the user drags the
mouse pointer.

Mesh info: Con�gures the right panel to show mesh information, such
as its vertex and triangle counts, the rendering primitive type and
its sub-mesh count.

Select leaves: Con�gures the right panel to show a sub-mesh selector.
This allows the user to select the sub-mesh that represents the tree-
top. Pushing the process button the folliage is selected.

• Render Menu

12 GeoTool usage

Figure 2.3: The open menu

Wire / Solid: Selects the geometry rendering mode: wireframe or solid.

Flat / Smooth: Selects the surface shading mode: �at or smooth
(Gouraud).

Figure 2.4: The render menu

2.3.2 Simple operations

The simple operations are performed in a single step of the Geometry Game
Tools Library and modify the given mesh.

• Stripify Menu: This menu has no popup menu associated. Instead, it
immediately opens the Stripi�cation panel. The process button will start

2.3 User Interface 13

the stripi�cation. The progress bar will show the stripi�cation status.
Only manifold meshes can be stripi�ed. If a mesh is not manifold an error
message is shown.

Figure 2.5: The stripify operation

• Simplify Menu The simpli�cation of a mesh object can be accomplished
with one of the two following simpli�cation modes:

Mesh simpli�cation: Performs edge collapse simpli�cation. Moreover,
there are two ways to perform simpli�cation in edge collapse.

Geometry-based: Fast method of simpli�cation. Simplify mesh
objects based on geometry relation between triangles.

Viewpoint-based: Simplify the mesh object based on image
processing.

Leaves simpli�cation: Performs leaves collapse simpli�cation. Only
simpli�es the mesh that was chosen as foliage with the Edit/Select
Leaves menu.

In addition, the mesh reduction factor can be chosen as a percentage value
or as a number of vertices.

2.3.3 Complex operations

The complex operations visually need several of simple geometry operations.
There are two types:

• LODStrips Menu

14 GeoTool usage

Generate: Generate a mesh with its correspondent LOD (Level Of De-
tail) sequence. The process to accomplish this is similar to the sim-
pli�cation, but a new step is added. In the right panel appear a new
Build button that performs the stripi�cation and the build process.
The build process gets the simpli�cation sequence done by the simpli-
�cation and the stripi�ed model, then generates the new mesh with
its correspondent LOD sequence.

Figure 2.6: Generating LODStrips

Visualize: This allows us to see the result of the LODStrip process. The
level of detail of the object can be changed with a slide bar that
appears in right panel.

Figure 2.7: Visualize LODStrips

• LODTrees Menu

2.4 LOD Generation 15

Generate: This process gets a tree object with the LODStrip of the
trunk. The foliage should be selected the Edit/Select Leaves menu.
The user interface operation is the same that the LODStrips one.
First, simplify the foliage selecting the percent or the number of tri-
angles desired. Finally pushing the build button the LODTree is
generated.

Visualize: Two slidebars appears in right panel. One to change the level
of detail of the trunk and the other to change the level of detail of
the foliage.

Figure 2.8: Visualize LODTree

2.4 LOD Generation

This section explains the steps that are necessaries to build a LOD object. The
LOD generation involves mesh stripi�cation and mesh simpli�cation.

The �rst step is to open a mesh object. We do this with the Open option of
the File menu. Next step is select option Generate of the LODStrip menu to
begin the generation process (see �gure 2.6). At right appears the Generate
LODStrips panel, in which we can choose the simpli�cation method between
Geometry base and Viewpoint Driven. In addition, we must specify mesh reduc-
tion by percent or by the number of triangles to obtain. Pushing the Process
button the simpli�cation is performed and its result can be viewed at screen. At
this point, if the result of simpli�cation doesn't convince us, we can undo this
step and change simpli�cation options. In the other hand, if the results of the
simpli�cation are OK, we can build the LOD object pushing the Build button
and �lling the name of this one. If we can view the result of build process can
do this by selecting the option Visualize of the menu LODStrips that makes a

16 GeoTool usage

slide bar appear in the right panel (see �gure 2.7). By moving the slide bar we
can change the Level Of Detail of the object.

First of all to perform LODTree we must select the Select Leaves option of the
Edit menu (see �gure 2.9). This makes that the Select Leaves panel appears. In
this panel there is a mesh info browser that shows the submeshes in which is
divided the object and relevant geometric information. Clicking a submesh in
the browser paints it in red in the view window. We must choose the treetop
submesh and push the button Process to make the selection of leaves. Next we
can go to do the LODStrip procress as described before (see �gure 2.6). Finaly
the result of the LODStrip process is used as input of the LODTree one. Using
the LODTree menu we can perform the LODTree building following the same
steps than a LODStrip process.

Figure 2.9: Select Treetop

Chapter 3

The Geometry Programming

guide

3.1 Introduction

This chapter is conceived as a guide to use the LOD models constructed with
the GeoTool in external applications. The Ogre Engine is used in the examples.

A LOD model is represented in the GameTools Geometry Package with the
Geometry::LodObject class. There are two types of LOD objects: those that
represent a general LODmodel (implemented in theGeometry::LodStripsLibrary
class) and those that represent trees (Geometry::LodTreeLibrary class). Both
LOD model types store its data in a binary �le format, extended from the Ogre
Mesh �le format speci�cation. These extensions involve the creation of two new
chunks of data that are appended to the Mesh �le. These two new chunks are
transparent for standard Ogre Mesh loaders, and therefore they will only be
detected by our software. These chunks contain the LOD information required
to change the level of detail of an object in real time.

3.2 Concepts

The Geometry::LodStripsLibrary class represents a general mesh which is able
to change its level of detail. The mesh can be composed of several sub-meshes.
The LOD algorithm a�ects the whole object, it's not possible to restrict to any
submesh.

The Geometry::LodTreeLibrary represents a tree or a plant which is able to
change its level of detail. One of those submeshes is dedicated completely to
store the foliage. The rest are dedicated to store the trunk. The trunk itself

18 The Geometry Programming guide

uses internally the LodStrips algorithm to manage the LOD the trunk. The
class o�ers methods to change the level of detail of the foliage and the trunk
separately.

3.3 Usage

First of all, an extended mesh �le must be created using the GeoTool application.
This �le must contain the required LOD info to run the LodStrips algorithm
(see section 2.4 for more details). To use this �le into an external application
as a LOD object the general process will be:

1. Initialization:

(a) Load the geometry information from the extended mesh �le.

(b) Load the LOD information.

(c) Create an instance of LOD model feeding it with the LOD data.

2. To change the level of detail:

(a) Call the GoToLOD method.

The following sections will explain this process in more depth.

3.3.1 The IndexData interface

The Geometry::LodStripsLibrary and Geometry::LodTreeLibrary classes can cal-
culate the changes in the level of detail of an object. These classes have been
designed to be API independent. However, updating the indices of a mesh is
an API dependant task, because it's dependant on how the client application
stores the indices to render the geometry. For example, the client application
can use OpenGL or Direct3D, which manage their indices in a very di�erent
way, but our library must support them.

Therefore, the Geometry::LodStripsLibrary and Geometry::LodTreeLibrary
classes know how to calculate the new set of indices to render the geometry,
but they do not know how or where to store the resulting indices. To solve this,
we have developed our library using an IndexData abstraction interface. The
LodStrips and LodTree algorithms use this interface to communicate with the
client code to set the indices at a given LOD.

The user must inherit a custom class from the IndexData interface and im-
plement its virtual methods to provide the desired functionality. Thus, an
instance of the user custom IndexData class will be passed to the Geome-
try::LodStripsLibrary and Geometry::LodTreeLibrary classes at creation time.
The code bellow shows the IndexData class interface.

3.3 Usage 19

class IndexData

{

public:

IndexData(void){}

virtual ~IndexData(void){}

virtual void Begin(unsigned int submesh, unsigned int numinds)=0;

virtual void SetIndex(unsigned int i, unsigned int index)=0;

virtual void End(void)=0;

virtual void BorrowIndexData(const IndexData *)=0;

};

The functions above will be called when a LodStrips or LodTree instance must
change the level of detail. The meaning of each method is described below:

• Begin(subm,numi) indicates that the following numi indices must be mod-
i�ed on the submesh subm. Hint: This is a good place to lock an index
bu�er.

• SetIndex(i,idx) speci�es the new value for the index at the position i.

• End() indicates that the changes made to this submesh are �nished. Hint:
This is a good point to unlock an index bu�er.

• BorrowIndexData(indexdata) indicates that the object must use tem-
porarily the new indexdata set. This is only used by the LodManager. If
you're not planning to use it, you can leave this function unimplemented.

3.3.2 Initialization

The Geometry module includes a class to load an extended mesh �le to extract
all information it contains. This class is Geometry::MeshLoader and it is simply
used creating an instance of the class and using its load() method. Here is an
example:

Geometry::GeoMeshLoader meshloader;

Geometry::Mesh *mesh = meshloader.load("sphere.mesh");

This call returns a Geometry::Mesh object which describes the geometrical
information of a mesh (vertices, indices, bones, ...). To be able to create
LOD object, the LOD information of the �le must be extracted. The method
GetLodStripsData() of the Geometry::MeshLoader class can be used to obtain
the LOD information. If the function returns NULL then the loaded �le didn't
contain LOD info and it can't be used as a multiresolution object.

If it doesn't return NULL a LOD object can be instantiated using the Geome-
try::LodStripsLibrary class. Thus, a LOD object is created this way:

20 The Geometry Programming guide

Geometry::LodStripsLibrary *lodobj;

lodobj=new Geometry::LodStripsLibrary(meshloader.GetLodStripsData(),

mesh,

new CustomIndexData(ogreMesh));

A LodTree object is instantiated in a similar way. The main di�erence is that we
must also extract the LodTree-related LOD info (the foliage simpli�cation se-
quence) as well as the LodStrips related info (used for the trunk). This LodTree
info is a requirement to instantiate a Geometry::LodTreeLibrary object. The
code below shows how to load the info from a �le and instantiate a LodTree.

// load LOD info from the object

meshloader=new Geometry::GeoMeshLoader;

Geometry::Mesh *mesh = meshloader->load("tree.mesh");

if (!meshloader->GetLodStripsData())

OGRE_EXCEPT(1, "LOD info for the trunk not found","LOD Demo");

if (!meshloader->GetTreeSimpSeq())

OGRE_EXCEPT(1, "LOD info for the foliage not found","LOD Demo");

myLodTree = new Geometry::LodTreeLibrary(meshloader->GetLodStripsData(),

meshloader->GetTreeSimpSeq(),

mesh,

new CustomIndexData(ogreMesh));

3.3.3 Changing the LOD

At this moment we have already instantiated a multiresolution model. The
LOD changing involves �nding the new set of indices that describe the ob-
ject at a given LOD. Both classes, Geometry::LodStripsLibrary and Geome-
try::LodTreeLibrary calculate this set of indices and apply them to the mesh
with the IndexData user interface implemented by the user. To change the LOD
of a multiresolution object the user must call the method GoToLod() specifying
the desired level of detail in the range [0,1] (0 for the minimum and 1 for the
full LOD).

myLodObject->GoToLod(lodfactor); // lodfactor \in [0,1]

After calling this function, the target mesh should have changed e�ectively its
level of detail and it should be ready to be rendered. The following code shows
an example implementation (used in the Ogre demo applications) as a bridge
between the IndexData interface and the index bu�ers used by Ogre to handle
the geometry of the target mesh.

3.3 Usage 21

class CustomIndexData : public Geometry::IndexData

{

private:

Ogre::Mesh *targetMesh;

Ogre::HardwareIndexBufferSharedPtr ibuf;

Ogre::RenderOperation mRenderOp;

unsigned long* pIdx;

public:

CustomIndexData(Ogre::Mesh *ogremesh):Geometry::IndexData(){

targetMesh=ogremesh;

pIdx=NULL;

}

virtual ~CustomIndexData(void){}

virtual void Begin(unsigned int submeshid, unsigned int indexcount){

targetMesh->getSubMesh(submeshid)->_getRenderOperation(mRenderOp,0);

ibuf = mRenderOp.indexData->indexBuffer;

mRenderOp.indexData->indexCount = indexcount;

pIdx = static_cast<unsigned long*>(ibuf->lock(Ogre::HardwareBuffer::HBL_NORMAL));

}

virtual void SetIndex(unsigned int i, unsigned int index){

pIdx[i] = index; //lodStripsLib->dataRetrievalInterface->GetIndex(k+offset);

}

virtual void End(){

ibuf->unlock();

}

virtual void BorrowIndexData(const Geometry::IndexData *){}

};

The code above is quite straightforward. The Begin() function is called each
time a submesh is going to be modi�ed. Thus, the example locks the appropi-
ate index bu�er to modify it in the following SetIndex() calls. When the mesh
update is complete, the End() function is called and we use it to unlock the pre-
viously opened index bu�er. The funcion BorrowIndexData is only used by the
LodManager, so if one does not need it, the funcion can remain unimplemented.

22 The Geometry Programming guide

Chapter 4

Runtime module integration

4.1 Introduction

Integration of our modules in existing applications and game engines is a very
important task. The geometry modules have been designed as �exible as possi-
ble, so that they can be successfully integrated in any situation.

This chapter is organized as follows: �rst, the integration into Ogre will be
explained and, later, all issues about the integration into Shark will be exposed
as well as the solutions provided to facilitate the task.

4.2 Integration into Ogre

The integration of our modules into Ogre-based applications is a very straight-
forward task. This is due to the fact that the GameTools Geometry Modules
were initially designed having this engine in mind. The �le format used to
store multiresolution models is an extension of the Ogre mesh �le format which
has backwards compatibility with the standard �le format. The Ogre mesh �le
format is a chunk based format. When a multiresolution model is constructed,
the results are stored in the �le in a speci�caly designed chunk. This way,
both geometry and multiresolution data are stored in a compact �le which
has backwards compatibility with standard Ogre applications, as the default
Ogre behaviour is to ignore unknown chunks. For more information about
the integration of the geometry modules into the Ogre Rendering Engine read
chapter 3.

24 Runtime module integration

Figure 4.1: Screenshot of the LodStrips demo.

4.2.1 Demos

We have developed some demos to demonstrate the geometry modules and its
integration into a graphics rendering engine: The Ogre Rendering Engine.

4.2.1.1 LodStrips demo

The �rst demo demonstrate the LodStrips multiresolution run-time library
(Geometry::LodStripsLibrary). The application (�gure 4.1) shows a group of
models which are able to change their level of detail depending on the distance
of the group of objects to the camera. The information panel on the bottom-left
corner of the screen shows the current LOD factor, frames per second and the
amount of geometry sent to the renderer. It can be seen how the frame rate
increases as the LOD decreases.

The level of detail can be calculated in two ways: automatic LOD (based on
the distance of the group to the camera) and manual LOD (the user changes
the level of detail independently from the distance), which changes the level of
detail of the objects manually. This last mode is useful to see the meshes in
detail even when their level of detail is set to the minimum.

The demo also shows how LOD operations can be minimized by grouping some
instances of the same model to be managed by a single LodStrips multiresolution
model. This is useful when some models need similar levels of detail and will
improve the overall performance.

4.2 Integration into Ogre 25

Figure 4.2: Screenshot from the LodTrees demo

4.2.1.2 LodTrees demo

This demo presents the LodTrees multiresolution run-time library (Geome-
try::LodTreeLibrary). The demo is composed of some groups of multiresolution
trees. The LOD of each group, composed by some trees of the same type, is
managed by a single LodTree instance to optimize performance. The result is a
forest of multiresolution trees which change its level of detail depending on the
distance to the camera of each one of these groups. Figure 4.2 shows an image
of the LodTrees demo.

4.2.1.3 LodManager demo

The LodManager demo features a massively populated scene composed of more
than a thousand models. Each one of them is attached to an inpedendent
multiresolution model instance that manages its level of detail. To manage the
level of detail of such a vast scene, we introduce the use of the LodManager,
which decides whether an object can freely change its level of detail or just has
to borrow an already calculated LOD snapshot. For more details about this
technique and its advantages see chapter 7.

The demo allows the user to enable or disable the LodManager capabilities
to show the di�erence in performance. The LodManager is able to keep the
bottleneck of the application in the graphics engine, not in the LOD calculations.

26 Runtime module integration

Figure 4.3: A view of the massive scene of the LodManager demo.

4.3 Integration into Shark3D

The integration into Shark 3D has been more complicated compared to the
integration into Ogre. This is completely reasonable because our geometry
classes are based on Ogre: the �le format used in our algorithms is the Ogre
mesh �le format extended (which can be directly read from Ogre) and the class
design is very similar to the Ogre's design (class Mesh, class SubMesh, class
VertexBu�er).

However, the architechture and design of Shark 3D also poses some inconvenients
for the integration. The main problem is the fact that the current version of
Shark does not o�er support for triangle strips. This problem forced us to
develop a new rendering module for Shark 3D which lets the engine use the
triangle strips drawing primitive, because our LodStrips algorithm is based on
triangle strips.

Moreover Shark 3D mesh �le format and the production pipeline of Shark 3D
mesh �les are not suitable for our purposes. It was necessary to implement a new
mesh loader module for Shark 3D to allow the engine to load multiresolution
models in our own �le format.

To summarize, the following list presents the modules we needed to develop to
integrate our multiresolution model into Shark 3D:

• A module to load the .mesh �le format. This module loads mul-
tiresolution and geometry data from our own �le format. The geometry
data is then passed to Shark 3D and the multiresolution data is loaded
into memory to be used by our run-time multiresolution library.

• A new renderer module. This is necessary because the standard ren-
derers for Shark 3D did not support triangle strips, which is a mandatory

4.3 Integration into Shark3D 27

Figure 4.4: A shot of the Devil's Head demo used as an example of the integra-
tion.

feature for using the LodStrips multiresolution model. Shark 3D rendering
power rely mostly in its Shader Component model. We use this Shader
Component system to extract the level of detail before each frame is about
to be rendered. The LOD factor is calculated based on the distance of the
object to the camera. Therefore, a new renderer module has been devel-
oped to both change the level of detail and to render the object using the
triangle strips rendering primitive.

4.3.1 Demo

Once all necessary modules have been developed, the demo can �nally be con-
structed. The demo shows the integration of the LodStrips algorithm into the
Shark 3D game engine. For the demo we have used the original Devil's Head
demo built by Spinor changing the Devil's Head model with a multiresolution
version of the same model.

The demo features a multiresolution model which is able to change its level of
detail depending on the distance to the camera. As we wanted to meassure
performance improvements when using our multiresolution algorithm we have
reduced the complexity of per-pixel e�ects in the demo. Therefore, the model
is rendered using a per-vertex lighting method, instead of the original bump-
mapped light technique. Figure 4.4 shows a screenshot of the demo.

28 Runtime module integration

Chapter 5

LodStrips multiresolution

module

5.1 Introduction

Multiresolution modelling is a useful way to deal with the rendering of large
scenes. Multiresolution modelling allows us to change the level of detail of the
objects in the scene in order to optimize the amount of geometry sent to the
renderer. There are several criteria to decide which level of detail must be used
to represent an object. Mainly, the most used criterion is the visual importance
of the object, using for example the distance of the object to the camera or the
size of the object's bounding volume in screen space.

Working with the current multiresolution models poses the problem of deal-
ing with high level of detail extraction times and excessive storage costs. The
continuous uniform resolution model we present noticeably improves existing
models in terms of storage and visualization costs. The model is based entirely
on optimized hardware primitives, triangle strips, and it is conceived in such a
manner that mesh updating is fast and e�cient.

5.2 Geometry::LodStripsLibrary Class Reference

The LodStripsLibrary (p. 29) interface class.

#include <GeoLodStripsLibrary.h>

30 LodStrips multiresolution module

Figure 5.1: An animated LodStrips model. The �gure shows how a mesh can
be animated while changing the level of detail.

Public Member Functions

• LodStripsLibrary (const LodStripsLibraryData ∗, Mesh ∗geomesh,
IndexData ∗userindexdata)

Class constructor.

• ∼LodStripsLibrary (void)

Class destructor.

• virtual void GoToLod (Real)

Changes the level of detail of the object to a speci�ed factor.

• uint32 MaxFaces () const

Returns the number of triangles of the highest LOD.

• uint32 MinFaces () const

Returns the number of triangles of the lowest LOD.

• uint32 GetValidIndexCount (int submeshid) const

Returns the index count at the current LOD of a certain submesh.

• uint32 GetTotalStripCount (void) const

Retrieves the total number of strips of all submeshes.

• uint32 GetSubMeshtripCount (int submeshid) const

Returns the number of strips of a given submesh.

• uint32 GetCurrentTriangleCount (void) const

5.2 Geometry::LodStripsLibrary Class Reference 31

Gets the triangle count at the current LOD.

• virtual Real GetCurrentLodFactor (void) const

Gets the current LOD factor.

5.2.1 Detailed Description

The LodStripsLibrary (p. 29) interface class.

This module contains functions that handle the levels of detail of the input
multiresolution polygonal meshes. For any given resolution of an object, this
module returns a set of triangle strips representing the object at that resolution,
that is, at the level of detail requested. These models use triangle strips to reduce
storage usage and to speed up realistic rendering.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 Geometry::LodStripsLibrary::LodStripsLibrary (const
LodStripsLibraryData ∗, Mesh ∗ geomesh, IndexData ∗
userindexdata)

Class constructor.

Constructs a LodStrips multiresolution object from:

• The LodStrips decimation information (this can be obtained using the
class Geometry::MeshLoader).

• TheMesh (p. 56) object de�ning the geometry of the model at its most de-
tailed level of detail (this can be obtained using the class Geometry::Mesh-
Loader).

• A user-de�ned Geometry::IndexData instance.

5.2.3 Member Function Documentation

5.2.3.1 virtual void Geometry::LodStripsLibrary::GoToLod (Real)
[virtual]

Changes the level of detail of the object to a speci�ed factor.

The value speci�ed to change the LOD must be in the range [0,1] ([min,max]).
After the LOD is calculated, this function automatically updates the indices
using the IndexData interface provided in the constructor.

32 LodStrips multiresolution module

Chapter 6

LodTree multiresolution

module

6.1 Introduction

Research on real-time representation of trees and plants can be grouped into two
groups: algorithms based on geometric primitives and those called image-based
rendering methods. On the one hand, image-based methods are more cheap
and easy to use and o�er good quality at far distances. However, they su�er
from parallax and ghosting e�ects when rendered closer to the viewer. On the
other hand, geometry-based methods are more realistic because they use real
geometry primitives to represent its contents but they are more expensive to
use. However, the rapid evolution that the graphics hardware is experiencing
facilitates the use of geometry-based methods over image-based methods for
obtaining high-quality representations.

Our library provides a geometry-based method which is able to change its level
of detail in a continuous way. A LodTree multiresolution object is composed of
two di�erent sub-components: the trunk, whose level of detail is managed using
a LodStrips (see chapter 5) object as it can be represented as a general mesh,
and the foliage, which uses our special multiresolution model for leaves.

Our multiresolution model for leaves uses the leaf collapse as its basic operation
to calculate the whole set of approximations. The information generated during
simpli�cation is used in run-time to manage the level of detail of the foliage.
Figure 6.2 shows the Chamaecyparis Lawsoniana tree at di�erent levels of detail
using our LodTree multiresolution library.

34 LodTree multiresolution module

Figure 6.1: A level of detail forest

Figure 6.2: Di�erent approximations of the Chamaecyparis Lawsoniana tree
.

6.2 Geometry::LodTreeLibrary Class Reference 35

6.2 Geometry::LodTreeLibrary Class Reference

This class represents a tree object that is able to change its level of detail.

#include <GeoLodTreeLibrary.h>

Public Member Functions

• LodTreeLibrary (const LodStripsLibraryData ∗, const Tree-
Simpli�cationSequence ∗, Mesh ∗treeGeoMesh, IndexData ∗user_-
indexdata)

Class constructor.

• ∼LodTreeLibrary (void)

Class destructor.

• virtual void GoToLod (Real)

Changes the lod of the entire object (trunk and leaves).

• void GoToTrunkLod (Real)

Changes the lod of the trunk.

• void GoToFoliageLod (Real)

Changes the lod of the foliage.

• virtual Real GetCurrentLodFactor (void) const

Retrieves the current real LOD factor of the object.

• virtual IndexData ∗ GetIndexDataInterface (void)
Retrieves a reference to the IndexData interface that manages the foliage,
provided in the constructor.

• const IndexData ∗ CurrentLOD_Trunk_Indices (void) const
Retrieves a reference to the IndexData interface that manages the trunk.

• uint32 GetValidTrunkIndexCount (int isubmesh) const

Retrieves the index count of the trunk at the current level of detail.

• uint32 Get_Foliage_MaxIndexCount (void) const

Gets the index count of the foliage at its maximum level of detail.

• uint32 CurrentLOD_Foliage_IndexCount (void) const

Retrieves the index count of the foliage at the current level of detail.

36 LodTree multiresolution module

• uint32 GetLeavesSubMesh (void) const

Speci�es which submesh of the Mesh (p. 56) (provided through the construc-
tor) represents the foliage.

6.2.1 Detailed Description

This class represents a tree object that is able to change its level of detail.

It uses internally a LodStrips object to manage the level of detail of the trunk.
The level of detail of the object initially is 1.0 (maximum accuracy).

6.2.2 Constructor & Destructor Documentation

6.2.2.1 Geometry::LodTreeLibrary::LodTreeLibrary (const
LodStripsLibraryData ∗, const TreeSimpli�cationSequence
∗, Geometry::Mesh ∗ treeGeoMesh, Geometry::IndexData ∗
user_indexdata)

Class constructor.

Constructs an object from:

• LodStrips decimation info (for the trunk).

• LodTree simpli�cation info (for the foliage).

• The Mesh (p. 56) containing the geometry of the tree.

• A user-de�ned Geometry::IndexData instance. For more information
about how to use the IndexData interface see chapter 3.

6.2.3 Member Function Documentation

6.2.3.1 virtual void Geometry::LodTreeLibrary::GoToLod (Real)
[virtual]

Changes the lod of the entire object (trunk and leaves)

The value speci�ed to change the LOD must be in the range [0,1] ([min,max])
After the LOD is calculated, this function automatically updates the indices
using the IndexData interface provided in the constructor.

6.2 Geometry::LodTreeLibrary Class Reference 37

6.2.3.2 void Geometry::LodTreeLibrary::GoToTrunkLod (Real)

Changes the lod of the trunk.

The value speci�ed to change the LOD must be in the range [0,1] ([min,max])
After the LOD is calculated, this function automatically updates the indices
using the IndexData interface provided in the constructor.

6.2.3.3 void Geometry::LodTreeLibrary::GoToFoliageLod (Real)

Changes the lod of the foliage .

The value speci�ed to change the LOD must be in the range [0,1] ([min,max])
After the LOD is calculated, this function automatically updates the indices
using the IndexData interface provided in the constructor.

6.2.3.4 uint32 Geometry::LodTreeLibrary::Get-
ValidTrunkIndexCount (int isubmesh) const
[inline]

Retrieves the index count of the trunk at the current level of detail.

6.2.3.5 uint32 Geometry::LodTreeLibrary::Get_Foliage_Max-
IndexCount (void) const

Gets the index count of the foliage at its maximum level of detail.

6.2.3.6 uint32 Geometry::LodTreeLibrary::GetLeavesSubMesh
(void) const [inline]

Speci�es which submesh of theMesh (p. 56) (provided through the constructor)
represents the foliage.

The rest submeshes are considered as part of the trunk. This function is useful
because the foliage must be rendered with triangle lists and the trunk must be
rendered with triangle strips.

38 LodTree multiresolution module

Chapter 7

LodManager module

7.1 Introduction

Changes in the level of detail have associated a CPU consumption time, needed
to calculate and update the object to its new rendering state. This issue is
specially problematic when dealing with scenes with lots (some hundreds or
even thousands) of LOD objects. In this case, changing the level of detail of the
objects without any control could cause the application interactivity to drop.
Many articles were written in the early days of the GPUs when it was advisable
to spend some CPU processing time to optimize the GPU rendering process.
Nowadays, due to the great scalability of the graphics cards, we must revise
all that related work to provide an updated and practical viewpoint of that
situation: overloading the CPU is a delicate task that in most cases will cause
it to be a bottleneck for the graphics hardware.

Therefore, the aim of this module is to develop a LOD manager with very low
CPU requirements, freeing the CPU by minimizing the number of real changes in
levels of detail. Nowadays, the GPUs have experienced a great evolution in their
gross horsepower. That has provoked that real-world real-time applications tend
to be CPU bounded, i.e. the CPU limits the GPU. Thus, developing heuristics
that involve high CPU processing times can be counterproductive. Thus, the
objective of this chapter is to provide a simple yet e�ective method that lowers
the CPU usage in order to keep the bottleneck on the GPU.

7.2 Geometry::LodManager Class Reference

This class implements a LOD manager for level of detail objects such as Lod-
Strips and LodTree objects.

40 LodManager module

#include <GeoLodManager.h>

Public Member Functions

• LodManager (Real near, Real far, const Geometry::Vector3 &campos,
int numslots=10)

LodManager (p. 39) constructor.

• ∼LodManager (void)
Class destructor.

• void AddLodObj (const std::string &name, LodObject ∗, const Geome-
try::Vector3 &)

Adds a new LOD object (a LodStrips or a LodTree object).

• void UpdateLOD (void)
Performs all needed LOD updates.

• void UpdateCamera (const Geometry::Vector3 &)
Updates the camera position.

• void UpdateLODObjectPos (LodObject ∗, const Geometry::Vector3
&)

Updates the position of a certain LodObject.

Public Attributes

• bool always_calculate_lod
Set it to true to force all LOD calculations (disable the LodManager (p. 39)
features).

• bool force_highest_lod
If set to true, all objects will be set to their highest level of detail.

7.2.1 Detailed Description

This class implements a LOD manager for level of detail objects such as Lod-
Strips and LodTree objects.

This class automatically manages the level of detail of all objects added to
the LOD manager. The key idea is to minimize the number of real changes

7.2 Geometry::LodManager Class Reference 41

in levels of detail because they consume CPU and can cause stalls and CPU
bottlenecks in massive applications. The LodManager (p. 39) solves this issue
by deciding which objects have to change the level of detail and which objects
can just share an already calculated one. The system also decides whether an
object should change its level of detail or whether it is not necessary because it
would not a�ect the performance. This drastically reduces the CPU usage. in
a completely transparent way to the user.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 Geometry::LodManager::LodManager (Real near, Real far,
const Geometry::Vector3 & campos, int numslots = 10)

LodManager (p. 39) constructor.

Constructs a LodManager (p. 39) object from the following parameters:

• The near and far distances that de�ne the active LOD range.

• The initial camera position.

• The number of LOD slots in the snapshot list (this parameter is optional).

7.2.3 Member Function Documentation

7.2.3.1 void Geometry::LodManager::AddLodObj (const std::string
& name, LodObject ∗, const Geometry::Vector3 &)

Adds a new LOD object (a LodStrips or a LodTree object).

When an object is added to the system, its level of detail is automatically
managed, and the client application does not need to manually change its level
of detail. The parameters needed to add an object to the system are:

• The class name of the object. The class name is the type of object. This
is used by the system to know which objects are compatible for sharing
levels of detail.

• A reference to the LOD Object itself (a LodStrips or a LodTree object).

• The initial position in the 3D space of the added object.

7.2.3.2 void Geometry::LodManager::UpdateLOD (void)

Performs all needed LOD updates.

42 LodManager module

This function should be called once per frame (or at other reasonable interval).
It internally performs all needed steps to change the level of detail of the objects.

Chapter 8

Stripi�cation module

8.1 Introduction

Stripi�cation algorithms enable for a compact representation of meshes and they
are a key feature of our multiresolution algorithm LodStrips. The main problem
using triangle strips in a multiresolution model is that they very degenerated as
the level of detail of an object decreases. These low-quality strips imply sending
more information to the renderer. For this reason, we have implemented our
own triangle stripi�cation algorithm which searches for high quality strips to
avoid degenerated triangles as much as possible in the whole range of levels of
detail.

Figure 8.1 shows an example of triangle strip degeneration obtained after chang-
ing the level of detail. Figure 8.2 shows an example of a mesh stripi�cation.

Figure 8.1: Example of triangle strip degeneration.

44 Stripi�cation module

Figure 8.2: Mesh stripi�cation.

8.2 Geometry::MeshStripi�er Class Reference

Stripi�er abstract interface class.

#include <GeoMeshStripifier.h>

Public Member Functions

• MeshStripi�er (const Mesh ∗)
Class constructor, receives as a parameter a const pointer to the object that
describes a mesh.

• virtual ∼MeshStripi�er (void)
Virtual class destructor.

• virtual int Stripify (void)=0
Starts the stripi�cation process. This is a pure virtual method and must be
overloaded in a derived class that implements a stripi�cation algorithm.

• Mesh ∗ GetMesh (void)
Returns the stripi�ed mesh.

8.2 Geometry::MeshStripi�er Class Reference 45

8.2.1 Detailed Description

Stripi�er abstract interface class.

This module implements methods that extract triangle strips from a triangle
mesh described by a Geometry::Mesh (p. 56) object.

The class Geometry::MeshStripi�er (p. 44) is an abstract base class which is
designed to be implemented by classes that represent custom stripi�er methods.

The class Geometry::CustomStripi�er inherits from this class and implements
the stripi�er used in the geometry modules. However, its interface is not de-
scribed here because it is identical to the Geometry::MeshStripi�er (p. 44)
interface.

This module receives a pointer to aGeometry::Mesh (p. 56) object containing
the model to be stripi�ed, and outputs the stripi�ed mesh, contained also in a
Geometry::Mesh (p. 56) object.

46 Stripi�cation module

Chapter 9

Simpli�cation module

9.1 Introduction

The construction of a multiresolution representation is based on two main ele-
ments. On the one hand, the original geometry of the object at its maximum
level of detail. On the other, the simpli�cation sequence that allows the gener-
ation of the whole family of levels of detail. Therefore, a simpli�cation method
is needed to construct a multiresolution object to generate the simpli�cation
sequence.

9.1.1 Simpli�cation for general meshes

Algorithms for polygonal mesh simpli�cation can be categorized into di�erent
classes: vertex decimation, vertex clustering, edge contractions and morpholog-
ical operations. The most extended and accurate methods are those based on
iterative edge contraction. Figure 9.1 shows an example of the edge collapse
operation. On each operation, one or two triangles are removed and one vertex
is erased.

Figure 9.1: Example of edge contraction.

48 Simpli�cation module

Figure 9.2: Example of geometry simpli�cation. From left to right, the original
object, the object simpli�ed to 66% and the object simpli�ed to 33%, respec-
tively.

We have developed two di�erent simpli�cation methods to deal with general
mesh simpli�cation: Geometry-based and Viewpoint-driven simpli�cation algo-
rithms.

Although both methods are based on edge collapse operations, they use very
di�erent metrics to decide the order of the edges to collapse. The following
sections summarize the basics of each method.

9.1.1.1 Geometry-based simpli�cation

Our geometry-based simpli�cation algorithm is based on edge contractions and
uses a quadric error metric to decide the order of collapses. Our method is
speci�cally designed to simplify meshes tipically used in games and real-time
applications, taking into account its particularities such as the topological dis-
continuities due to replication of vertices with multiple attributes (i.e. normals
and texture coordinates). Figure 9.2 shows an example of simpli�cation made
with our geometry-based simpli�cation algorithm.

9.1.1.2 Viewpoint-driven simpli�cation

Unlike our geometry-based algorithm, which has a local error metric, our
viewpoint-driven simpli�cation is based on a global error metric. This means
that the error metric can take into account changes produced along the entire
mesh. In addition, the metric is a visual error metric which studies the whole
mesh from a certain number of �xed points of view. This is useful to preserve
the global appearance of the model.

9.2 Geometry::GeometryBasedSimpli�er Class Reference 49

Figure 9.3: Simpli�cation of two leaves to create a new one.

Figure 9.4: Foliage simpli�cation.

9.1.2 Foliage simpli�cation

We have developed an speci�c simpli�cation algorithm for the foliage in which
our LodTree multiresolution algorithm is based on. This algorithm uses on the
leaf-collapse operation as its atomic operation. Using this technique, a certain
metric decides to collapse two di�erent leaves into a single one which preserves
the area and overall shape of the initial two leaves. Figure 9.3 shows a graphical
representation of the leaf collapse operation. Figure 9.4 shows an example of
foliage simpli�cacion using our algorithm.

9.2 Geometry::GeometryBasedSimpli�er Class

Reference

Implementation of a simpli�cation algorithm based on geometry information.

#include <GeoMeshSimplifier.h>

50 Simpli�cation module

Public Member Functions

• GeometryBasedSimpli�er (const Mesh ∗geoMesh, TIPOFUNC
upb=0)

Class constructor. Receives as a parameter the mesh to be simpli�ed.

• ∼GeometryBasedSimpli�er (void)
Class destructor.

• void Simplify (Geometry::Real)

Starts the simpli�cation process.

• void Simplify (Geometry::uint32)

Starts the simpli�cation process.

• Mesh ∗ GetMesh (void)

Returns the simpli�ed mesh.

• MeshSimpli�cationSequence ∗ GetSimpli�cationSequence ()
Returns the simpli�cation sequence for general meshes.

9.2.1 Detailed Description

Implementation of a simpli�cation algorithm based on geometry information.

This class implements a simpli�cation algorithm based on a classic geometry
evaluation technique.

It receives in the constructor the mesh to be simpli�ed. The resulting simpli�ed
mesh can be obtained using the GetMesh() (p. 52) inherited method.

9.2.2 Constructor & Destructor Documentation

9.2.2.1 Geometry::GeometryBasedSimpli�er::GeometryBased-
Simpli�er (const Mesh ∗ geoMesh, TIPOFUNC upb =
0)

Class constructor. Receives as a parameter the mesh to be simpli�ed. The
second is an optional parameter used to specify a 'status' function which is called
internally by the simpli�er to periodically indicate the completion percentage
to the callee.

9.3 Geometry::ViewPointDrivenSimpli�er Class Reference 51

9.2.3 Member Function Documentation

9.2.3.1 void Geometry::GeometryBasedSimpli�er::Simplify
(Geometry::Real) [virtual]

Starts the simpli�cation process.

Receives as a parameter the LOD factor in a range of [0,1]. Implements the
Simpli�er::Simplify method to perform a geometry based simpli�cation.

Implements Geometry::MeshSimpli�er (p. ??).

9.2.3.2 void Geometry::GeometryBasedSimpli�er::Simplify
(Geometry::uint32) [virtual]

Starts the simpli�cation process.

Receives as a parameter the number of vertices of the resulting mesh. Imple-
ments the Simpli�er::Simplify method to perform an image based simpli�cation.

Implements Geometry::MeshSimpli�er (p. ??).

9.3 Geometry::ViewPointDrivenSimpli�er Class

Reference

Implementation of a simpli�cation algorithm based on visual information.

#include <GeoMeshSimplifier.h>

Inheritance diagram for Geometry::ViewPointDrivenSimpli�er::

Public Member Functions

• ViewPointDrivenSimpli�er (const Geometry::Mesh ∗geoMesh,
Geometry::TIPOFUNC upb=0)

Class constructor. Will call Simpli�er class constructor.

• ∼ViewPointDrivenSimpli�er (void)
Class destructor.

• void Simplify (Geometry::Real)
Starts the simpli�cation process.

• void Simplify (Geometry::uint32)
Starts the simpli�cation process.

52 Simpli�cation module

• Mesh ∗ GetMesh (void)

Returns the simpli�ed mesh.

• MeshSimpli�cationSequence ∗ GetSimpli�cationSequence ()
Returns the simpli�cation sequence for general meshes.

9.3.1 Detailed Description

Implementation of a simpli�cation algorithm based on visual information.

This class implements a simpli�cation algorithm based on a brand-new
viewpoint-driven evaluation technique.

It receives in the constructor the mesh to be simpli�ed. The resulting simpli�ed
mesh can be obtained using the GetMesh() (p. 52) inherited method.

9.3.2 Member Function Documentation

9.3.2.1 void Geometry::ViewPointDrivenSimpli�er::Simplify
(Geometry::Real) [virtual]

Starts the simpli�cation process.

Receives as a parameter the LOD factor in a range of [0,1]. Implements the
Simpli�er::Simplify method to perform a viewpoint-driven simpli�cation.

Implements Geometry::MeshSimpli�er (p. ??).

9.3.2.2 void Geometry::ViewPointDrivenSimpli�er::Simplify
(Geometry::uint32) [virtual]

Starts the simpli�cation process.

Receives as a parameter the number of vertices of the resulting mesh. Imple-
ments the Simpli�er::Simplify method to perform a viewpoint-driven simpli�ca-
tion.

Implements Geometry::MeshSimpli�er (p. ??).

9.4 Geometry::TreeSimpli�er Class Reference

Tree Simpli�er interface.

9.4 Geometry::TreeSimpli�er Class Reference 53

#include <GeoTreeSimplifier.h>

Public Member Functions

• TreeSimpli�er (const Geometry::Mesh ∗, Geometry::TIPOFUNC
upb=0)

Class constructor. Receives as a parameter the mesh to be simpli�ed.
.

• ∼TreeSimpli�er (void)
Class destructor.

• void Simplify (Geometry::Real, Geometry::Index)

Starts the foliage simpli�cation process.

• Mesh ∗ GetMesh ()

Returns the simpli�ed mesh.

• TreeSimpli�cationSequence ∗ GetSimpli�cationSequence ()
Returns the simpli�cation sequence for leaves.

9.4.1 Detailed Description

Tree Simpli�er interface.

This module is used by LODTree to simplify leaves of a tree. It contains func-
tions that generate simpli�ed versions of 3D objects made out of quads (repre-
sented as pairs of texture-mapped triangles). Given a 3D object, this module
computes a sequence of geometric transformations that reduce the object�s geo-
metric detail while preserving its appearance.

For each simpli�cation step, the module returns a simpli�cation sequence con-
taining the leaf collapsed, the two leaves being removed, and the resulting leaf
for that contraction.

Receives as input a pointer to the Geometry::Mesh (p. 56) object containing
the tree to be simpli�ed, and outputs:

1. The simpli�ed mesh, contained in a Geometry::Mesh (p. 56) object.

2. Simpli�cation sequence, represented by a Geometry::Tree-
Simpli�cationSequence (p. ??) object.

54 Simpli�cation module

9.4.2 Constructor & Destructor Documentation

9.4.2.1 Geometry::TreeSimpli�er::TreeSimpli�er (const
Geometry::Mesh ∗, Geometry::TIPOFUNC upb = 0)

Class constructor. Receives as a parameter the mesh to be simpli�ed.

.

The second and optional parameter is used to specify a 'status' function which
is called internally by the simpli�er periodically to indicate the completion per-
centage to the callee.

9.4.3 Member Function Documentation

9.4.3.1 void Geometry::TreeSimpli�er::Simplify (Geometry::Real,
Geometry::Index)

Starts the foliage simpli�cation process.

Receives as a parameter the LOD factor in a range of [0,1]. The second parame-
ter represents an integer pointing to the submesh containing the foliage data.
Implements the Simpli�er::Simplify method to perform an geometry based sim-
pli�cation.

Chapter 10

Helper classes reference

10.1 Introduction

This chapter is intended to be a reference guide for those classes that are used
by the main modules described in previous chapters. Not all the classes of the
geometry modules are detailed here. Just those classes which are referred by
the main classes are included in this section.

56 Helper classes reference

10.2 Geometry::Mesh Class Reference

Mesh (p. 56) class interface.

#include <GeoMesh.h>

Inherits Geometry::Serializable.

Public Member Functions

• Mesh ()

Constructor.

• ∼Mesh ()

Destructor.

• Mesh (const Mesh &)

Copy constructor.

• Mesh & operator= (const Mesh &)

Assignment operator.

• void Load (Serializer &s)

Loads data from a Serializer (p. ??).

• void Save (Serializer &s)

Saves data to a Serializer (p. ??).

Public Attributes

• VertexBu�er ∗ mVertexBu�er
Shared VertexBu�er (p. 60).

• SubMesh ∗ mSubMesh

Array of subMeshes.

• size_t mSubMeshCount

Total count of subMeshes.

• MeshBounds mMeshBounds

Mesh (p. 56) bounds.

10.2 Geometry::Mesh Class Reference 57

10.2.1 Detailed Description

Mesh (p. 56) class interface.

58 Helper classes reference

10.3 Geometry::SubMesh Class Reference

SubMesh (p. 58) interface.

#include <GeoSubMesh.h>

Inheritance diagram for Geometry::SubMesh::

Public Member Functions

• SubMesh ()

Default constructor.

• ∼SubMesh ()

Default destructor.

• void Load (Serializer &s)

Loads data from a Serializer (p. ??).

• void Save (Serializer &s)

Saves data to a Serializer (p. ??).

Public Attributes

• VertexBu�er ∗ mVertexBu�er
• bool mSharedVertexBu�er

true if VertexBu�er (p. 60) it's shared with Mesh (p. 56) and other Sub-
Meshes

• Index ∗ mIndex
Array of Index.

• size_t mIndexCount

Index count.

• Index ∗∗ mStrip
Array of pointers to mIndex that represents each strip.

• size_t mStripCount

number of Strips

• MeshType mType

10.3 Geometry::SubMesh Class Reference 59

Type of mesh.

• char mMaterialName [255]

Material name.

10.3.1 Detailed Description

SubMesh (p. 58) interface.

SubMesh (p. 58) is part of a Mesh (p. 56), and stores vertex and index geo-
metric information.

10.3.2 Member Data Documentation

10.3.2.1 VertexBu�er∗ Geometry::SubMesh::mVertexBu�er

VertexBu�er (p. 60) used to store vertex Data. Is a reference to a shared
VertexData if mSharedVertexBu�er == true, and must be not deallocated in
that case.

60 Helper classes reference

10.4 Geometry::VertexBu�er Class Reference

VertexBu�er (p. 60) interface Class.

#include <GeoVertexBuffer.h>

Inherits Geometry::Serializable.

Inheritance diagram for Geometry::VertexBu�er:Collaboration diagram for
Geometry::VertexBu�er:

Public Member Functions

• VertexBu�er ()

Default Constructor.

• ∼VertexBu�er ()
Default destructor, releases allocated memory.

• VertexBu�er ∗ Clone () const
Returns a new VertexBu�er (p. 60) with the same data.

• void Load (Serializer &s)

Fills this VertexBu�er (p. 60) from a Serializer (p. ??).

• void Save (Serializer &s)

Stores data.

Public Attributes

• unsigned int mVertexInfo

Type of info stored by vertex.

• size_t mVertexCount

Number of vertices.

• Vector3 ∗ mPosition
Position array of each Vertex, only valid if (vertexInfo & VERTEX_-
POSITON) == true.

• Vector3 ∗ mNormal
Normal array of each Vertex, only valid if (vertexInfo & VERTEX_-
NORMAL) == true.

10.4 Geometry::VertexBu�er Class Reference 61

• Vector2 ∗ mTexCoords
Texture Coordinates array of each Vertex, only valid if (vertexInfo &
VERTEX_TEXCOORDS) == true.

10.4.1 Detailed Description

VertexBu�er (p. 60) interface Class.

This Structure holds the vertex information used by Meshes and SubMesehs.

