
Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Developed models . 3

1.3 Document organization . 3

2 Quality strips for models with level of detail 5

2.1 Introduction . 5

2.2 Previous work . 6

2.3 Our approach . 7

2.3.1 Optimizations . 9

2.4 Results . 9

2.5 Conclusions . 11

2.6 Further optimizations . 12

3 Simplification 15

3.1 Introduction . 15

3.2 Geometric simplification . 15

3.2.1 Previous work . 15

3.2.2 General description . 17

3.2.3 Results . 21

3.2.4 Conclusions . 24

3.3 Image-based simplification . 24

3.3.1 Previous work . 25

3.3.2 General description . 25

i

ii CONTENTS

3.3.3 Techniques for Computing the Mutual Information . . 26

3.3.4 Algorithm . 29

3.3.5 Results . 29

3.3.6 Conclusions . 30

3.4 Geometric Simplification of Foliage 31

3.4.1 Previous Work . 32

3.4.2 Tree geometry simplification 33

3.4.3 Foliage Simplification Algorithm 34

3.4.4 Algorithm Overview 36

3.4.5 Results . 39

4 LodStrips 45

4.1 Introduction . 45

4.2 Previous work . 46

4.3 Multiresolution model . 47

4.3.1 Construction . 50

4.4 Data structure . 50

4.4.1 Level of detail extraction 52

4.4.2 Optimizations in visualization 52

4.5 Results . 53

4.6 Conclusions . 54

5 LodTrees 59

5.1 Introduction . 59

5.2 Previous work . 59

5.3 Multiresolution model for foliage 60

5.4 Data Structure . 63

5.5 Level of detail extraction . 69

5.6 Results . 71

5.7 Conclusions . 76

Bibliography 77

List of Figures

1.1 Original Ogre head model and a less detailed approximation. 2

1.2 Aesculus hippocastanum. Tree modelled with the commercial
modelling tool Xfrog. 192.179 triangles. 2

2.1 Collapse of a strip. 6

2.2 a)Vertex split along a border edge between two strips. b) Edge
expansion along a non-border edge inside a strip. 8

2.3 Strip generation algorithm. 8

2.4 Some results obtained with the algorithm. 13

2.5 Stripification of the cow model for a) 33% b) 66% and c) 100%
of the maximum detail. 14

3.1 Example of edge contraction. 17

3.2 Example of pair contraction based on a distance threshold. . . 17

3.3 General scheme for local simplification. 19

3.4 General scheme for virtual boundaries preservation. 19

3.5 Example of global simplification. 21

3.6 Example of boundaries preservation. 22

3.7 Example of global simplification. 22

3.8 Example of local simplification. 23

3.9 Example of texture coordinates interpolation. 23

3.10 Comparative of simplification times. 24

3.11 Comparison of results obtained from the different analyzed
techniques. 28

3.12 Pseudocode of the algorithm for our image-based simplifica-
tion method. 30

iii

iv LIST OF FIGURES

3.13 Some examples with the unicycle and the fish model. 31

3.14 Some examples with the cow model. 32

3.15 Image of the original trunk and a simplified version of the
same trunk. 34

3.16 Example of a simplified foliage from 20.376 leaves to 779 and
236 leaves with the Qslim method. 35

3.17 Simplification of two leaves to create a new one. The vertices
of the original leaves remain. 36

3.18 Main C++ data structure. 37

3.19 Pseudocode of the algorithm that calculates the error. 38

3.20 Results obtained for the tree model Sorbus Aucuparia. 40

3.21 Results obtained for the tree model Aesculus Hippocastanum. 41

3.22 Results obtained for the tree model Taxus Baccata. 42

3.23 Results obtained for the tree model Carya ovata. 43

4.1 Happy_buddha model at the highest level of detail (543699
vertices and 31596 triangle strips) running in the Ogre 3D
Engine. 46

4.2 Three levels of detail from the AlCapone model. 46

4.3 Model construction. 48

4.4 Stripification example. 49

4.5 Type of patterns removed by model data structures. 49

4.6 LodStrips data structures. 51

4.7 Model construction example. 51

4.8 Level of detail extraction from a LOD to a coarser one. 52

4.9 Visualization algorithm. 53

4.10 Spatial cost comparison. 54

4.11 Results for the cow model. 55

4.12 Results for the bunny model. 56

4.13 Results for the dragon model. 57

4.14 Results for the happy buddha model. 58

5.1 Detail of the foliage in a tree. 61

LIST OF FIGURES v

5.2 Example of leaf collapse and split operation. 63

5.3 Hierarchical relationship between leaves conditioned by the
collapse operation. 63

5.4 Example of data structure F r. 64

5.5 Basic data structure of the multiresolution model. 65

5.6 Algorithm of the level of detail extraction. 69

5.7 Different approximations of the Chamaecyparis Lawsoniana
tree. 70

5.8 Results obtained for the tree Sorbus Aucuparia. 72

5.9 Results obtained for the tree Aesculus Hippocastanum. 73

5.10 Results obtained for the tree Taxus Baccata. 74

5.11 Results obtained for the tree Carya ovata. 75

vi LIST OF FIGURES

List of Tables

2.1 Number of triangles of the geometric models used in the ex-
periments. 10

2.2 Results in total number of vertices sent going from the mini-
mum to the maximum level of detail. 10

2.3 Percentages of vertices sent going from the minimum to the
maximum level of detail. 10

4.1 Spatial cost of some models. 53

5.1 Some trees used in the expermiments, with their characteris-
tics and original storing cost. 68

5.2 Trees used in the experiments, with their characteristics and
storing cost. 68

vii

viii LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

One of the main problems of interactive graphics applications, such as com-
puter games or virtual reality, is the geometric complexity of the scenes they
represent. In order to solve this problem, different modelling techniques by
level of detail have been developed, trying to adapt the number of polygons
of the objects to their importance inside the scene. The application of these
techniques is common in standards such as X3D, graphic libraries such as
OpenInventor, OSG, and even in game engines such as Torque, CryEngine,
etc., where models with continuous levels of detail, based mainly on Progres-
sive Meshes [Hop96], are introduced. Figure 1.1 shows the ogre head model
and an approximation at a medium level of detail which would be rendered
much faster.

The tendency in the recent years has been to improve the features of con-
tinuous models by using the possibilities offered by the graphics hardware to
the maximum, with the intention of competing with the discrete models that,
although more limited, are perfectly adapted to current graphics hardware.
Specifically, they have worked on the representation of multiresolution mod-
els which use triangle strips to accelerate visualization by means of vertex
arrays located in the GPU. The fundamental problem of these techniques is
the fact that a continuous model needs to make changes in the list of indexes
of the primitives it draws and carrying out this kind of operations causes
graphics hardware to lower its performance.

Nevertheless, the multiresolution models available nowadays are not al-
ways suitable for all kind of meshes. Many of the current interactive appli-
cations such as flight simulators, virtual reality environments or computer

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Original Ogre head model and a less detailed approxi-
mation.

games take place in outdoor scenes, where the vegetation is an essential com-
ponent. The lack of trees and plants can detract from their realism. Tree
modelling has been widely investigated [PL90] [LD99], and its representa-
tion is very realistic (figure 1.2). However, tree models are formed by such
a vast number of polygons that real-time visualization of scenes with trees
is practically impossible, and it is necessary to resort to some method that
diminishes the number of polygons that form the object, such as multireso-
lution modeling. But the multiresolution models that have appeared up to
now deal with general meshes and do not work properly with this kind of
mesh.

Figure 1.2: Aesculus hippocastanum. Tree modelled with the com-
mercial modelling tool Xfrog. 192.179 triangles.

CHAPTER 1. INTRODUCTION 3

1.2 Developed models

We have developed two different multiresolution models: a model for gen-
eral meshes (LodStrips) and a model for plants and trees (LodTrees). Both
models can make a selection of the LoD in running time in order to establish
a balance between the number of polygons with which the object will be
represented and the amount of time needed to visualize it. When modeling
vegetation, we will need to do a separate processing. Branches, including the
trunk, can be considered as general meshes and will therefore be handled by
the general mesh model. Leaves, on the contrary, will be represented using
their own specific model.

The construction of a multiresolution model involves the simplification
of the original model, in order to obtain the sequence of different approxi-
mations that compose the model diminishing the number of polygons while
maintaining their appearance. This way, we have developed several algo-
rithms to perform the simplification of the meshes following diverse criteria.
Moreover, it is important to mention that the LodStrips model works with a
stripified mesh. Therefore, we will also need a method to convert polygonal
meshes, which are geometrically composed of triangles, to triangle strips.

1.3 Document organization

This document is organized according to the developed models commented
previously. The supporting modules that are necessary for the correct per-
formance of this workpackage will be described first, and the multiresolution
modules will be described last.

Chapter 2 addresses the problem of finding a good set of strips for a given
triangulation and the solution we have implemented. Although this
solution offers good results, there is still room for further improvement.

Chapter 3 describes the different simplification algorithms we have devel-
oped, for both general meshes and trees and plants. For the simplifica-
tion of general meshes, we propose the use of two different algorithms,
one based on the geometric simplification of the 3D models, and a new
image based simplification algorithm which obtains simplified meshes
that appear more similar to a human observer. The algorithm for the
simplification of foliage uses a new method, leaf collapse: two leaves
disappear to create a new one, so that the leaves obtained after col-
lapsing preserve an area similar to that of the collapsed leaves.

4 CHAPTER 1. INTRODUCTION

Finally, chapters 4 and 5 offer the scientific description of the multiresolu-
tion models. Chapter 4 presents the multiresolution model for general
meshes, and chapter 5 discusses the model for trees and plants.

Chapter 2

Quality strips for models with
level of detail

2.1 Introduction

Multiresolution models are widely employed in computer graphics applica-
tions as they allow us to reduce the amount of geometry information sent to
the graphics system, which results in an improvement in performance. The
use of triangle strips in these models offers further improvement, since it adds
a compact representation of the connectivity existing in a triangle mesh and
enables faster rendering. The main problem of multiresolution models based
on strips arises when, starting from a set of strips representing the initial
mesh at maximum detail and applying the successive simplifications, the
strips start to include a large quantity of degenerated triangles, which have
no mathematical area and imply sending information for triangles that will
not be rendered. An example of these low-quality strips can be observed in
figure 2.1, where the strip in the middle is collapsed after two simplification
steps, where edges 0, 3 and 1, 2 are also collapsed.

One possible way to overcome this problem is to use strips which are dy-
namically generated for each level of detail. Research has been conducted on
this approach, and it is possible to find methods of building and maintaining
a good set of triangle strips like the one proposed by Stewart [Ste01], and
also multiresolution models based on dynamic strips [Hop96][SP03]. But the
additional cost involved in generating the strips for every level of detail is
high; therefore the use of static strips, despite their limitations, can turn out
to be more suitable.

5

6 CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

Figure 2.1: Collapse of a strip.

We propose an algorithm for building triangle strips for static models
which avoids working with low quality strips. It constructs the strips from
the minimum to the maximum level of detail following the simplification
sequence, while maintaining the original appearance of the 3D model.

2.2 Previous work

The use of the triangle strip primitive allows us to greatly accelerate the
visualization of geometry. Although finding an optimum set of strips from a
given triangulation is an NP-complete problem [ESV96], there are different
solutions which, though not optimum, maximize its performance following
diverse criteria.

Among the many studies carried out we can highlight the methods in-
troduced in [ESV96][AHB90][XHM99] to generate strips in a static way, as
well as the one proposed by Stewart [Ste01] for the dynamic generation of
strips. The suggested algorithms show differences in generation and ren-
dering speed, in the use of memory or in the number of strips generated,
which make them more suitable for a specific use. It is also important to
comment on the studies which make optimum use of the vertex cache, in or-
der to maximize references to vertices already loaded in registers inside the
cache. In this regard, methods such as Hoppe’s [Hop99] or the one devised
by Nvidia [BD02] have appeared in recent years. The company referenced
before has created its own library in order to find strips that derive the
maximum benefit from vertex caches and from the spatial locality of vertex
buffers.

Finally, mention should be made of the algorithm proposed by Belmonte
[BRRC00], which, as the method presented here, also considers the gener-
ation of strips following a simplification criterion. But in this case, as in

CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL 7

the rest of the algorithms, the generation starting from the maximum level
of detail and its subsequent simplification causes degeneration of the strips
obtained at levels of low detail.

2.3 Our approach

The objective of the algorithm we present is to find triangle strips that
are optimum for multiresolution models, avoiding the strips to be cut when
simplified.

With this intention, we start out with the mesh simplified to the mini-
mum level of detail, which means we may start with just a few triangles. For
every step of our algorithm we will need to know the vertices that split, the
two new triangles that appear and the set of existing triangles that must be
modified. It is possible to collect all this information during the simplifica-
tion process of the original mesh.

We can consider two main cases. The first of them, shown in figure
2.2, represents a refinement along a border edge between two strips. In this
situation, two triangles will be modified and a total of four new vertices for
two new triangles will be inserted, as each strip will need a swap operation.
In this way, following the example in figure 2.1, strips will be initially made
up of vertices 1, 2, 3, 4 and 1, 5, 3, 6. After the split, they will be made up of
vertices 1, 2, 7, 2, 3, 4 and 1, 5, 7, 5, 3, 6. We should mention that it might
be possible to find this case with just one strip, this only being possible if
the strip includes a fan.

The second case can also be observed in figure 2.2. It shows a split
along an edge which is not a border. This makes it impossible to add the
two new triangles into the existing strip without resorting to degenerated
triangles that would increase the number of vertices required. In this case
it is necessary to create a new strip, since we will be able to insert only
one of the new triangles into the existing strip. The insertion of these two
new triangles will involve a rise of five units in the total number of vertices.
Thus, the strip that was initially made up of vertices 1, 2, 3, 4, 5, 6 will now
contain edges 1, 2, 3, 2, 7, 4, 5, 6 and a new strip will appear with vertices
3, 7, 5.

With the two general cases introduced, the algorithm to build strips will
be similar to the one presented in figure 2.3. The two new triangles share an
edge with one of the triangles that will be modified, and it will therefore be
through this edge that we will locate the triangle or triangles where we will

8 CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

(a) (b)

Figure 2.2: a)Vertex split along a border edge between two strips.
b) Edge expansion along a non-border edge inside a strip.

be able to insert them. Once the edge is found, we will simply insert the new
triangle taking care to choose the right side of the edge. If we do not find
that edge, we will be obliged to create a new strip. Finally, we will always
have to check that all the modified triangles have been changed correctly.
We must respect all the changes implied in each step, since otherwise we will
not obtain the correct polygonal model when we reach the maximum level
of detail.

if find_edge() do
choose_side();
insert_triangle();

else
create_strip();
check_modifications();

end if

Figure 2.3: Strip generation algorithm.

CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL 9

2.3.1 Optimizations

With the algorithm proposed, most steps involve the insertion of four new
vertices for the two new triangles. These four insertions allow us to obtain
a 30% saving with respect to the three vertices per triangle that would be
necessary if we represented the model with a triangle mesh. To improve these
results, the algorithm has been extended so that, in each step, no repeated
vertices or edges and no unnecessary edges are inserted. Furthermore, it is
possible to improve the results if, each time we must create a new strip, we
try to insert the new triangle at the end of an already existing strip.

On many occasions we have no choice but to insert a new triangle as a
new strip. In successive iterations we may have to add a new triangle next
to this one. But, depending on how we have inserted it, we will be able to do
the new insertion or not. This is due to the fact that, when inserting a new
triangle, one of its three edges will not be explicitly reflected on the strip and
then we will not be able to find it in the search for edges in our algorithm.
In order to avoid this situation as many times as possible, we have developed
a function that predicts the usefulness of the three edges. This prediction is
carried out by following their evolution throughout the remaining refinement
steps. With this information we will be able to decide which of the three
edges is less useful when it comes to inserting the new triangle as a new strip.
At this point, we have to choose whether it is better to eliminate the edge
that will be used sooner, or the one that will be used later. Our experiments
have proven that penalizing the edge we will use sooner offers better results,
since it allows the new triangles to be inserted into strips in the last steps of
the process.

2.4 Results

In order to analyze the strips generated as a result of the algorithm pre-
sented here, we have conducted a study of the vertices sent to the graphics
card for different levels of detail. Results are shown from table 2.1 to 2.2.
These data have been compared with those obtained using a simple triangle
mesh for each level of detail and with a multiresolution model based on strips
that uses a simplification method involving edge collapse, such as Skip-Strips
[ESAV99], MTS [BRR+01] or LodStrips [RC04]. The experiments were car-
ried out using Windows XP on a Dell PC with a processor at 2.8 Ghz, 1 GB
RAM and an Nvidia GeForce 6600 graphics card with 256MB RAM.

Figure 2.4 shows the results obtained for three different polygonal models.
They show the number of vertices sent to the graphics processor for each level

10CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

Model Triangles
Cow 5804
Al Capone 7124
Bunny 69451

Table 2.1: Number of triangles of the geometric models used in the
experiments.

Triangles SMM Strips
Cow 25.272.930 15.752.211 13.777.800
Al Capone 38.127.687 23.158.015 20.883.500
Bunny 3.619.981.407 2.163.219.828 1.976.880.000

Table 2.2: Results in total number of vertices sent going from the
minimum to the maximum level of detail.

Triangles SMM Strips
Cow 100% 62.3% 54.5%
Al Capone 100% 60.7% 54.7%
Bunny 100% 59.7% 54.6%

Table 2.3: Percentages of vertices sent going from the minimum to
the maximum level of detail.

CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL11

of detail, considering 100% as the maximum detail and 0% as the minimum,
although in the tests 10% was taken as the minimum since a lower level
of detail would entail complete loss of the original shape of the 3D model.
It should be pointed out that the information marked in the figures with
the name Triangles refers to a model that uses triangle meshes, SMM is an
abbreviation of strip-based multiresolution model and Strips are the result
of the algorithm proposed here.

As we expected, this algorithm sends fewer vertices than a triangle mesh.
It can be observed that for high levels of detail the example multiresolution
model sends fewer vertices. But if we consider the total number of vertices
necessary to go through all the levels of detail, from the minimum to the
maximum, our method involves less information traffic, as shown in table
2.3. In this way, for more than 60% of the levels the algorithm presented
sends less geometric information to the GPU.

In figure 2.5 the resulting stripification of the cow model using our al-
gorithm is presented. In addition to the strips representing the model at
maximum level of detail, two more images taken during the process are also
offered, for a 33% and a 66% of the total detail.

2.5 Conclusions

We have presented a new method for strips generation in which we obtain a
set of triangle strips that will maintain its quality throughout the simplifi-
cation process. We improve on the results offered by previous stripification
algorithms, since all of them offer low quality for levels of coarser detail.
In contrast, our algorithm needs a larger number of triangle strips at levels
of high detail. But, in general, the total number of vertices covering from
the minimum to the maximum level of detail is about 15% lower than the
multiresolution model ours was compared with and this means a saving of
around 50% with respect to the original triangle mesh.

Through the results it can be observed how, as the level of detail is
reduced, the strips used by the multiresolution model worsen, reaching a
point near 20% of detail, where it is even better to use the triangle mesh
instead of the strips the model offers. This lends further support to the idea
that has encouraged the investigation of this new algorithm, which avoids
working with low quality strips.

From the results obtained we can also infer that our design loses quality as
the models increase in size. In many applications, such as games, it is usual

12CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

to work with models which are not as complex as the ones analyzed, where
it is easy to offset this low polygonal complexity with a correct treatment of
illumination or other aspects of the visualization of geometry.

2.6 Further optimizations

The correct management of the vertex cache is a very important issue for
future improvements in the algorithm. Thus, grouping closer strips may
result in an increase of the performance of the set of strips generated. In the
same way, we consider that a significant improvement can be achieved by
utilizing a prediction system that better fits the evolution of simplification,
since this simple prediction method already offers a 5% improvement in the
number of vertices sent.

CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL13

(a) Results for the cow model.

(b) Results for the Al Capone model.

(c) Results for the bunny model.

Figure 2.4: Some results obtained with the algorithm.

14CHAPTER 2. QUALITY STRIPS FOR MODELS WITH LEVEL OF DETAIL

(a)

(b)

(c)

Figure 2.5: Stripification of the cow model for a) 33% b) 66% and
c) 100% of the maximum detail.

Chapter 3

Simplification

3.1 Introduction

The construction of a multiresolution representation is based on two main
elements. On the one hand, the original geometry of the object at its maxi-
mum level of detail. On the other, the simplification sequence that permits
the generation of the different levels of detail. This chapter deals with the
simplification methods that we use to construct our multiresolution models
LodStrips and LodTrees.

The chapter starts revising the methods used to simplify general meshes
(non-manifold surfaces), considering the geometric and the image-based method.
Finally, we introduce our algorithm to obtain the simplification sequence for
tree models.

3.2 Geometric simplification

3.2.1 Previous work

Algorithms for polygonal mesh simplification can be categorized into the
following classes:

Vertex Decimation [Sch97, CCMS96]. These methods basically use an
iterative vertex selection for removal. Once a vertex is removed, all
faces that share that vertex are also removed and the resulting hole is
triangulated. This type of algorithms are limited to manifold meshes
due to its retriangularization schemes.

15

16 CHAPTER 3. SIMPLIFICATION

Vertex Clustering [LT97, RB93]. These methods are based on a bound-
ing box divided into a grid. All vertices contained in a single cell are
mapped into a single vertex, and faces indices are modified to reflect
the changes. These methods tend to be really fast, but the quality of
the resulting simplified mesh is quite low.

Edge Contraction [GH97]. These methods use an iterative edge selection
for removal. At each step, a new edge (or vertex pair) is selected and
removed. One of the vertices is also removed and all affected faces
are mapped into the other vertex. Degenerated faces are also removed
from the mesh.

Morphological operations [NT03]. These methods apply morphological
operations (similar to those used in 2D images but applied to 3D vox-
els). These methods, such as erosion and dilation, are quite fast and
offer fairly good results, taking out detail from the original mesh.

The most extended and accurated methods used for surface simplifica-
tion, as for example [HG97],[PS97] or [Gar99], use techniques based on It-
erative Edge Contractions to simplify models, and maintains surface error
approximations using quadric metrics. These methods allow us to merge
vertices and modify the edges that use these vertices in order to keep the
connectivity with the other vertices of the edges.

The simplification criterion used in this method is calculated per-vertex
from the triangles that share that vertex. These methods set a decimation
factor for each edge, so that the edge with the lowest value will be removed
first. The decimation cost reflects how much the appearance of the object
will change, so that the edges with lower values are first contracted. The edge
decimation cost is calculated from the decimation cost of the two vertices
involved.

For each edge contraction (v1,v2)→ v the following steps are followed:

1. Delete vertex v1.

2. Remove all triangles that share the edge.

3. Remap all triangles shared by v1 to v2.

4. Move the vertex to an optimum position.

5. Recalculate the cost (decimation coefficient) for the vertex based on
the new connectivity information.

CHAPTER 3. SIMPLIFICATION 17

To calculate the decimation cost, the basic idea is to calculate the dis-
tance between the vertex and all planes (triangles sharing that vertex). That
value will represent how much that contraction would change the shape of
the mesh.

It is important to note that a contraction pair is not restricted to a
triangle edge, but to a pair of vertices that are closer than a given distance.

Figure 3.1: Example of edge contraction.

Figure 3.2: Example of pair contraction based on a distance thresh-
old.

3.2.2 General description

We have implemented several improvements on the aforementioned simpli-
fication algorithm. The obtained result from a high resolution mesh is a
simplified mesh with a simplification sequence. The simplification sequence
contains for each simplification step the following information:

• The vertices of the collapsed edge

• The removed faces

• The displacement of the non-removed vertex

• A list of the modified faces

18 CHAPTER 3. SIMPLIFICATION

Global Simplification

The methods in the literature are efficient algorithms to simplify surfaces
with a unique mesh. However, if a surface is composed by a set of individual
submeshes without any physical interconnection information, the simplifica-
tion process tends to produce artifacts like holes (see figure 3.5(b), and figure
3.7(b)) between the patches. This way, the final simplified model does not
preserve the appearance from the original object.

We have implemented an improvement for this method, which consists
of three steps:

• A pre-process step, which merges all the submeshes in a unique vir-
tual mesh, storing all the information about the original connectivity
of the meshes. This step is based on the distance of the vertices of
different meshes in the original object. Moreover, if two neighbour sub-
meshes are composed of different materials, the edges between them
are marked as virtual boundaries, so that the simplification step keeps
the original shape.

• The simplification step, which simplifies the whole mesh, using the
algorithm improved in two directions: the interpolation of texture co-
ordinates and the generation of normals per vertex.

• The post-process step retrieves the simplified mesh and splits it into
different submeshes, using the interconnectivity information of the orig-
inal submeshes stored in the pre-process step.

The result is the simplification of each single submesh maintaining the
original appearance as much as possible and avoiding the artifacts produced
by a plain contraction method.

This is especially useful for models which are often composed of a set of
small patches without any interconnection, except appearance connectivity.

Local Simplification (sub-mesh simplification)

The implemented method presents also the possibility of a local simplification
of the model. That is, if the object is composed by more than a single mesh,
each mesh could be simplified to a different level of detail. For more details
on this method, see algorithm 3.3.

It has to be considered that simplifying a submesh produces a minimum
simplification of the neighbour meshes in order to avoid creating holes in the
surface.

CHAPTER 3. SIMPLIFICATION 19

// Clear the edge buffer
simp_edges = [];
for i<mesh.edges.size() do

if (mesh.submesh.has_edge(i)) then
simp_edges.add(i);

end if
simplify_edges(simp_edges);
end for

Figure 3.3: General scheme for local simplification.

Boundaries preservation

Using the information stored in the pre-process step, the implemented algo-
rithm allows the preservation of the boundaries, so that when an edge with
a vertex in a boundary has to be remapped, the other vertex will overlap
the first one. This way, the original shape of the virtual boundary remains
unchanged while possible. A general scheme to this approach can be seen in
algorithm 3.4.

vertex_to_move = None;
if (mesh.boundaries.has_vertex(v1)) then

if (mesh.boundaries.has_vertex(v2)) then
vertex_to_move = normal_placement(v1,v2);

else
vertex_to_move = v2;

end if
else if (mesh.boundaries.has_vertex(v2)) then

vertex_to_move = v1;
else

vertex_to_move = normal_placement(v1,v2);
end if

Figure 3.4: General scheme for virtual boundaries preservation.

If a vertex in the edge is classified as a virtual boundary to preserve,
algorithm 3.4 is executed. If both vertices are in a boundary (or different
boundaries) we compute a normal vertex placement. If only one vertex is in
a virtual boundary, the other vertex of the edge is the one to be moved. Else,
if no vertices are on a boundary, we also compute a normal vertex placement.

20 CHAPTER 3. SIMPLIFICATION

Results of this method can be observed in figure 3.6.

Texture coordinates interpolation

At each simplification step texture coordinates for each modified vertex need
to be recalculated in order to maintain the mapping appearance. The new
texture coordinate is calculated based on the displacement of the mapped
vertex using a linear interpolation.

To obtain the offset that must be applied to the texture coordinates of
the modified vertex we propose the following system of equations:

Q

′
x = αUx + βVx + γNx

Q
′
y = αUy + βVy + γNy

Q
′
z = αUz + βVz + γNz

(3.1)

having ~Q′ = ~Q − ~P 1, ~U = ~P 2 − ~P 1, ~U = ~P 3 − ~P 1, where { ~P 1, ~P 2, ~P 3}
are the three vertices of a modified triangle, ~Q is the new position of the
modified vertex and ~N is the triangle normal.

Resolving this system of equations (3.1), we obtain:

α =
−(NzQ

′
yVx −NyQ

′
zVx −NzQ

′
xVy + NxQ

′
zVy + NyQ

′
xVz −NxQ

′
yVz)

−NzUyVx + NyUzVx + NzUxVy −NxUzVy −NyUxVz + NxUyVz

β =
−(−NzQ

′
yUx + NyQ

′
zUx + NzQ

′
xUy −NxQ

′
zUy −NyQ

′
xUz + NxQ

′
yUz)

−NzUyVx + NyUzVx + NzUxVy −NxUzVy −NyUxVz + NxUyVz

γ =
−(−Q

′
zUyVxQ

′
yUzVx + Q

′
zUxVy −Q

′
xUzVy −Q

′
yUxVz + Q

′
xUyVz)

NzUyVx −NyUzVx −NzUxVy + NxUzVy + NyUxVz −NxUyVz

where α, β and γ are the coordinates of ~P expressed in the triangle
coordinate system. They also expresses how much the modified vertex has
been moved in triangle coordiante system units, so they can be used to
calculate the perturbed texture coordinate for the modified vertex. We use
the following formula:

{
T res

u = α(T 2
u − T 1

u) + β(T 3
u − T 1

u) + T 1
u

T res
v = α(T 2

v − T 1
v) + β(T 3

v − T 1
v) + T 1

v
(3.2)

CHAPTER 3. SIMPLIFICATION 21

where ~T 1, ~T 2 and ~T 3 are the original texture coordinates of the three
vertices, ~T res is the new texture coordinate for the modified vertex and α, β
are the coefficients calculated from equation 3.1.

Note that we only use α and β from equation 3.1 because texture co-
ordinates are bidimensional vectors contained in the plane formed by the
triangle. As γ is the displacement along the normal vector of the triangle,
we do not need it.

Normals generation

The simplification step keeps track of the normal indices at each edge con-
traction, so that in the post-process step normals are generated using this
information. Thus, the simplified mesh has on each part of the model the
same type of normals (vertex or face normals) that the original model.

3.2.3 Results

The following examples show the improvements made to the current contrac-
tion methods. The images that are shown as examples are generated using
the Qslim algorithm, which uses an edge contration system.

(a) Original model (b) QSlim (LOD 0.3) (c) Our method (LOD 0.3)

Figure 3.5: Example of global simplification.

In figure 3.5 we can see how our implementation improves the quality of
the simplified model when the model is composed of a lot of small patches.
The image on the left is the original model. The image in the center is the
model produced by the QSlim algorithm at 30% of polygons. We can see

22 CHAPTER 3. SIMPLIFICATION

the holes and artifacts produced during the simplification. The image on
the right shows the same model simplified with our improved technique. We
can see how all the previous artifacts have disappeared, and the mesh has a
smooth transition through all the patches. Moreover, we can see in figure 3.6
that the boundaries of the original object are respected as much as possible.

(a) Original model (b) Our method (LOD 0.3)

Figure 3.6: Example of boundaries preservation.

(a) Original model (b) QSlim (LOD 0.3) (c) Our method (LOD 0.3)

Figure 3.7: Example of global simplification.

On the left of figure 3.7 the original model is shown, which is composed
of a high number of submeshes. In the center the simplified model with the
QSlim is shown. In this image it can be observed the wide quantity of holes
and artifacts that has been appeared with a simplification of 30%. And on
the right we can observe the same object simplified to 30% also with our
method. This simplification preserves much better the original shape than
the QSlim. Moreover, the object does not present any artifact or hole.

CHAPTER 3. SIMPLIFICATION 23

An example of local simplification is shown in figure 3.8, where only one
of the submeshes is simplified to 10%.

(a) Original model (b) Our method (LOD 0.1)

Figure 3.8: Example of local simplification.

In figure 3.9 it can be observed an example of the texture coordinates
interpolation. On the left of the image we can see the original model. In the
center the simplified model without interpolation of the texture coordinates
is shown. The texture presents high deformations, but with the interpolation
of the texture coordinates (image on the right) the simplification produces
almost no deformation.

(a) Original model (b) Model without the tex-
ture coordinates inter-
polated

(c) Model with the texture
coordinates interpolated

Figure 3.9: Example of texture coordinates interpolation.

A comparative of simplification times is shown in figure 3.10, considering
different levels of detail of models with different number of polygons. It can
be observed that the times increase exponentially.

24 CHAPTER 3. SIMPLIFICATION

Figure 3.10: Comparative of simplification times.

3.2.4 Conclusions

We have implemented an improvement on the current contraction methods
so that it could be used correctly for multiresolution models avoiding the
generation of artifacts or holes in the surface of the object. Moreover, the
texture coordinates interpolation and the normal generation allow us to ob-
tain a simplified model more similar to the original one. Thus, with this
method it can be possible to present a more realistic simplified object than
the one obtained with the current algorithms, saving a lot of geometric in-
formation.

3.3 Image-based simplification

Most common simplification methods use some technique based on a geo-
metric distance as a quality measure between an original mesh and the one
obtained from simplification. By using these methods we can obtain meshes
that are visually very similar to the original. The image-based simplification
tries to carry out a simplification guided by differences between images more
than by geometric distances. The goal is to create simplified meshes that
appear similar to a human observer.

Many purely geometric methods only take into account the position of
vertices, edges and faces, although lately some incorporate surface properties
such as colour and textures coordinates. The most common way of incor-
porating such properties is to add some weighted sum of deviations to the
geometric distance. However, these weights are arbitrarily chosen by the
user. One of the objectives of the image-based methods is to manipulate in

CHAPTER 3. SIMPLIFICATION 25

a natural way the different interactions between the properties of a mesh in
only one metric.

The applications that can be benefited by using image-based simplifica-
tion are those in which the main requirement is visual similarity. Examples
of such applications are video games, vehicle simulations, building walk-
throughs, etc.

By using the image-based simplification we can achieve meshes with a
maximum simplification in hidden zones. A reduced number of applications
require exact geometric tolerances with regard to the original model. For
this type of applications it would be better to consider some simplification
method based on a purely geometric measure. Examples of such applications
include collision detection and path planning for part insertion and removal.

3.3.1 Previous work

At the moment there is a unique algorithm by Lindstrom and Turk [LT00]
that carries out an image-based simplification. Basically, this method deter-
mines the cost of and edge collapse operation by rendering the model from
several viewpoints.

The algorithm compares the rendered images to the original ones and
sums up the mean-square error in luminance across all pixels of all images.
It sorts all edges by the total error they induce in the images and chooses the
edge collapse that induces least error. The calculation of the error induced
by an edge collapse is very expensive. Lindstrom and Turk use 20 viewpoints
in their implementation to compute that error. In order to reduce the calcu-
lation cost they take advantage of the fact that the edge collapse operation
typically affects a small region of the image and thus only a few triangles.
The main advantage of Lindstrom and Turk method is that their metric pro-
vides a natural way to balance the geometric and shading properties without
needing to use an arbitrary weight of the geometric and shading attributes
by the user. On the other side, its main disadvantage is the speed. Despite
the optimizations mentioned, it is a very expensive method. For that reason
Lindstrom and Turk propose to make two passes. First, simplify the original
model by using a geometric method and then apply the image-based method.

3.3.2 General description

The information theory has been used as a basis for the elaboration of metrics
that have been successfully applied in image-based modelling. For example:

26 CHAPTER 3. SIMPLIFICATION

the viewpoint entropy that is based on Shannon entropy has been used to
compute the best viewpoints of an object.

Our goal is to develop new metrics that can be used to evaluate the cost of
an edge collapse. To address this, we have proposed the mutual information
as a new metric for the elaboration of image-based simplification algorithms.

We define the mutual information for a scene S and a viewpoint x as:

I(x, S) =
Nf∑
i=1

w(x, i) log(
w(x, i)

ai
) + log(At) (3.3)

where Nf is the number of faces of the scene, w(x, i) is the projected
area (number of pixels) of the face i divide by the total projected area, ai is
the real area of the face i and finally At is the real area of all faces of the
scene.

This metric doesn’t take into account in its current definition the colour
information and neither the texture coordinates, although it is possible to
incorporate them.

3.3.3 Techniques for Computing the Mutual Information

In order to compute the mutual information, we need the number of pixels
covered for each visible triangle from a particular camera position. This
number will give us the projected area. Next we analyze several techniques
that allow us to compute those areas.

OpenGL Histogram

The OpenGL histogram was first used to compute the viewpoint entropy
in [VS04]. The OpenGL histogram lets us analyze the colour information
of an image. Basically, it counts the appearances of a colour value of a
particular component. However, we can also use it to calculate the area
of triangles that are visible from a viewpoint, without reading the buffer.
Since version 1.2, OpenGL includes an extension called glHistogram. This
extension is part of the image processing utilities. The OpenGL histogram
is hardware-accelerated, although there are just a few graphics cards that
actually support it (for instance, 3DLabs WildCat). Usually, it is a driver

CHAPTER 3. SIMPLIFICATION 27

manufacturer’s responsibility, as generally happens with the OpenGL exten-
sions, and it is often implemented in software.

In order to obtain the area of each visible triangle by means of the
OpenGL histogram, we need to assign a different colour to each triangle.
An important limitation is that histograms have a fixed size, normally of
256 different values. This is the most common value in many graphics cards.
The glGetHistogram command returns a table that counts each colour value
separated into channels. If we use the 4 RGBA colour channels, a 256 item
table of 4 integer values will be returned, where each integer is the number of
pixels this component has. Thus, if we want to detect a triangle, this should
be codified using one single channel. This gives us a total of 1020 different
values. That is to say, for channel R (1,0,0,0) up to (255,0,0,0), for chan-
nel G (0,1,0,0) up to (0,255,0,0), for channel B((0,0,1,0) up to (0,0,255,0)
and finally for channel A (0,0,0,1) up to (0,0,0,255). The value (0,0,0,0) is
reserved for the background.

Obviously the main drawback of this technique is that for objects with
more than 1020 triangles, several rendering passes are needed. In each pass,
we will obtain the area of 1020 different triangles of the object.

Using histograms with a higher number of items, and making a rendering
off-screen, will increase the number of colours, and therefore making neces-
sary less rendering passes. However, this possibility is outside the OpenGL
specification and it is hardware dependent. It was not possible for us to use
a larger size histogram in the several graphics cards we tested.

Hybrid Software and Hardware Histogram

The OpenGL histogram allows us to obtain the area of each visible triangle.
However, as we have seen in the previous section, several rendering passes are
needed for objects with more than 1020 triangles. Currently, new symmetric
buses have appeared such as the PCI Express. In this new bus, the buffer
read operation is not as expensive as before. Therefore, it is possible to
obtain a histogram avoiding making several rendering passes. The way to
get it is very simple. A different colour is assigned to each triangle and the
whole object is sent for rendering. Next, a buffer read operation is done,
and we analyze this buffer pixel by pixel retrieving data about its colour.
Using a RGBA colour codification with a byte value for each channel, up to
256*256*256*256 triangles can be calculated with only one single rendering
pass.

28 CHAPTER 3. SIMPLIFICATION

Occlusion Query

This OpenGL extension is normally used to identify which scene objects are
hidden by others, and therefore we shouldn’t send them to render. In fact,
what we do is just render the bounding box of an object and, if it is not
visible, the object is not send for rendering. However, it can also be used to
compute the area of the triangles that are visible from a particular camera
position.

The OpenGL ARB_occlusion_query extension returns the number of
visible pixels. This feature allows us directly obtain the area of the visible
triangles. In order to compute the area of each visible triangle from an object
using this technique we will proceed as follows. First, the whole object is sent
for rendering and the depth buffer is initialized. Second, we independently
send each triangle for rendering. With this procedure it is necessary to make
n + 1 rendering passes, being n the number of triangles in an object. We
must mention that only in the first pass it is necessary to render all the
geometry. In the following passes, only one triangle is rendered. However, a
high number of renderings can significantly penalize this technique. In order
to improve the results, this extension can be used asynchronously in contrast
to its predecessor HP_OCCLUSION_QUERY. That is to say, it does not
use a "stop-and-wait" execution model for multiple queries. This allows us
to issue many occlusion queries before asking for the result of any one. But
we must be careful using this feature because, as we mentioned above, this
extension was not designed to deal with thousands of multiple queries. Thus,
we can have some limitations depending on the graphics card.

Figure 3.11: Comparison of results obtained from the different an-
alyzed techniques.

Among these techniques, the hybrid histogram by Software and Hardware
has the least temporal cost, as we can see in Figure 3.11. These results have
been obtained using an NVIDIA GeForce 6800 GT 256 MB card. Thus, we

CHAPTER 3. SIMPLIFICATION 29

have used this technique for mutual information calculation.

3.3.4 Algorithm

The applied simplification process is similar to the one used by Lindstrom
and Turk. We compute the error induced by each edge collapse as the differ-
ence between the mutual information of the model before simplifying with
the mutual information of the model after simplifying. Then we choose the
edge collapse that has the least cost. This error has been calculated as a sum
of differences in absolute value of the mutual information for each viewpoint.
We have done measurements with 6, 12 and 20 viewpoints. We have checked
that the accuracy of the results is better with many viewpoints than with
just a few, although the computational cost is higher.

The edge cost c has to be evaluated in each iteration for the entire set
of remaining edges. An edge collapse in our algorithm could, initially, affect
the cost of any remaining edge. But it does not always happen to each edge.

The current implementation completely recalculates in each iteration the
errors induced by all the edge collapses. Thus, it always chooses the opti-
mum. However, it may also be possible to recalculate the error only for a
group of edges from the triangles involved in an edge collapse (the neigh-
bourhood of the transformation) in order to accelerate the algorithm. In
Figure 3.12 we can see a summary of the algorithm described above.

3.3.5 Results

Due to the high temporal cost of the algorithm, we have done our tests with
low complexity models. We have done measurements with some scanned
meshes and with meshes created by means of CAD programs. In order to
know the quality of our results, we have compared the results obtained at
the same simplification level to the results obtained from Qslim [GH97], a
simplification algorithm based on a geometric metric developed by Garland
and Heckbert.

All models simplified by our image-based simplification method shown
below were obtained from 6 viewpoints.

As we can see in figure 3.13(c) our image-based simplification method
keeps some spokes in the unicycle wheel. However, Qslim deletes all these
spokes (see figure 3.13(b)).

30 CHAPTER 3. SIMPLIFICATION

// Compute the mutual information for each viewpoint
compute mutual information I(x, S)x = {1, . . . , n}

// Generate the initial priority queue of edge collapse.
for (∀e ∈ M) do

perform collapse e;
compute mutual information I

′
(x, S

′
)/x = {1, . . . , n};

compute cost c =
∑n

x=1

∣∣∣I(x, S)− I
′
(x, S

′
)
∣∣∣;

insert the duple (e, c) in queue;
undo collapse e;

end for
// Collapse the mesh
while (queue not empty) do

delete from queue e with lowest c;
perform collapse of e;
recalculate cost of every edge in queue e;

end while

Figure 3.12: Pseudocode of the algorithm for our image-based sim-
plification method.

In figure 3.13(f) we can distinguish how the fish keeps the tail shape while
several holes appear in the model simplified by Qslim (see figure 3.13(e)).

In figure 3.14(a) we show the results for a scanned model (Cow) that
previously has been presimplified by Qslim up to the level of detail shown.
From this one, we have applied both methods. We can check that the results
are similar, although we can notice a slight loss of quality in the result
obtained from our image-based simplification method (see figure 3.14(c))
compared to the simplified model by Qslim. Anyway, the results can be
improved if we increase the number of viewpoints.

3.3.6 Conclusions

The proposed simplification method based on images mainly obtains very
good results. These are composed of different pieces that are assembled to-
gether, thus presenting a lot of hidden zones and that is where our proposed
algorithm attacks more. The results are similar to those obtained from ge-
ometric methods for scanned objects where all triangles are uniform and
there are not hidden zones due to the assembly. Although we must take into
account that currently the temporal cost is very high in our image-based
simplification method.

CHAPTER 3. SIMPLIFICATION 31

(a) Original Model.
T=3,192.

(b) Qslim. T=1,000. (c) Image-based Simplifica-
tion. C=6. T=1,000.

(d) Original Model. T=815. (e) Qslim. T=100. (f) Image-based Simplifica-
tion. C=6. T=99.

Figure 3.13: Some examples with the unicycle and the fish model.

3.4 Geometric Simplification of Foliage

Many automatic simplification methods have appeared up to now. Applying
them to trees, these obtain acceptable results with the meshes of polygons
that represent the trunk and the branches. However, they do not work
properly with the foliage. The existing simplification methods generally
eliminate polygons, so that the appearance of the crown after an automatic
process of simplification is that it has been pruned. The number of leaves
is less than before, so the tree appears less leafy. The images obtained with
these methods are not very realistic and for this reason it is necessary to
introduce new solutions.

The method presented for the automatic simplification of foliage dimin-
ishes the number of polygons that form the crown, while maintaining its

32 CHAPTER 3. SIMPLIFICATION

(a) Original Model.
T=3,192.

(b) Qslim. T=1,000. (c) Image-based Simplifica-
tion. C=6. T=1,000.

Figure 3.14: Some examples with the cow model.

leafy appearance. The key to the algorithm is leaf collapse. Two leaves are
transformed into a single one, so that the area of the new leaf is similar to
the area formed by the two leaves initially. An error function is the way of
determining the pair of leaves that will be simplified to create a new one.

3.4.1 Previous Work

Because previous work on geometric simplification has recently been re-
viewed in several papers [PS97], [HG97], we review the different existing
methods of simplification by analyzing the results that would be produced
on the mesh of isolated triangles that constitutes the foliage of the trees.

According to [HG97], one of the methods traditionally used to generate
simplified versions of an object, is the manual method. The user generates
several levels of detail by hand. Simplified versions of trees and plants can be
obtained, in the case of using L-systems, by limiting the number of polygons
at the time of generating the object. This is one of the most widely used
methods for tree geometry simplification. The commercial software Xfrog
[LD99] has an additional tool, denominated XfrogMLOD, to generate these
levels of detail. The user determines the number of leaves or branches that
conform the tree during its modelling. Varying this parameter, different
levels of detail of a same tree are obtained. But these tools cannot simplify
any geometric description of a tree. They only simplify trees that have been
generated with that software.

Another method is Vertex Clustering [RB93], [LT97]. It partitions the
vertex set spatially into clusters and unifies all vertices within the same
cluster. This produces simplified trees that appear to have been pruned.

Region Merging [KT96] and Wavelet Decomposition [SDS96] methods
do not work properly with meshes of isolated polygons. Region Merging is

CHAPTER 3. SIMPLIFICATION 33

generally restricted to manifold surfaces. Wavelet Decomposition is adequate
for surfaces with subdivision connectivity.

Vertex Decimation [CCMS96] [Sch97] does not produce good results ei-
ther. In each step of the decimation process, a vertex is selected for removal,
all the faces adjacent to that vertex are removed from the model, and the
resulting hole is re-triangulated. In our case, each leaf is formed by two tri-
angles with an image textured on it. If one of them is eliminated, it would
cause the image to be disfigured. The Iterative Contraction [GH97] [Lin00]
[Hop96] method would produce the same effects as those mentioned with
regard to vertex decimation.

The Foliage Simplification Algorithm has been developed in order to
generate different levels of detail of a same tree without losing similarity
with the original model.

3.4.2 Tree geometry simplification

The trees used in our study are modelled by the Xfrog application [LD99]
(figure 1.2). They are very realistic, but are generally formed by more than
50.000 polygons each. This is a disadvantage when it comes to generating
images in an interactive way.

The trees can be separated into two different parts: the solid component
of the tree, i.e. the trunk and the branches, and the sparse component, the
foliage or leaves. The trunk and the branches are represented by triangle
meshes and the foliage by a set of isolated polygons where each of the leaves
is a textured quadrilateral.

The trunk is formed by a set of meshes of polygons. A great number of
automatic simplification algorithms existing in the literature deal with this
type of objects (figure 3.15).

Secondarily, the foliage of the tree is formed by a set of independent
polygons. The automatic simplification algorithms that have appeared up
to now do not work properly with this type of representation. Figure 3.16
shows the crown of a tree after application of the automatic algorithm. It
can be seen that, in this image, the tree is less leafy.

The algorithm for foliage simplification has been defined with the purpose
of diminishing the number of polygons that form the foliage of the tree
without losing the leafy appearance. The algorithm is described below.

34 CHAPTER 3. SIMPLIFICATION

(a) 38.781 polygons. (b) 12.771 polygons.

Figure 3.15: Image of the original trunk and a simplified version of
the same trunk.

3.4.3 Foliage Simplification Algorithm

The tree leaves defined with the Xfrog application are represented by quadri-
laterals formed by two triangles. The final aspect is obtained by texturing
these quadrilaterals with the image of a leaf. The method of simplification
presented here repeatedly selects a pair of leaves, which minimises an error
function. These leaves disappear and a new one is obtained. The collapsed
leaves are eliminated from the list of candidates, and next, the new leaf is
evaluated with the leaves that remain in the foliage.

The main idea of this simplification algorithm is that the leaf obtained
after collapsing maintains an area similar to that of the collapsed leaves.
This is done in order to preserve the appearance of the foliage when the
number of leaves is reduced.

The simplification method is characterised by two elements:

• the measurement that specifies the cost of collapsing two leaves, and

• the position of the vertices that form the newly created leaf.

These two questions are discussed in the following sections

CHAPTER 3. SIMPLIFICATION 35

(a) 20.376 leaves. (b) 779 leaves. (c) 236 leaves.

Figure 3.16: Example of a simplified foliage from 20.376 leaves to
779 and 236 leaves with the Qslim method.

Leaf Collapse Cost

Given a set of candidate leaves to be collapsed, a pair will be chosen so
that the error function is diminished. This function combines distance and
planarity between the pair of evaluated leaves.

Assuming that lt and lu are two leaves pertaining to a certain level of
detail, the error function is as follows:

E(lt, lu) = Edist(lt, lu) + Epl(lt, lu) (3.4)

where Edist(lt, lu) is the distance between leaves, and Epl(lt, lu) the pla-
narity level.

The fist term of the function takes into account the measurement of the
distance between leaves, according the following equation:

Edist(lt, lu) = (DH(lt, lu))2 (3.5)

where DH(lt, lu) is the Hausdorff distance. This measurement makes
geometric comparisons between two sets of points. Let Lt y Lu be the
geometric set of vertices that respectively form the leaves lt and lu , the
Hausdorff distance is defined as:

DH(lt, lu) = max(DH(Lt, Lu), DH(Lu, Lt)) (3.6)

36 CHAPTER 3. SIMPLIFICATION

where DH(Lt, Lu) is:

DH(Lt, Lu) = maxli∈Ltminlj∈Lu‖li − lj‖ (3.7)

In addition, we also measure the planarity between two leaves. This is
done in the second term of the equation:

Epl(lt, lu) = P (lt, lu)DH(lt, lu) (3.8)

Giving priority to the nearest leaves, the angles formed by the normal
vectors of the leaves are compared. Firstly leaves with a similar planarity
will be collapsed.

Vertex placement.

The simplification algorithm does not introduce new vertices in the model,
as shows figure 3.17. The vertices of the new leaf will be two vertices of each
of the collapsed leaves. For this reason, the two vertices of each leaf that
are furthest from the other leaf would be chosen. This method will allow
us to maintain an area similar to the two original leaves. However, the two
triangles that will form the new leaf are not generally in the same plane.

Figure 3.17: Simplification of two leaves to create a new one. The
vertices of the original leaves remain.

3.4.4 Algorithm Overview

Data structure

The main data structure of the algorithm is the Leaf class, shown in figure
3.18. Each of the leaves in the foliage is represented by an object of this

CHAPTER 3. SIMPLIFICATION 37

class.

class Leaf {
int Vertices[4];
float Normal[3];
bool exists;
float error;
int id_couple;
int lnumber;

};

Figure 3.18: Main C++ data structure.

Firstly, all the polygons that make up the foliage are possible candidates
to be simplified. For this reason a flag, exists, has been introduced which
initially would be true in all the polygons.

Each of the leaves will be evaluated with the rest according to the error
function E(lt, lu). Two data will be stored in them:

• the leaf that makes the error function as low as possible, id_couple,
and

• the value of this function, error.

The lnumber field indicates the number of leaves that have been collapsed
to create this leaf. In order to prevent some leaves from growing in an
unbalanced form with respect to others, we imposed the condition that two
leaves will only be collapsed if the values of their lnumber differ by one. In
this way, the coexistence of excessively large leaves and the original, much
smaller, leaves is avoided. When all the leaves have been evaluated, the pair
of leaves that make the lowest error function is chosen. This selected pair
will be taken away from the candidate leaves putting flag exists to false, and
the new leaf will enter on this list.

Storing cost

As it is said, the leaves in the foliage are formed by four vertices different
from the ones formed other leaf. Let |L| and |V | be the total number of
leaves an vertices in the foliage. Note that:

|H| = |V |
4

(3.9)

38 CHAPTER 3. SIMPLIFICATION

Let us suppose that the storage cost of an integer, real or pointer is one
word. The final cost is the following:

3|V |+ 11|H| = 3|V |+ 11
|V |
4

= 3|V |+ 2.75|V | = 5.75|V | (3.10)

Summarizing, we can say that the storage cost of the data structure is
O(V).

Algorithm

Considering Ls as the set of leaves that initially form the crown of the tree,
the core of the traversal algorithm is summarised in figure 3.19.

for each leaf ls ∈ Ls do
ls.error= MAXERROR;
for each leaf lj ∈ Ls do

if lj.exists and (lj <> ls) then
if (lj.lnumber-ls.lnumber) < 2 then

P = Planarity(ls,lj);
D = Hausdorff(ls,lj);
E = Error (P,D);
if ls.error < E then

ls.error = E;
ls.id_couple = lj;

end if
end if

end if
end for

end for

Figure 3.19: Pseudocode of the algorithm that calculates the error.

When a leaf collapse is performed, the new leaf will be evaluated with
the rest of the leaves in the same way as described above. The same process
will be done for the candidate leaves that store in the id_couple field one of
the two leaves that have just been collapsed.

CHAPTER 3. SIMPLIFICATION 39

The number of leaves that make up the simplified crown is determined
a priori by the user. This will condition the number of iterations of the
algorithm.

Computing cost

Each leaf in the foliage has to be evaluated with the rest of leaves in
order to obtain the error induced in their collapse. This action conditions
that the computing cost is O(|H|2).

3.4.5 Results

The method developed was implemented with OpenGL on a PC with Win-
dows 2000 operating system. The computer used was a dual Pentium Intel
Xeon at 1.8GHz. with an NVIDIA Quadro4 700XGL graphics processor with
64MB.

The tree models have been modelled with the Xfrog 2.1 program. They
have been converted from the Xfrog format to standard obj format.

Figures 3.20 to 3.23 shows different simplified versions of the tree models
used for the experiments. They have been simplified with the algorithm pre-
sented in this section. It can be observed that the images obtained maintain
the appearance although their leaf number diminishes. In these images, we
can observe an image composition of the simplified tree versions according
to the distance to the viewer.

40 CHAPTER 3. SIMPLIFICATION

(a) 24.839 leaves. (b) 18.629 leaves.

(c) 12.419 leaves. (d) 6.209 leaves.

(e) Composition of the different aproximations following
the distance-to-the-viewer criteria.

Figure 3.20: Results obtained for the tree model Sorbus Aucuparia.

CHAPTER 3. SIMPLIFICATION 41

(a) 29.534 leaves. (b) 22.150 leaves.

(c) 14.767 leaves. (d) 7.383 leaves.

(e) Composition of the different aproximations following
the distance-to-the-viewer criteria.

Figure 3.21: Results obtained for the tree model Aesculus Hippocas-
tanum.

42 CHAPTER 3. SIMPLIFICATION

(a) 48.160 leaves. (b) 36.120 leaves.

(c) 24.080 leaves. (d) 12.040 leaves.

(e) Composition of the different aproximations following
the distance-to-the-viewer criteria.

Figure 3.22: Results obtained for the tree model Taxus Baccata.

CHAPTER 3. SIMPLIFICATION 43

(a) 114.114 leaves. (b) 85.585 leaves.

(c) 57.057 leaves. (d) 28.528 leaves.

(e) Composition of the different aproximations following
the distance-to-the-viewer criteria.

Figure 3.23: Results obtained for the tree model Carya ovata.

44 CHAPTER 3. SIMPLIFICATION

Chapter 4

LodStrips

4.1 Introduction

A common way to deal with the problem of rendering large 3D scenes is the
use of multiresolution modeling techniques. According to Garland [GH97] a
multiresolution model represents an object through a set of approximations
at different levels of detail, as shown in figure 4.1, and allows us to recover
any of them on demand. In recent years, multiresolution models have pro-
gressed substantially. In the early days, discrete models were employed in
graphics applications due mainly to the low degree of complexity involved in
implementing them. These models were based on a relatively small number
of approximations (normally between 5 and 10) [ESV96]. Nevertheless, the
increase in realism in graphics applications made it necessary to find solutions
which were more exact in their approximations, which did not call for high
storage costs and which had faster visualization times. This fact led to the
appearance of continuous models, where two consecutive levels of detail only
differ by a few polygons and which are capable of solving the problems of in-
teractive visualization, progressive transmission, geometric compression and
variable resolution. A comprehensive description of multiresolution models
can be found in Ribelles et al. [RLB+02]

Working with the current multiresolution models poses the problem of
dealing with high level of detail extraction time and excessive storage cost.
The continuous uniform resolution model we present noticeably improves
existing models in terms of storage and visualization costs. The model is
based entirely on optimized hardware primitives, triangle strips, and it is
conceived in such a manner that mesh updating is fast and efficient.

45

46 CHAPTER 4. LODSTRIPS

Figure 4.1: Happy_buddha model at the highest level of detail
(543699 vertices and 31596 triangle strips) running in the Ogre 3D
Engine.

4.2 Previous work

One of the first models to benefit from the triangle strip primitive was the
one presented by Hoppe [Hop96], known as Progressive Meshes and included
in Microsoft’s DirectX library. The main drawback of Progressive Meshes
was that it used triangles during the change of level of detail and during the
rendering step. After this model appeared, many works were presented with
the intention of improving its performance. In figure 4.2, we can observe
three levels of detail of a model based on triangle strips primitives.

Figure 4.2: Three levels of detail from the AlCapone model.

The first multiresolution model to take full advantage of the connectivity
information among triangles in a mesh was the model introduced by Ribelles
et al. called MOM-Fan [RLR+00], which used the triangle fan primitive in
its data structures. The main problem of this model was the high number of
degenerated triangles, although they were purged before the rendering stage.
Another disadvantage of this model was that the average number of triangles
in each triangle fan was small.

CHAPTER 4. LODSTRIPS 47

Later, El-Sana et al. [ESAV99] presented the Skip Strips model, which
was the first model to maintain a data structure to store the strips that
avoided the need to calculate them in real time. But this model still uses
triangles to adjust the geometry at each level of detail.

The MTS model [BRR+02] uses triangle strips both as the storage and
the visualization primitive. It consists of a set of multiresolution strips, each
of which represents a triangle strip and all its levels of detail; only the ones
that are modified when changing the level of detail are updated before being
rendered.

Some time later Dstrips [SP03] appeared, which is a method that tries
to maintain the initially calculated strips, modifying the existing ones and
searching for new strips only when a specific zone of the model requires it.

4.3 Multiresolution model

The LodStrips model represents a mesh as a set of multiresolution strips.
Let M be the original polygonal surface and M r its multiresolution repre-
sentation. M r can be defined as:

M r = V, Sr (4.1)

where V is the set of all the vertices,

V = v1, . . . , vn, vi ∈ <3 (4.2)

and Sr is the set of all the triangle strips used for the representation of
any of the different approximations that M r stores.

The construction of this multiresolution model is made up of a set of
different processes. First of all, as we are working with a model based on
triangle strips, we will need to have a stripified mesh. We will also need
to choose a simplification method for our 3D model, since we need the sim-
plification information to generate the different levels of detail. With the
information about the strips and the simplification sequence, the real con-
struction of the model begins by filling the data structures with all the re-
quired information. Figure 4.3 offers the data flow diagram associated with
the global construction process.

48 CHAPTER 4. LODSTRIPS

Figure 4.3: Model construction.

There are several mesh simplification methods [GH97, Lue01], but those
based on iterative edge contractions are the ones employed on well-known
multiresolution models such as [ESAV99, SP03, BRR+02, RLR+00, Ste01]
and on our model.

The simplification process allows us to obtain versions of the input polyg-
onal mesh at different levels of detail. The fundamental information that this
process supplies consists of a sequence of collapses that are needed to sim-
plify the polygonal mesh. For every collapse of the simplification process we
need to know the vertices that split, the two triangles that disappear and
the set of existing triangles that will be modified.

As the multiresolution model presented here is wholly based on triangle
strip primitives, we will need to apply a stripification process consisting in
converting polygonal meshes, which are geometrically composed of triangles,
to triangle strips.

Many works can be found in the literature where the problem of con-
verting a triangularized mesh into triangle strips is solved [ESV96, AHB90,
XHM99]. This process can be carried out in either a dynamic or a static way.
Dynamic stripification involves generating the triangle strips in real time,
that is, for each level of detail new strips are generated. Static stripification
entails creating triangle strips just once and then working with versions of
these original strips through all levels of detail. In the multiresolution model
proposed, static strips will be used since the cost of creating strips for every
level of detail is too high. Figure 4.4 offers the resulting stripification of the
Athena model.

CHAPTER 4. LODSTRIPS 49

Figure 4.4: Stripification example.

The main problem of static stripification is that strips tend to present
vertex repetitions that do not add any geometric information to the final
scene. Models like [ESAV99] solve this problem by applying filters in visu-
alization, thus preventing those vertices from being sent at the moment of
rendering. The approach we will follow is also based on the application of
filters, as it runs a pre-process that detects them early on and then stores
that information to eliminate them from the strips before visualizing them.

We have proven that most vertex repetitions follow patterns like aa(a)+
or ab(ab)+. Patterns aa(a)+ are replaced by aa, and ab(ab)+ by ab. Figure
4.5 shows an example of both kinds of patterns, and it can be observed how
the final geometry of the strips is not altered after removing these patterns.

Figure 4.5: Type of patterns removed by model data structures.

50 CHAPTER 4. LODSTRIPS

4.3.1 Construction

Once the information about the vertices to be simplified for each level of
detail has been obtained from the simplification process, and the triangle
strips at the highest level of detail have been generated, we then proceed to
the construction of the model.

In this process, vertices are reordered according to the simplification
order, that is, the first vertex to be collapsed will be zero, the second will
be one, and so on. Obviously, it will also be necessary to modify the strips
according to the changes made. This step also stores the ordered vertices
and the triangle strips within the model data structures. Finally, and as
we have mentioned before, the method takes into account the existence of
degenerated triangles and applies filters to avoid their appearance in the
triangle strips.

With the information gathered in the previous step it would already be
possible to build a multiresolution model that traverses through the levels
of detail. However, whenever a change in level of detail occured, it would be
necessary to search among all the strips for the vertices that would collapse,
and this operation would have a high cost. Thus, a further process is required
that pre-computes and stores this information in another data structure.

This process computes the strips that change for each level of detail and
the exact location of the vertex to be simplified in every strip. This allows the
levels of detail in the model to be crossed rapidly, offering optimum perfor-
mance. This is the information that enables a fast level of detail extraction
time and makes this multiresolution model quick and efficient.

4.4 Data structure

Only two data structures are needed to visualize a polygonal mesh at the
highest level of detail: Strips and Vertices. Vertices stores the 3D coordinates
for each vertex in the mesh, and Strips is a set of triangle strips where each
strip contains a sequence of indexes to Vertices.

To change the level of detail, we also need to store the vertex that will be
collapsed for each LOD. Thus, for each vertex in the Vertices data structure
we also store the vertex where the collapse will take place. Figure 4.6 shows
a scheme of the model data structures.

In order to avoid the problem of having to search the vertex to be col-
lapsed in each strip, we first store the strip that change in the data structures

CHAPTER 4. LODSTRIPS 51

Figure 4.6: LodStrips data structures.

and then store the exact position of the vertex to be collapsed in the trian-
gle strip. However, as mentioned in the previous section, an accumulation
of identical vertices is produced as the model moves towards coarser LODs.
Sending these vertex repetitions to the graphics hardware does not contribute
to the final scene at all.

In summary, we need some additional data structures to support the
aforementioned aspects, that is to say, to index the vertex to be collapsed
and to remove the most frequent patterns. This information is stored in
Change Info within the Changes data structure.

Figure 4.7: Model construction example.

Figure 4.7 offers three steps of the construction process of a triangle strip.

52 CHAPTER 4. LODSTRIPS

We will start having Strips and Vertices filled with the suitable information,
while the data structure Changes will be empty. As we mentioned before,
the level of detail will be related to the vertex that is collapsed in each LOD
change, and Vertices offers the vertex it collapses to. This way, we know
that vertex 0 collapses with vertex 7. We calculate that vertex 0 is located
in position 6 and only appears once. The collapse of this vertex compels the
appearance of a vertex repetition in position 5, allowing us to eliminate two
vertices of the strip. With all this information we can fill the Changes data
structures for all the LOD changes.

4.4.1 Level of detail extraction

The level of detail extaction algorithm works by changing the vertices of all
strips. Algorithm 4.8 offers a pseudo algorithm to move from LOD n to LOD
n + 1. It consists in replacing the vertex n by the vertex it collapses to in
every strip where it appears, and removing vertex repetitions following both
patterns.

for lod = currentLOD to demandedLOD
//Compute the number of changes to apply in this lod
nChanges = TotalChanges(lod);
//Collapse vertices and remove patterns calculated in the pre-process
for i = 0 to nChanges - 1

CollapseVertices(Changes[lod][i]);
RemovePatterns(Changes[lod][i]);

end for i
end for lod

Figure 4.8: Level of detail extraction from a LOD to a coarser one.

4.4.2 Optimizations in visualization

Every multiresolution strip has two representations with the same informa-
tion. The first one is the already mentioned Strips, a data structure with a
constant time in insertions and deletions. The second one is visStrips, which
is efficient and fast in access and allows us to exploit coherence in visual-
ization. This representation can be allocated either in the main memory or
directly in the graphics hardware, producing great acceleration.

The information stored in visStrips must be updated according to the
changes made in Strips. Thus, every time a strip is modified in the level

CHAPTER 4. LODSTRIPS 53

of detail extraction process, it is necessary to communicate it to the vi-
sualization process through the stripChanged flag array. The method for
visulization is presented in figure 4.9.

for i = 0 to lStrips.size()
//Update visStrips when proceed
if (stripChanged[i])

visStrips[i]=lStrips[i];
//Send strips to GPU
visStrips[i].Draw();

end for i

Figure 4.9: Visualization algorithm.

4.5 Results

This model has been submitted to several tests in order to analyze the main
features that must be taken into account when selecting a multiresolution
model. To carry out the tests, some well-known meshes from the Stanford
3D Scanning Repository were taken as a reference in order to make it easier
to compare this model with other well-developed models. The spatial cost
of these models is shown in table 4.1. The computer where the tests were
conducted was a PC with an Intel Pentium Xeon 2.8 GHz processor, 1024
Mb RAM and an NVIDIA GeForce FX 6600 256 Mb graphics card. C++
was employed for the implementation, using the graphics library OpenGL.

Cow Bunny Dragon Phone Buddha
Vertices 2.904 34.834 54.294 83.044 543.699
Strips 551 6.194 8.799 1.747 31.596
Mb 0,17 2,64 4,01 5,08 35,51

Table 4.1: Spatial cost of some models.

Figure 4.10 shows a comparison of spatial costs among the most impor-
tant present-day continuous uniform resolution models: PM [Hop96], MOM
[RLR+00] and MTS [BRR+02]. As can be observed, the presented model
offers the best spatial cost. On average, the model presented here fits in 1.5
times the original mesh in triangles.

In figures from 4.11(a) to 4.14(a), a composition of three images is shown,
being the first one the stripification of the model at the highest level of detail,

54 CHAPTER 4. LODSTRIPS

Figure 4.10: Spatial cost comparison.

the second one the strips at the lowest level of detail and the last one an
illuminated version of the original object.

In continuous multiresolution models, level of detail management entails
two fundamental tasks: level of detail extraction and visualization of the
resultant geometry. We can observe in figures from 4.11(b) to 4.14(b) that
the model presented here offers a low extraction time. This is mainly due
to the effect of using coherence in the extraction algorithm and also to the
implementation of efficient data structures that manage the level of detail.
The experiment consists in extracting one hundred levels of detail between
0 and 1, where 0 represents the highest lod and 1 the lowest one.

Finally, in figures from 4.11(c) to 4.14(c) a comparison of the vertices
sent to the GPU is also offered.

4.6 Conclusions

The LodStrips model offers many advantages and it should be underlined
that it is a model with only three simple data structures and it is easy to
implement. Moreover, it offers a fast LOD extraction which allows us to ob-
tain smooth transitions between LODs, as well as very good rendering times,
because extraction is usually an important part of the total rendering time.
This model is wholly based on triangle strips, which leads to an important
reduction in storage and rendering costs.

Moreover, this model features: an easy adaptation to the graphics hard-
ware, optimized hardware primitives, vertex cache exploitation and low spa-
tial cost.

CHAPTER 4. LODSTRIPS 55

(a) Images of the model.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 0.2 0.4 0.6 0.8 1

T
im

e
in

 m
ill

is
ec

on
ds

Level of detail

LodStrips extraction time
LodStrips visualization time

(b) Extraction and visualization time.

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 0.2 0.4 0.6 0.8 1

V
er

tic
es

 s
en

t

Level of detail

Vertices LodStrips
Vertices Triangle Model

(c) Comparison of the vertices sent, from the highest LOD (1)
to the lowest (0).

Figure 4.11: Results for the cow model.

56 CHAPTER 4. LODSTRIPS

(a) Images of the model.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

T
im

e
in

 m
ill

is
ec

on
ds

Level of detail

LodStrips extraction time
LodStrips visualization time

(b) Extraction and visualization time.

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 0 0.2 0.4 0.6 0.8 1

V
er

tic
es

 s
en

t

Level of detail

Vertices LodStrips
Vertices Triangle Model

(c) Comparison of the vertices sent, from the highest LOD (1)
to the lowest (0).

Figure 4.12: Results for the bunny model.

CHAPTER 4. LODSTRIPS 57

(a) Images of the model.

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1

T
im

e
in

 m
ill

is
ec

on
ds

Level of detail

LodStrips extraction time
LodStrips visualization time

(b) Extraction and visualization time.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 0.2 0.4 0.6 0.8 1

V
er

tic
es

 s
en

t

Level of detail

Vertices LodStrips
Vertices Triangle Model

(c) Comparison of the vertices sent, from the highest LOD (1)
to the lowest (0).

Figure 4.13: Results for the dragon model.

58 CHAPTER 4. LODSTRIPS

(a) Images of the model.

 0

 20

 40

 60

 80

 100

 120

 0 0.2 0.4 0.6 0.8 1

T
im

e
in

 m
ill

is
ec

on
ds

Level of detail

LodStrips extraction time
LodStrips visualization time

(b) Extraction and visualization time.

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006

 0 0.2 0.4 0.6 0.8 1

V
er

tic
es

 s
en

t

Level of detail

Vertices LodStrips
Vertices Triangle Model

(c) Comparison of the vertices sent, from the highest LOD (1)
to the lowest (0).

Figure 4.14: Results for the happy buddha model.

Chapter 5

LodTrees

5.1 Introduction

In general, multiresolution models are built from the original geometry and
from the approximations obtained through the simplification process. In
section 3.4, we analyzed the automatic foliage simplification algorithm, which
offers as a result the simplification sequence of leaves for a given model.
This section introduces the use of the simplification sequence and related
algorithms for the visualization of foliage models in real time.

5.2 Previous work

Research aimed at vegetation can be divided in two major fields: the gen-
eration of plants and trees, and their visualization. Vegetation modelling
has been explored extensively. The most important works in this field are
Lindermayer-systems [PL90], used for generating realistic models of trees.
Other solutions combine grammar based modelling with a graph descrip-
tion [LD99]. Apart from the great number of works that have appeared in
the literature, some commercial applications have been developed for mod-
elling trees. Some of the most important are OnyxTree (www.onyxtree.com),
AMAP (www.bionatics.com), Xfrog (www.greenworks.de) and SpeedTreeRT
(www.idvinc.com).

The analysis of previous work related with our approach can be divided
as geometric representation and image-based rendering methods.

59

60 CHAPTER 5. LODTREES

Geometric representation: Level of detail rendering [Jak00] is one of
the most popular methods to reduce the complexity of polygonal data sets
in a smart manner.

The continuous multiresolution models presented thus far deal with gen-
eral meshes and cannot be applied effectively to such scenes. Hoppe [Hop97],
Xia [XV96] and El-Sana [ESV99] use methods based on the union of pairs
of vertices in the construction process simplification. Luebke [LE97] uses a
method based on vertex clustering: a set of vertices is collapsed into one
vertex. These methods can not process the foliage without degradation of
appearance [DCSD02].

Another technique in interactive visualization of complex plant models
uses pointbased rendering based on the idea of substituting the basic primi-
tive triangle by points or lines. Reeves and Blau [RB85] rendered trees using
small disks representing the foliage, and Weber and Penn [WP95] used sets
of points for the leaves and lines for the tree skeleton. Stamminger and
Dettrakis [SD01] visualize plants with a random sample set of points. One
of the most recent works in this field has been presented by Deussen et al.
[DCSD02]. Their approach combines geometry with points and lines.

Image-Based Rendering methods: Billboarding is one of the most
frequently used techniques due to its simplicity. The trees are reduced to
images textured on polygons, which always maintain their orientation to-
wards the observer. However this technique has great deficiencies, because
the models are represented in two dimensions. When the observer moves
toward the object, the lack of details produces a loss of realism in the scene.

Layered depth images [SSHS98], LDI, store in each pixel of the image a
2D array of depth pixels. In each depth pixel are stored, in proximity order
to the point of view, the surfaces that appear in that image. But the LDI
files created for trees are excessively large. Another similar method however
using Z-buffers is presented by Max [MO95].

Jakulin [Jak00] presents a method based on images with alpha-blended
textured polygons. Lluch et al. [LCV04] present a method based on a
hierarchy of images obtained from pre-processing the botanical tree structure
(a L-system) and storing the information in a texture data tree.

5.3 Multiresolution model for foliage

The construction of the multiresolution model for a tree entails two different
processes. On the one hand, the trunk of the tree is formed by a continuous

CHAPTER 5. LODTREES 61

mesh, classified inside the arbitrary surfaces, and its multiresolution model
will be built using the LodStrips model we have just presented. On the
other hand, as tree foliage is represented by a set of isolated polygons where
each leaf is formed by the union of two triangles (see figure 5.1), most of
the existing multiresolution models are not appropriate for its visualization
[DCSD02] [Jak00]. The multiresolution model for foliage has been developed
in order to allow the interactive visualization of the crown of trees.

(a) Detail of the crown. (b) Detail of the leaves.

Figure 5.1: Detail of the foliage in a tree.

Let F be the original crown of the tree, and F r its multiresolution repre-
sentation. Considering that each leaf is composed of a pair of triangles that
determine the quadrilateral where the texture is applied, F and F r can be
defined as:

F = {V,L} F r = {V r, Lr} (5.1)

where V and L are the set of vertices and leaves that form the original
object, and V r and Lr are the set of all vertices and leaves used to represent
any of the different approximations stored in F r.

As mentioned before, a multiresolution object is usually built from the
original geometry and the sequence of simplifications that reduces the detail
of the object. In this case, the simplifications will be those obtained through
the simplification algorithm explained in section 3.4. In order to construct
the multiresolution representation with n approximations, we will need n−1
simplification steps. This way, starting from the maximum level of detail, F0,
we will be obtain the sequence of approximations F1, F2, . . . , Fn−1. Finally,
we can conclude that the original model will be formed by the vertices and
leaves of the representation with the maximum detail:

62 CHAPTER 5. LODTREES

V = V0 L = L0 (5.2)

and, considering the characteristics of the simplification method em-
ployed that does not add new vertices during the process of obtaining the
different approximations, the multiresolution representation F r can be ex-
pressed as:

V r = V0 (5.3)

Lr = L0 ∪ l0 ∪ ... ∪ ln−2 = L0 ∪
n−2⋃
i=0

li, n ≥ 1 (5.4)

where li is the leaf added to Fi to create the approximation Fi+1.

In order to change the level of detail, two geometric operations have been
defined, as shown in figure 5.2:

• Leaf collapse: Decreases the level of detail of a given representation.
This operation replaces two leaves by a new one, diminishing the num-
ber of leaves of the crown. Following the example in figure 5.2, leafs lt
and lu will be replaced with ls in the new level of detail.

• Leaf split: It is the inverse operation of the previous one. It replaces
a leaf by the two leaves that it represents, increasing the level of detail.
Following the same example, ls will be replaced with lt and lu.

This multiresolution model has the following features:

• Input data contains the polygons that form the crown: a set of isolated
quadrilaterals, where each one is represented with two triangles.

• Stores attributes like normals and texture coordinates.

• The model is based on the automatic foliage simplification algorithm.
The basic simplification operation is the leaves collapse.

• The model allows real time visualization using levels of detail with
uniform resolution.

CHAPTER 5. LODTREES 63

Figure 5.2: Example of leaf collapse and split operation.

5.4 Data Structure

The data of the multiresolution model are arranged in forests of binary trees.
This structure reflects the way the simplification operation works, which
establishes a hierarchical relation between leaves (see figure 5.3). Each new
leaf, ls, is created from two existing ones, lt and lu. Considering each leaf as
a node of the foliage structure, ls represents the parent node of lt and lu.

Figure 5.3: Hierarchical relationship between leaves conditioned by
the collapse operation.

This hierarchical structure is constructed from the bottom up. Thus, we
firstly process F0, and then the sequence of n− 1 simplification steps where
a collapse is represented by a new node in the structure. Let’s suppose a
foliage F0 is initially made up of 9 leaves (|L0| = 9). The simplification
sequence produces a new diminished foliage Fn−1 made up of 3 leaves with
n− 1 steps. Let’s suppose the following simplification operations:

• Leaf 10 is created from collapsing leaves 6 and 7: nodes 6 and 7 will
be children of the new node labeled 10.

• Leaf 11 is created from collapsing leaves 1 and 2, proceeding in the
same way.

64 CHAPTER 5. LODTREES

• Leaf 12 is created from collapsing leaves 5 and 10.

• Leaf 13 is created from collapsing leaves 11 and 3.

• Leaf 14 is created from collapsing leaves 4 and 12.

• Leaf 15 is created from collapsing leaves 8 and 9.

Figure 5.4: Example of data structure F r.

The resulting structure F r is shown in figure 5.4. The leaves of the whole
forest represent the most detailed object F0 and the roots of each tree denote
the leaves of the lowest level of detail Fn−1.

Data structures

The data structures required to store the hierarchy of leaves are shown in
figure 5.5.

The geometric data that forms F r are stored in the FoliageData struc-
ture. Leaf data structure represents a node, and stores information about
its geometry and the hierarchical relationships with other leaves.

Foliage structure represents the sequence of leaves that composes a cer-
tain level of detail. This structure stores a pointer to all data needed to
represent F r, and a double linked list of visible leaves for a given foliage
resolution.

The design of these data structures are oriented towards the creation of
ecosystems. In nature, it is common to find the same plant species several
times in the same habitat. The organisation of data shown in figure 5.5 per-
mits the representation of the same species as different objects with different
levels of detail, but storing just once the geometric data that compose it.

CHAPTER 5. LODTREES 65

struct Vertex {
float coordinates[3];

};
struct Leaf {

int VLeaf[4];
int parent;
int lchild;
int rchild;

};
struct FoliageData {

struct Vertex *VerticesFoliage;
struct Leaf *Leaves;

};
struct ActiveLeaves {

int next;
int prev;

};
struct Foliage {

FoliageData *MyFoliage;
ActiveLeaves *Active;

};

Figure 5.5: Basic data structure of the multiresolution model.

66 CHAPTER 5. LODTREES

Storage cost

For the study of the storage cost, we assume that the storing cost of an
integer, a pointer or a real is a word. The original model will consist of three
real numbers by vertex, and four indices by leaf:

4|L0|+ 3|V0| (5.5)

As each leaf is formed by four independent vertices,

|L0| =
|V0|
4

(5.6)

the total storage cost of the original model F is 4|V0|.

For calculating the storing cost of a representation F r, the Leaf and
Vertex elements will cost 7 and 3 words respectively. This way, the data
stored will cost:

7|Lr|+ 3|V r| (5.7)

where |Lr| and |V r| are the number of leaves and vertices stored in the
multiresolution structure. The number of leaves for a given resolution level
are the number of leaves of the maximum level plus those coming from col-
lapse operations, so:

|V r| = |V0| |Lr| = |L0|+ (n− 1) (5.8)

The cost is influenced by the number n of approximations stored in the
representation F r. In the best case, the model only stores one approximation,
n = 1. On the contrary, in the worst case the model allows approximation
formed by a single leaf, storing n = |L0| approximations. In this case, we
will have to add |L0| − 1 new leaves to the original representation, as from
two existing leaves we will generate a new one.

In equation 5.6 it was shown that the number of initial leaves corresponds
with a quarter of the number of vertices stored. Thus, in the best case, the
number of leaves and vertices stored will be:

CHAPTER 5. LODTREES 67

n = 1 −→ |Lr| = |L0|, |V r| = |V0| (5.9)

with a cost of:

7|L0|+ 3|V0| = 7
|V0|
4

+ 3|V0| ≈ 4, 75|V0| (5.10)

In the worst case, |L0| approximations will be stored and the total number
of vertices and leaves will be:

n = |L0| −→ |Lr| = 2|L0| − 1, |V r| = |V0| (5.11)

with a cost of:

7(2|L0| − 1) + 3|V0| = 7(2
|V0|
4

− 1) + 3|V0| ≈ 6, 5|V0| (5.12)

With all th equations shown in this section, we may say that, in summary,
the storage cost of the model is O(|V0|).

Results

The experiments have been carried out in an environment with the following
characteristics:

Hardware. Dual Pentium, Intel Xeon at 1.8 Gz with 512 Mb of RAM.
graphics card Quadro4 700XGL with 64 MB.

Software. The implementation has been developed in C++ and the graph-
ics library OpenGL.

Data. Trees have been obtained with the Xfrog 2.1 program
(http://www.greenworks.de/), proposed by [LD97].

68 CHAPTER 5. LODTREES

Table 5.1 summarizes the characteristics of the foliage of the trees used
in the experiments, and the storing cost is shown in table 5.2.

For each tree, table 5.1 shows the number of vertices and leaves that
form the original model. It is shown its storing cost (in Mb) assuming a
data structure based on a vertices list and a leaf list. It is assumed that a
word (integer, float or pointer) has a 4 bytes cost.

Table 5.2 shows the data of the multiresolution representation. The stor-
ing cost of this representation is between 1,56 and 1,62 times higher than
the original model.

Original
Vertices Polygons Leaves MB.

Betula Populifolia 32.560 16.280 8.140 0’50
English Oak 81.504 40.752 20.376 1’24
Sorbus Aucuparia 99.360 49.680 24.840 1’52
A. Hippocastanum 118.140 59.070 29.535 1’80
Taxus Baccata 192.640 96.320 48.160 2’94
C. Lawsoniana 194.064 97.032 48.516 2’96
Fagus Sylvatica 194.784 97.392 48.696 2’97
Carya ovata 456.456 228.228 114.114 6’96

Table 5.1: Some trees used in the expermiments, with their charac-
teristics and original storing cost.

LodTrees Ratio
n Leaves MB.

Betula Populifolia 8.019 16.158 0,80 1,62
English Oak 20.090 40.465 2,01 1,62
Sorbus Aucuparia 24.498 49.337 2,45 1,62
A. Hippocastanum 25.145 54.679 2,81 1,56
Taxus Baccata 47.520 95.679 4,76 1,62
C. Lawsoniana 47.651 96.166 4,79 1,62
Fagus Sylvatica 48.039 96.734 4’81 1,62
Carya ovata 110.099 224.212 11’21 1,61

Table 5.2: Trees used in the experiments, with their characteristics
and storing cost.

CHAPTER 5. LODTREES 69

5.5 Level of detail extraction

The multiresolution model representation allows us to easily visualize and
dynamically vary the level of detail of the foliage, thanks to the data structure
employed.

Figure 5.6 shows the algorithm that can be used to adapt dynamically
the number of leaves of the foliage. Initially, the application calculates the
number of leaves that should form the foliage based on the distance to the
observer and the current number of leaves.

// Compute the number of leaves to visualize
nleaves = Number_Leaves_LoD (foliage, camera);
// Compute the number of leaves currently visualized
nl_active = Current_Number_Leaves (foliage);
// Compute the max number of the visualized leaves
lastleaf = Max_Number_Active_Leaf (foliage);

if nleaves < nl_active then
// Diminish the number of leaves to visualize
while (nl_active - nleaves) > 0 do

Collapse (lastleaf);
nl_active = nh_active - 1;

end while
else

// Increase the number of leaves to visualize
while (nleaves - nl_active) > 0 do

Split (lastleaf);
nl_active = nl_active + 1;

end while
end if

Figure 5.6: Algorithm of the level of detail extraction.

The collapse operation is equivalent to diminishing in one the number
of active leaves (the algorithm adds two leaves but removes one). In the
same way, the split operation involves increasing in one the number of leaves
visualized. These operations are applied sequentially until the desired level
of detail is reached, increasing or diminishing the number of leaves according
to the necessities of the application. The simplification sequence establishes
the order of the operations, so that, at every moment, the number of leaves

70 CHAPTER 5. LODTREES

that forms the foliage is adapted efficiently. This algorithm works increasing
or decreasing the level of detail uniformly, adding or removing one leaf at a
time. At figure 5.7 different representations of the same object are shown,
varying uniformly the number of leaves.

(a) 48.515 leaves. (b) 32.515 leaves. (c) 20.515 leaves.

(d) 8.515 leaves. (e) 4.515 leaves. (f) 2.866 leaves.

Figure 5.7: Different approximations of the Chamaecyparis Lawso-
niana tree.

CHAPTER 5. LODTREES 71

5.6 Results

The experiments have been carried out using the same conditions as in sec-
tion 5.4. In this case, the obtained approximations vary in the interval [0, 1],
where 0 represents the most detailed approximation and 1 the worst one.
The number of leaves that form the different levels of detail vary in a lineal
form following a step, defined as a number proportional to the difference that
exists between the approximations Fn−1 y F0.

We have defined 30 intervals. In this case, the step changes between the
different tree models we have used in the tests. Results are shown from figure
5.8 to 5.11.

72 CHAPTER 5. LODTREES

(a) Sorbus Aucuparia.

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N

um
be

r
of

 L
ea

ve
s

Level of Detail

leaves

(b) Number of leaves in a level of detail.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(m
s)

Level of Detail

reducing detail
increasing detail

(c) Total time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xt

ra
ct

io
n

tim
e

(m
s)

Level of Detail

collapsing time
splitting time

(d) Extraction time.

Figure 5.8: Results obtained for the tree Sorbus Aucuparia.

CHAPTER 5. LODTREES 73

(a) Aesculus Hippocas-
tanum.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

 26000

 28000

 30000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 L

ea
ve

s

Level of Detail

leaves

(b) Number of leaves in a level of detail.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(m
s)

Level of Detail

reducing detail
increasing detail

(c) Total time.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xt

ra
tio

n
tim

e
(m

s)

Level of detail

collapsing time
splitting time

(d) Extraction time.

Figure 5.9: Results obtained for the tree Aesculus Hippocastanum.

74 CHAPTER 5. LODTREES

(a) Taxus Baccata.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
N

um
be

r o
f

L
ea

ve
s

Level of Detail

leaves

(b) Number of leaves in a level of detail.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(m
s)

Level of Detail

reducing detail
increasing detail

(c) Total time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xt

ra
ct

io
n

tim
e

(m
s)

Level of Detail

collapsing time
splitting time

(d) Extraction time.

Figure 5.10: Results obtained for the tree Taxus Baccata.

CHAPTER 5. LODTREES 75

(a) Carya ovata.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r

of
 L

ea
ve

s

Level of Detail

leaves

(b) Number of leaves in a level of detail.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ot

al
 ti

m
e

(m
s)

Level of Detail

reducing detail
increasing detail

(c) Total time.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
xt

ra
ct

io
n

tim
e

(m
s)

Level of Detail

collapsing time
splitting time

(d) Extraction time.

Figure 5.11: Results obtained for the tree Carya ovata.

76 CHAPTER 5. LODTREES

5.7 Conclusions

The algorithm and its data structure are designed to visualize ecosystems
where the same species of a tree appears several times in the same habitat.
The data structure allows us to visualize many trees with different levels
of detail, sharing the same data. The multiresolution model for foliage has
proven to be useful to render foliage with uniform resolution, where the
level of detail can be changed in real time and the number of leaves can be
adjusted to meet the requirements of the application.

Bibliography

[AHB90] K. Akeley, P. Haeberli, and D. Burns. The tomesh.c program.
Technical Report SGI Developer’s Toolbox CD, Silicon Graphics,
1990.

[BD02] C. Beeson and J. Demer. Nvtristrip, library version.
http://developer.nvidia.com/view.asp?IO=nvtristrip_library
, 2002.

[BRR+01] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, C. Rebollo, and
M. Fernandez. Multiresolution triangle strips. In Proceedings
IASTED Invernational Conference on Visualization, Imaging and
Image Processing (VIIP 2001, pages 182–187, 2001.

[BRR+02] O. Belmonte, I. Remolar, J. Ribelles, M. Chover, and M. Fernán-
dez. Efficient implementation of multiresolution triangle strips. In
ICCS ’02: Proceedings of the International Conference on Com-
putational Science-Part II, pages 111–120, London, UK, 2002.
Springer-Verlag.

[BRRC00] O. Belmonte, J. Ribelles, I. Remolar, and M. Chover. Búsqueda
de tiras de triángulos guiadas por un criterio de simplificación.
In Actas del X Congreso Español de Informática Gráfica (CEIG
2000), pages 51–64, 2000.

[CCMS96] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno. Mul-
tiresolution decimation based on global error. Technical report,
Centre National de la Recherche Scientifique, Paris, France, 1996.

[DCSD02] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. In-
teractive visualization of complex plant ecosystems. In VIS ’02:
Proceedings of the conference on Visualization ’02, pages 219–226.
IEEE Computer Society, 2002.

77

78 BIBLIOGRAPHY

[ESAV99] J. El-Sana, E. Azanli, and A. Varshney. Skip strips: maintaining
triangle strips for view-dependent rendering. In VIS ’99: Pro-
ceedings of the conference on Visualization ’99, pages 131–138.
IEEE Computer Society Press, 1999.

[ESV96] F. Evans, S. Skiena, and A. Varshney. Optimizing triangle strips
for fast rendering. In IEEE Visualization, pages 319–326, 1996.

[ESV99] J. El-Sana and A. Varshney. Generalized view-dependent simpli-
fication. Computer Graphics Forum, 18(3):83–94, 1999.

[GH97] M. Garland and P. Heckbert. Surface simplification using quadric
error metrics. In SIGGRAPH ’97: Proceedings of the 24th
annual conference on Computer graphics and interactive tech-
niques, pages 209–216. ACM Press/Addison-Wesley Publishing
Co., 1997.

[HG97] P. Heckbert and M. Garland. Survey of polygonal surface sim-
plification algorithms. Technical report, Multiresolution Surface
Modeling Course Notes of SIGGRAPH’97, 1997.

[Hop96] H. Hoppe. Progressive meshes. Computer Graphics, 30(Annual
Conference Series):99–108, 1996.

[Hop97] H. Hoppe. View-dependent refinement of progressive meshes.
Computer Graphics, 31(Annual Conference Series):189–198,
1997.

[Hop99] H. Hoppe. Optimization of mesh locality for transparent vertex
caching. In SIGGRAPH ’99: Proceedings of the 26th annual con-
ference on Computer graphics and interactive techniques, pages
269–276. ACM Press/Addison-Wesley Publishing Co., 1999.

[Jak00] A. Jakulin. Interactive vegetation rendering with slicing and
blending. In A. de Sousa and J.C. Torres, editors, Proc. Eu-
rographics 2000 (Short Presentations). Eurographics, 2000.

[KT96] A. D. Kalvin and R. H. Taylor. Superfaces: Polygonal mesh sim-
plification with bounded error. IEEE Computer Graphics Appli-
cation, 16(3):64–77, 1996.

[LCV04] J. Lluch, E. Camahort, and R. Vivo. An image based multiresolu-
tion model for interactive foliage rendering. Journal of WSCG’04,
12(3):507–514, 2004.

[LD97] B. Lintermann and O. Deussen. A modelling method and user
interface for creating plants. In Proceedings of the conference
on Graphics interface ’97, pages 189–197. Canadian Information
Processing Society, 1997.

BIBLIOGRAPHY 79

[LD99] B. Lintermann and O. Deussen. Interactive modeling of plants.
IEEE Computer Graphics Application, 19(1):56–65, 1999.

[LE97] D. Luebke and C. Erikson. View-dependent simplification of arbi-
trary polygonal environments. In SIGGRAPH ’97: Proceedings of
the 24th annual conference on Computer graphics and interactive
techniques, pages 199–208. ACM Press/Addison-Wesley Publish-
ing Co., 1997.

[Lin00] P. Lindstrom. Out-of-core simplification of large polygonal mod-
els. In SIGGRAPH ’00: Proceedings of the 27th annual conference
on Computer graphics and interactive techniques, pages 259–262.
ACM Press/Addison-Wesley Publishing Co., 2000.

[LT97] K. Low and T. Tan. Model simplification using vertex-clustering.
In SI3D ’97: Proceedings of the 1997 symposium on Interactive
3D graphics, pages 75–ff. ACM Press, 1997.

[LT00] P. Lindstrom and G. Turk. Image-driven simplification. ACM
Transaction Graphics, 19(3):204–241, 2000.

[Lue01] D. Luebke. A developer’s survey of polygonal simplification algo-
rithms. IEEE Computer Graphics Application, 21(3):24–35, 2001.

[MO95] N. Max and K. Ohsaki. Rendering trees from precomputed z-
buffer views. In Pat Hanrahan and Werner Purgathofer, editors,
Rendering Techniques ’95, Proceedings of the Eurographics Work-
shop, pages 74–81. Springer-Verlang, 1995.

[NT03] F. Nooruddin and G. Turk. Simplification and repair of polygo-
nal models using volumetric techniques. IEEE Transactions on
Visualization and Computer Graphics, 9(2):191–205, 2003.

[PL90] P. Prusinkiewicz and A. Lindenmayer. The algorithmic beauty of
plants. Springer-Verlag New York, Inc., 1990.

[PS97] E. Puppo and R. Scopigno. Simplification, lod and multireso-
lution - principles and applications. Tutorial Notes of EURO-
GRAPHICS’99, 16(3), 1997.

[RB85] W. Reeves and R. Blau. Approximate and probabilistic algo-
rithms for shading and rendering structured particle systems.
In SIGGRAPH ’85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, pages 313–322.
ACM Press, 1985.

80 BIBLIOGRAPHY

[RB93] J. Rossignac and P. Borrel. Multi-resolution 3d approximations
for rendering complex scenes. In B. Falcidieno and T. Kunii, edi-
tors, Modeling in Computer Graphics: Methods and Applications,
pages 455–465. Springer-Verlag, 1993.

[RC04] J. F. Ramos and M. Chover. Lodstrips: Level of detail strips. In
International Conference on Computational Science, pages 107–
114, 2004.

[RLB+02] J. Ribelles, A. López, O. Belmonte, I. Remolar, and M. Chover.
Multiresolution modeling of arbitrary polygonal surfaces: a char-
acterization. Computers & Graphics, 26(3):449–462, 2002.

[RLR+00] J. Ribelles, A. López, I. Remolar, O. Belmonte, and M. Chover.
Multiresolution modelling of polygonal surface meshes using tri-
angle fans. In DGCI ’00: Proceedings of the 9th International
Conference on Discrete Geometry for Computer Imagery, pages
431–442, London, UK, 2000. Springer-Verlag.

[Sch97] W. J. Schroeder. A topology modifying progressive decimation
algorithm. In VIS ’97: Proceedings of the 8th conference on Visu-
alization ’97, pages 205–ff., Los Alamitos, CA, USA, 1997. IEEE
Computer Society Press.

[SD01] M. Stamminger and G. Drettakis. Interactive sampling and
rendering for complex and procedural geometry. In S.Gortler
and C.Myszkowski, editors, Proceedings of the 12th Eurograph-
ics Workshop on Rendering Techniques, pages 151–162. Springer-
Verlag, 2001.

[SDS96] E. J. Stollnitz, T. D. Derose, and D. H. Salesin. Wavelets for
computer graphics: theory and applications. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1996.

[SP03] M. Shafae and R. Pajarola. Dstrips: Dynamic triangle strips for
real-time mesh simplification and rendering. In Wenping Wang
Jon Rokne and Reinhard Klein, editors, Proceedings Pacific
Graphics 2003, pages 271–280. IEEE, 2003.

[SSHS98] J. Shade, S.Gortler, L. He, and R. Szeliski. Layered depth images.
In SIGGRAPH ’98: Proceedings of the 25th annual conference
on Computer graphics and interactive techniques, pages 231–242.
ACM Press, 1998.

[Ste01] A. J. Stewart. Tunneling for triangle strips in continuous level-of-
detail meshes. In GRIN’01: No description on Graphics interface
2001, pages 91–100, Toronto, Ont., Canada, Canada, 2001.

BIBLIOGRAPHY 81

[VS04] P. P. Vazquez and M. Sbert. On the fly best view detection
using graphics hardware. In Visualization, Imaging, and Image
Processing (VIIP 2004). ACTA Press, 2004.

[WP95] J. Weber and J. Penn. Creation and rendering of realistic trees.
In Robert Cook, editor, SIGGRAPH ’95: Proceedings of the 22nd
annual conference on Computer graphics and interactive tech-
niques, pages 119–128. ACM Press, 1995.

[XHM99] X. Xiang, M. Held, and J. Mitchell. Fast and effective stripifica-
tion of polygonal surface models. In SI3D ’99: Proceedings of the
1999 symposium on Interactive 3D graphics, pages 71–78, New
York, NY, USA, 1999. ACM Press.

[XV96] J. Xia and A. Varshney. Dynamic view-dependent simplifica-
tion for polygonal models. In VIS ’96: Proceedings of the 7th
conference on Visualization ’96, pages 327–334. IEEE Computer
Society Press, 1996.

82 BIBLIOGRAPHY

