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1. INTRODUCTION 

1.1. OBJECTIVES OF THIS DOCUMENT 
This document describes the initially working modules for the Illumination Work Package. Its aim is 
to describe the modules and explain how they work.  

1.2. DOCUMENT AMENDMENT PROCEDURE 
Any project partner may request amendments but each amendment must be analysed and approved by 
the GameTools Project Coordinator or Project Manager.  

1.3. TERMINOLOGY 
Glossary 

GUI Graphics User Interface 

GPU Graphics Processing Units 

GTP 

GPU 

GameTools Project 

Graphics Processing Units 

PC Project Coordinator 

PM Project Manager 

WP Work Package 
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2. DESCRIPTION OF THE MODULES 

2.1. INDIRECT ILLUMINATION GATHERING 
This is a standalone module that can be found in the EnvMap directory of the repository. 

2.1.1. Role of the module 

Final gathering, i.e. the computation of the reflection of the indirect illumination toward the eye, is one 
of the most time consuming steps of realistic rendering. In case of indirect illumination, the reflected 
radiance of point x can be expressed by an integral (rendering equation). The evaluation of this 
integral usually requires many sampling rays from point x. These sampling rays find illuminating 
points at different directions (Figure 1), and the radiance of these illumination points is inserted into a 
numerical quadrature approximating the rendering equation. 

 

Figure 1. Calculating indirect illumination 

The classical solution is to calculate a preconvolved cube map called diffuse (or specular) environment 
map. This means that the contribution of each illuminating point – weighted with the angular variation 
of the BRDF – is summed up in a preprocessing step. Then, during run-time we can determine the 
illumination of an arbitrarily oriented surface patch with a single environment map lookup toward the 
lookup direction associated to that surface patch. When the object to be shaded is moving, the 
diffuse/specular environment map must be regularly updated to reflect the changes. 

Another approach is to carry out the convolution real-time, enabling us to localize the result depending 
on the position of the sample point. In case of dynamic objects, this localization allows us to decrease 
the frequency of the environment map updates while achieving the same quality.  To maintain 
reasonable frame rates, the resolution of the environment map must be decreased before the actual 
convolution. This downsampling step corresponds to the clustering of small (texel) lights into larger 
(area) light sources (Figure 2). 
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Figure 2. Calculating indirect illumination 

2.1.2. Rendering modes 

In the application, the following rendering modes are defined. The corresponding shader techniques 
are also listed. 

Rendering mode Shader techniques 

EnvMapClassic(Metal)  
(EnvMapClassicMetal for metals) 

IDEAL 

EnvMapImpostor  
(EnvMapImpostorMetal for metals) 

IDEAL_LOCALIZED 

DIFFUSE_SPECULAR EnvMapDiffuse for rendering and 
Convolution for precalculation 

DIFFUSE_SPECULAR_LOCALIZED EnvMapDiffuseLocalized. 

EnvMapDiffuseLocalizedWithCosLookup 
for rendering and 
EnvMap::GenerateCosTexture(), 
EnvMap::eval() for precalculation 

DIFFUSE_SPECULAR_LOCALIZED_COSTEX
 

2.1.2.1. Ideal reflections / refractions with classic environment mapping 

Rendering mode: IDEAL 

This program simply determines the ideal reflection/refraction direction and performs a cube map 
lookup into that direction.  
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Figure 3. Classic environment mapping with fixed reference point (i.e. the center of the box) 

If the object is moving, the cube map must be regularly updated. An update requires rendering the 
environment six times so it will affect performance (e.g. frame rate drops from 200 FPS to 75 FPS). 

Note: To update the cube map in each frame, press ‘A’. To update the cube map once, press space. 

 

Figure 4. Classic environment mapping with updated environment maps. 
Reference point is the center of the moving object. 

2.1.2.2. Ideal reflections / refractions localized with distance impostors 

Rendering mode: IDEAL_LOCALIZED 

After determining the ideal reflection/refraction direction, a ray is traced approximately toward that 
direction using the Hit() shader function. Note that even if we do not update the cube map at all, we 
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get results very similar to the classic case with frequent updates. This increases performance (150-200 
FPS) and allows us to decrease the frequency of cube map updates in the general case. 

  

Figure 5. Localized environment mapping with distance impostors. No cube map update is performed 
during the object movement. 

2.1.2.3. Diffuse reflections with classic (preconvolved) diffuse environment mapping 

Rendering mode: DIFFUSE_SPECULAR 

Using the environment map generated off-line, we can determine diffuse illumination with a single 
texture lookup during run-time (150-200 FPS). 

  

Figure 6. Diffuse reflections with preconvolved diffuse maps. No localization effects occur. 
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If the object is moving, the cube map must be regularly re-convolved that will affect performance (e.g. 
frame rate drops to 15-20 FPS). 

Note. To update cube maps in each frame, press ‘A’. To update cube maps once, press space. 

 

 

Figure 7. Diffuse reflections with preconvolved diffuse maps that are regularly updated. 
The reference point is the center of the moving object. 

2.1.2.4. Diffuse, localized reflections 

Rendering mode: DIFFUSE_SPECULAR_LOCALIZED 

Diffuse reflections are obtained with on-the fly convolution. The reflectivity integral is approximated 
with only one sample considering the center of the texel. This can cause problems when the object is 
close to that texel (10-15 FPS). 
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Figure 8. Diffuse reflections with convolution on the fly. No cube map update is performed during 
object movement. 

2.1.2.5. Diffuse, localized reflections using precomputed geometry factors 

Rendering mode: DIFFUSE_SPECULAR_LOCALIZED_COSTEX 

Diffuse reflections with convolution on-the fly (10-15 FPS). To correctly represent the reflectivity of a 
texel, the reflectivity integral is precalculated. 

  

Figure 9. Diffuse reflections with convolution on the fly. Reflectivity integral is precalculated. 
No cube map update is performed during object movement. 

2.1.2.6. Glossy reflections with classic (preconvolved) specular environment mapping 

Rendering mode: DIFFUSE_SPECULAR 
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Using the environment map generated off-line, we can determine specular illumination with a single 
texture lookup during run-time. 

  

Figure 10. Glossy reflections with preconvolved specular maps. No localization effects occur. 
(shininess = 6) 

 

Figure 11. Glossy reflections with preconvolved specular maps that are regularly updated. 
Reference point is the center of the moving object. (shininess = 6) 

2.1.2.7. Glossy, localized reflections with convolution on-the fly 

Rendering mode: DIFFUSE_SPECULAR_LOCALIZED 

The reflectivity integral is approximated with only one sample considering the center of the texel. This 
can cause problems when the object is close to that texel.  
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2.1.2.8. Glossy, localized reflections using precomputed geometry factors 

Rendering mode: DIFFUSE_SPECULAR_LOCALIZED_COSTEX 

To correctly represent the reflectivity of a texel, the reflectivity integral is precalculated.  

  

Figure 12. Glossy reflections with convolution on the fly. Reflectivity integral is precalculated. 
No cube map update is performed during object movement. (shininess = 6) 

2.1.2.9. Realistic metals 

Using a simple approximation to the Fresnel term, we can display realistic metals. Four different 
metals are implemented by supporting their refraction indices: 

copper gold silver aluminum 

Figure 13. Metal shaders 
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2.1.3. Program structure 

2.1.3.1. Program resources 

class Main 

Main.cpp contains global callback functions that are responsible for DirectX initialization. 
Also supports screenshot capturing (press ‘S’). 

class Parameters 

This is a utility class to manage application-specific parameters. Using this class, you can 
easily add numeric/boolean parameters to your application. These parameters are represented 
by sliders or checkboxes/radio buttons on the graphical user interface. You can easily get the 
current values of these parameters when needed. All parameters can be saved to file or read 
from file in one step. 

The following application-specific parameters are defined here: 

Boolean parameters: bShowHelp, bCubeMapFromFile, bAutoGenCubeMap.  

These values are defined in the bool_t enumeration. Thus, they are just constant 
identifiers and their values cannot be read directly. Use function Get(bool_t i) 
instead, e.g. Get(bShowHelp). 

Numerical parameters: iWhichMethod, iWhichMetal, iShowCubeMap, 
sFresnel, refractionIndex, fIntensity, iShininess. 

These values are defined in the number_t enumeration. Thus, they are just constant 
identifiers and their values cannot be read directly. Use function GetInt 
(number_t i) to get the parameter value as an integer, or use Get(number_t 
i) to get the parameter value as a float in range 0..1.  

The available rendering modes are defined in the following enumeration. Numerical parameter 
iWhichMethod will take one of these values. 

enum method_t {  
IDEAL, 
IDEAL_LOCALIZED, 
DIFFUSE_SPECULAR,  
DIFFUSE_SPECULAR_LOCALIZED, 
DIFFUSE_SPECULAR_LOCALIZED_COSTEX 

}  

class Mesh 

This is a utility class to manage a mesh object. During loading (Load(fileName)), it 
removes mesh offset (i.e. the bounding box of the object will be centered to the origin) and 
sets the specified object diameter (preferredDiameter). Object position can be modified 
via method Move(D3DXVECTOR3 movement).  
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SetContainerSize (D3DXVECTOR3 size) allows us to specify the room 
environment where the object can move freely, also considering the extent of the object, not 
only its center. If the object is too close to the wall, further movements are disabled.   

class Cube 

This is a utility class to represent a cubic mesh. It can be more easily textured with 
procedurally generated textures than an .x file. 

texture pRoomTexture 

simple grid texture with thin and thick lines, used as a base for room texture generation 
(intensity falloff and color will be added) 

texture pCubeTexture  

cubemap that stores the environment as seen from the reference point 

texture pCubeTextureFromFile 

cubemap that stores a HDRI environment loaded from file 

texture pCubeTextureSmall  

downsampled (4x4) version of one of the previous cubemaps  

texture pCubeTexturePreConvolved 

preconvolved (4x4) cube map 

 

  

Figure 14. Basic room texture (left) and HDRI environment (uffizi.dds, right) 

2.1.3.2. Generating an environment map 

void EnvMap::RenderCubeMap (IDirect3DCubeTexture9 *pCubeTexture)  

renders the environment into the specified cubemap. The camera is placed into 
reference_pos, and uses technique IlluminatedScene for rendering. 
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Technique IlluminatedScene 

renders the cubic room with a simple shading effect (coloring and exponential falloff). 

2.1.3.3. Downsampling an environment map 

void EnvMap::ReduceCubeMapSize( IDirect3DCubeTexture9*, IDirect3DCubeTexture9*)  

Reduces the resolution of a cube map by averaging multiple texels. Calls technique 
ReduceTexture for rendering. 

Technique ReduceTexture 

downsamples the nFace-th face of a cube map from resolution CUBEMAP_SIZE to 
LR_CUBEMAP_SIZE by averaging the corresponding texel values. nFace uniform 
parameter identifies the current face (0...5).   

2.1.3.4. Pre-calculating the reflectivity 

void EnvMap::GenerateCosTextureIfNotFound() 

calls GenerateCosTexture() if the specified texture is not yet calculated and stored as a 
texture in the cos  subdirectory.  

IDirect3DTexture9* EnvMap::GenerateCosTexture() 

generates precomputed texture to store values for the reflectivity integral. It uses the eval() 
function.  

float EnvMap::eval (float cos_theta, float dw) 

Calculates the reflectivity integral for a given texel. The angle between the surface normal and 
texel center is described by cos_theta and the solid angle occupied by the texel is denoted by 
dw. 

Instead of evaluating the reflectivity integral with only one sample belonging to the texel 
center (that would give us a result of cos_theta x dw), we use 2M x 2M x M regularly spaced 
samples, and discard those that lie outside the unit hemisphere. The remaining samples are 
regularly distributed over the hemisphere. 

For each sample, we check if it lies inside the cone of the specified solid angle. If yes, its 
contribution is considered.  

2.1.3.5. Ideal reflection/refraction 

Technique EnvMapClassic 

Simply determines the ideal reflection/refraction direction and performs a cube map lookup 
into that direction. Uniform parameter EnvironmentMap is bound to 
EnvMap::pCubeTexture (cube map of resolution CUBEMAP_SIZE). 

 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 17 / 112

 

float4 EnvMapClassicPS( EnvMapVS_output IN ) : COLOR 
{ 
 IN.View = normalize( IN.View ); 
 IN.Normal = normalize( IN.Normal );  
 
 float3 R = reflect(IN.View, IN.Normal); 
 float3 T = refract(IN.View, IN.Normal, refractionIndex); 
 float3 p0 = IN.Position; 
   
 // reading from the cubemap 
 float4 reflectcolor = texCUBE(EnvironmentMapSampler, R);  
  float4 refractcolor = texCUBE(EnvironmentMapSampler, T);  
 float cos_theta = -dot( IN.View, IN.Normal );  // Fresnel approximation 
 float F = (sFresnel + pow(1-cos_theta, 5.0f) * (1-sFresnel)); 
 return intensity * (F * reflectcolor + (1-F) * refractcolor);  
} 
 

2.1.3.6. Ideal reflection for metals 

Technique EnvMapClassicMetal 

The only difference from the previous shader is that no refraction is allowed and the reflectivity is 
calculated from the wavelength-dependent, complex refraction index (see function 
metal_reflectivity). 

2.1.3.7. Ideal reflection/refraction with localization 

Technique EnvMapImpostor 

Determines the ideal reflection/refraction direction and approximately traces a ray toward that 
direction using the Hit() function.  

Uniform parameter EnvironmentMap is bound to EnvMap::pCubeTexture (cube map 
of resolution CUBEMAP_SIZE). 

float4 EnvMapImpostorPS( EnvMapVS_output IN ) : COLOR 
{ 
 IN.View = normalize( IN.View ); 
 IN.Normal = normalize( IN.Normal );  
 float3 R = reflect(IN.View, IN.Normal);  // reflection direction 
 float3 T = refract(IN.View, IN.Normal, refractionIndex); 
 
 // translate reference point to the origin  
 float3 p0 = IN.Position - reference_pos.xyz; 
 float3 RR = 0, TT = 0; 
 
 // -------------------------- approximate raytracing ---------------------- 
 // using depth impostors + interpolation 
 RR = Hit(p0, R, EnvironmentMapSampler); 
  
 // single refraction   
 TT = Hit(p0, T, EnvironmentMapSampler); 
  
 // reading from the cubemap 
 float4 reflectcolor = texCUBE(EnvironmentMapSampler, RR);  
  float4 refractcolor = texCUBE(EnvironmentMapSampler, TT);  
 float cos_theta = -dot( IN.View, IN.Normal );  // Fresnel approximation 
 float F = (sFresnel + pow(1-cos_theta, 5.0f) * (1-sFresnel)); 
     return intensity * (F * reflectcolor + (1-F) * refractcolor);  
} 
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Function Hit() approximately traces a ray from point x towards direction R. Depth information is 
obtained from the alpha channel of mp. The function returns the approximate hit point. 
 
float3 Hit(float3 x, float3 R, sampler mp)  
{ 
 float rl = texCUBE(mp, R).a; // |r| 
 float dp = rl - dot(x, R);  // parallax 
 float3 p = x + R * dp; 
 return p; 
} 

2.1.3.8. Classic diffuse/glossy illumination (off-line convolution) 

void EnvMap::PreConvolve ( IDirect3DCubeTexture9*, IDirect3DCubeTexture9* )    

convolves data from the source cubemap and returns the result in the target cubemap. It uses 
technique Convolution. The result will be stored in 
EnvMap::pCubeTexturePreConvolved. 

Technique Convolution 

Calculates the diffuse/specular irradiance map of resolution LR_CUBEMAP_SIZE (= 4) by 
summing up the contributions of all cube map texels with regard to the current query direction. 

Uniform parameter SmallEnvironmentMap is bound to 
EnvMap::pCubeTextureSmall (cube map of resolution LR_CUBEMAP_SIZE). 

float4 ConvolutionPS(ConvolutionVS_output IN) : COLOR 
{ 
    // input position = query direction for the result 
    float3 q = normalize( IN.Position ); 
    float4 color = 0; 
     
    for (int i = 0; i < LR_CUBEMAP_SIZE; i++) 
      for (int j = 0; j < LR_CUBEMAP_SIZE; j++) { 
         float u = (i+0.5) / (float)LR_CUBEMAP_SIZE; 
         float v = (j+0.5) / (float)LR_CUBEMAP_SIZE; 
         float3 pos = float3( 2*u-1, 1-2*v, 1 ); 
  float r = length(pos);  
  pos /= r; 
  float4 dcolor = 0;  

float3 L; 
  L = float3(pos.z, pos.y, -pos.x);  dcolor += GetContibution( q, L ); 
  L = float3(-pos.z, pos.y, pos.x);  dcolor += GetContibution( q, L ); 
  L = float3(pos.x, pos.z, -pos.y);  dcolor += GetContibution( q, L ); 
  L = float3(pos.x, -pos.z, pos.y);  dcolor += GetContibution( q, L ); 
  L = float3(pos.x, pos.y,  pos.z);  dcolor += GetContibution( q, L ); 
  L = float3(-pos.x, pos.y, -pos.z); dcolor += GetContibution( q, L ); 
  float dw = 4 / (r*r*r);  // using accurate solid angles 
  color += dcolor*dw;  
     } 
    return color / (LR_CUBEMAP_SIZE * LR_CUBEMAP_SIZE);     
} 

 

Technique EnvMapDiffuse 

determines diffuse or specular illumination with a single lookup into 
PreconvolvedEnvironmentMap.  
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Parameters: PreconvolvedEnvironmentMap is bound to 
EnvMap::pCubeTexturePreConvolved (cube map of resolution 
LR_CUBEMAP_SIZE).   

 
float4 EnvMapDiffusePS( EnvMapVS_output IN ) : COLOR 
{ 
 IN.View = normalize( IN.View ); 
 IN.Normal = normalize( IN.Normal );  
 float3 R = reflect(IN.View, IN.Normal); 
 if (shininess <= 0) // diffuse 
  return intensity * texCUBE(PreconvolvedEnvironmentMapSampler, IN.Normal);  

else   // specular 
  return intensity * texCUBE(PreconvolvedEnvironmentMapSampler, R);  
} 

2.1.3.9. Localized diffuse/glossy illumination (real-time convolution) 

Technique EnvMapDiffuseLocalized 

calculates diffuse or specular contributions of all texels in SmallEnvironmentMap to the 
current point. For each texel of SmallEnvironmentMap, function 
GetContibution() is called. Uniform parameter SmallEnvironmentMap is bound to 
EnvMap::pCubeTextureSmall. 

float4 EnvMapDiffuseLocalizedPS( EnvMapVS_output IN ) : COLOR 
{ 
 IN.View = -normalize( IN.View ); 
 IN.Normal = normalize( IN.Normal );  
 
 // translate reference point to the origin 
 IN.Position -= reference_pos.xyz;   
 float3 R = -reflect( IN.View, IN.Normal );  // reflection direction 

float4 I = 0; 
     
 for (int x = 0; x < LR_CUBEMAP_SIZE; x++)  // foreach texel 
  for (int y = 0; y < LR_CUBEMAP_SIZE; y++) { 
  // compute intensity for 6 texels with equal solid angles  
  float2 tpos;  

tpos.x = x/(float)LR_CUBEMAP_SIZE;  // 0..1 
      tpos.y = y/(float)LR_CUBEMAP_SIZE;  // 0..1 

// offset to texel center 
tpos.xy += float2(0.5/LR_CUBEMAP_SIZE, 0.5/LR_CUBEMAP_SIZE);  
float2 p = float2(tpos.x, 1-tpos.y);  // reverse y 
p.xy = 2*p.xy - 1;     // -1..1 

      
float3 L;      

  L = float3(p.x, p.y, 1); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
  L = float3(p.x, p.y, -1); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
  L = float3(p.x, 1, p.y); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
  L = float3(p.x, -1, p.y); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
  L = float3(1, p.x, p.y); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
  L = float3(-1, p.x, p.y); 
  I += GetContibution( L, IN.Position, IN.Normal, IN.View ); 
 } 
 return I; 
} 
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Function GetContibution 

Calculates the contribution of a single texel of SmallEnvironmentMap to the illumination 
of the shaded point. Parameter L vector pointing to the center of the texel under examination. 
We assume that the largest coordinate component of L is equal to one, i.e. L points to the face 
of a cube of edge length of 2. Parameter pos is the position of the shaded point, N is the 
surface normal and V is the viewing direction at the shaded point, respectively. 

 
float4 GetContibution(float3 L, float3 pos, float3 N, float3 V) 
{ 
 float l = length(L); 
 L = normalize(L); 
 float4 Lin = texCUBE(SmallEnvironmentMapSampler, L); 
 float dw = 4 / (LR_CUBEMAP_SIZE*LR_CUBEMAP_SIZE*l*l*l + 4/2/3.1416f); 
 float dws = dw;  
 
 //r 
 float doy = texCUBE(SmallEnvironmentMapSampler, L).a; 
 float dxy = length(pos - L * doy); 
 
 // dws localization 
 dws = (doy*doy * dw) / (dxy*dxy*(1 - dw/2/3.1416f) + doy*doy*dw/2/3.1416f);  
 

// L should start from the object (and not from the reference point) 
 L = L * doy - pos;   

L = normalize(L); 
 
 float3 H = normalize(L + V); 
 float4 color = 0; 
 float a = 0; 
 if ( shininess <= 0 ) 
  a = kd * max(dot(N,L),0); 
 else 
  a = ks * pow(max(dot(N,H),0), shininess) * (shininess+2)/(2*PI);  
 return Lin * a * dws; 
} 

 

In case of precalculated reflectivity, the only difference is an additional texture lookup at the end of 
the function: 
float4 GetContibutionWithCosLookup(float3 L, float3 pos, float3 N, float3 V) 
{ 
 ............  
 float cos_value; 
 if (shininess <= 0) 
  cos_value = dot(N,L); // diffuse 
 else 
  cos_value = dot(R,L); // specular 
  
 float2 tex; 
 tex.x = (cos_value + 1)/2; 
 tex.y = dws/2/PI; 
 return Lin * ks * tex2D(DecorationSampler, tex).g; 
} 
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2.1.4. Using the standalone Illumination Gathering program 

The standalone DirectX application demonstrates the indirect illumination techniques described above, 
coupled with approximate ray tracing techniques and fast rendering of realistic metals. Lots of 
parameters can be controlled using the graphics user interface or hotkeys. 

The most important parameters are listed here. For a complete list of available parameters, press F1 in 
the application. 

Mouse: rotate/zoom camera 
Arrow keys: move object 
Keys 0-9: choose object mesh 
TAB/Q: choose rendering mode  
F: Load environment from a HDRI File 
A: Automatically re-generate environment maps in each frame. 
Space: manually re-generate environment maps.   
S: Save a screenshot 

 

Figure 15. Screenshot from the application 

You can switch between different meshes using keys 0..9. All media files are placed in the Media 
subfolder. 
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0 1 2 3 4 

room.x sphere.x column.x teapot.x lamp01.x 

a cubic room a sphere I-beam shaped 
column 

  

   

   

 

5 6 7 8 9 

chair29.x couch01.x tiger.x bunny.x skullocc.x 

   Stanford bunny skull 

   

   

 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 23 / 112

 

2.2. RAY TRACING EFFECTS 
This is a standalone module that can be found in the RayTraceEffects directory of the repository. 

2.2.1. Role of the module 

This module is based on a fast, iterative approximation method to obtain the point hit by a reflection 
or refraction ray. The calculation uses the distance impostors storing distance values in environment 
map texels. This approximation is used to localize environment mapped reflections and refractions, 
that is, to make them dependant on where they occur. On the other hand, placing the camera to the 
light source, the method is also good to generate real-time caustics. Computing a map for each 
refractor surface, we can even evaluate multiple refractions without tracing rays. The method is fast 
and accurate if the scene consists of larger planar faces, when the results are similar to that of ray-
tracing.  

When caustics are generated, the caustics patterns are rendered into textures. It means that every 
caustics receiver must have its own texture atlas. In order to allow comparisons, the standalone 
module also implements classical environment mapping.  

The heart of the module is the Hit shader function that is responsible for finding a ray-surface 
intersection. It calculates the position in texture space of the static environment to generate real 
reflection/refraction/caustics effects. Unlike in the final gathering module, here the Hit method is 
iterative, thus allowing more iterations and time, it can obtain more precise results. 

The other key part is the blending of the photon snippets into the objects atlases to generate caustics. 
Setting the snippet size and intensity are crucial to obtain quality results. The caustics are rendered 
into a texture that must support blending. 

The algorithm works well for one or at most a few reflection/refraction/caustics effect generator 
objects. The rendering time is nearly independent of its complexity. The module can also handle more 
than one reflection/refraction/caustics effect generator objects, but the number of this kind of objects 
has a significant influence on the performance. The number of caustics receiver objects is also 
important, because this implementation works in texture space, so a shader must be run for every 
receiver object. Note that when the same algorithm was integrated into the Ogre engine, we used a 
different approach that solves this problem. The number of photons used for generate caustics effect, 
containing the photon hit locations is also important. The bigger its number, the smoother the caustics, 
but the algorithm gets slower. 

2.2.2. Rendering modes 

This program can demonstrate three different effects, reflection, refraction, and caustics. All three 
effects are implemented both in the classical and our localized environment mapped method. The 
effects have control parameters. For example the reflection is controlled by Fresnel factor, the 
refraction is controlled by refraction index. These parameters can be changed at runtime by a GUI 
slider.  

The effects are generated by environment map lookups. The main task is to define the necessary 
direction. The classical method always uses the same direction, the direction where the point was at 
the environment map generation. The classical method can not handle the position change of the 
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object and the distortion caused by an object the size of which is comparable with its surrounding. The 
direction is independent from its occurrence. If the environment map is regenerated as the object 
moves the first problem is solved, but the regeneration is not free. The scene must be rendered 6 times 
per environment update. The distortion caused by object size can not be solved by regeneration. 

Our method can handle both problems without environment map regeneration. In our method the 
lookup direction depends on the point of occurrence. We use approximation to find the correct 
direction. For the approximation we use several look ups from the environment map. This step is 
packed in a function called Hit in our shader code. 

Function Hit() approximately traces a ray from point x towards direction R. Depth information is 
obtained from the alpha channel of mp. The function returns the approximate hit point. 

 
float3 Hit( float3 x, float3 R, samplerCUBE mp ) 
{ 
 float rl = texCUBE( mp, R ).a;    // |r| 
 float ppp = length( x ) / texCUBE( mp, x ).a;  // |p|/|p’| 
 float dun = 0, pun = ppp, dov = 0, pov; 
 float dl = rl * ( 1 - ppp );     // eq. 2 
 float3 l = x + R * dl;      // ray equation 
 
 // iteration 
 for( int i = 0; i < g_iNumberOfIteration; i++ ) 
 { 
  float llp = length( l ) / texCUBE( mp,l ).a;  // |l|/|l’| 
  if ( llp < 0.999f )     // undershooting 
  { 
   dun = dl; pun = llp;    // last undershooting 
   dl += ( dov == 0 ) ? rl * ( 1 - llp ) : // eq. 2 
    ( dl - dov ) * ( 1 - llp ) / ( llp - pov ); // eq. 3 
  } else if ( llp > 1.001f )    // overshooting 
  { 
   dov = dl; pov = llp;    // last overshooting 
   dl += ( dl -dun ) * ( 1 - llp ) / ( llp - pun );// eq. 3 
  } 
  l = x + R * dl;     // ray equation 
 } 
 return l;       // computed hit point 
} 

 

The rendering methods featured in the application are detailed in the following sections. 
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2.2.2.1. Reflections with classical or localized environment mapping method 

 

Figure 16. Reflection with classical environment mapping and our method. Both are reasonably 
accurate if the object is near to the reference point, where the environment map was generated from 
(left). If the object moves (the environment map is not updated) the classical method suffers visible 

error (center), our method works accurately without noticeable error. 

2.2.2.2. Refractions with classical or localized environment map method 

This implementation uses single refraction. We found that double refraction is too expensive 
compared to its visual improvement. However, it is possible to implement the double refraction with 
this application. 

 

Figure 17. Refraction with classical environment mapping is highly inaccurate (left), our method 
works fine for this propose, too.  
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2.2.2.3. Caustics with classical or localized environment map method 

The caustics effect is based on refraction. That is why the classical method can not generate what we 
want to see. The classical method fails with the refraction direction. 

 

Figure 18. Caustics effect with classical environment mapping is appalling (left), but our method 
generates convincing and realistic patterns (right).  

 

The caustic effect has numerous control parameters. You can change 
-  the number of iteration used in the Hit() function 

The further you iterate the better the approximation, the slower the algorithm. Good 
results can be seen from 4-6 iterations. 

- the refraction index 
Influences the refraction directions and the area over which the caustic pattern is spread. 
The effect can be focused or smooth. 

- the intensity of the light source 
The brightness of extra illumination due to the caustics effect. 

- the number of photon hits 
Defines how many sample points are used for the effect generation. The bigger this 
number the smoother the visual effect. 

- the snippet size 
Defines the area affected by one photon hit. 
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2.2.3. Program structure 

For executing the program shader model 3.0 support is necessary. Some precalculated info is needed 
for drawing the caustic photons, so we have perform texture lookups in the vertex shader, which is 
only possible in shader model 3.0.  

2.2.3.1. Using the DirectX framework (DXUT) 

We are using the DXUT framework to create and setup the DirectX device (see the DXUT... calls 
inside the WinMain method). A convenient way to generate such a code is to run the SampleBrowser 
DirectX application and to install an EmptyProject (C++) application. 

In the DXUT framework, after creating a new DirectX device, two functions are called to perform 
application specific initialization: OnCreateDevice and OnResetDevice. Before destroying a 
DirectX device, OnLostDevice and OnDestroyDevice functions are called.  

The application starts with device creation and ends with device destruction. The device is destroyed 
and another one is created when the window is resized. In these cases, OnLostDevice and 
OnResetDevice function calls are performed to adapt the program to the new window size (e.g. the 
textures are released and recreated). 

2.2.3.2. Texture atlases for mesh objects 

To texture the room and the columns, texture atlases are used. This means that – for example – a 
single texture file contains all necessary data to texture a whole column (consisting of 18 quad faces). 

  

Figure 19. Texture atlas for a column in the scene. Each surface element has its own texture in the 
atlas (left) and the textured column (right). 
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Texture atlases play an important role in caustics generation since photon hits are rendered directly 
into them. The usage of the atlases causes errors at the edges of the faces which are not neighboring in 
the atlas, i.e. if their UV’s are not neighboring. For example, suppose that we render the column with 
its atlas, and currently the first and the fourth sides are processed. A gray line may be seen at the edge 
of the two sides. The problem is that there is a background color where we read the atlas. It occurs 
because of rounding errors, we read and write the texture at different position. To solve this problem, 
we extend the texture of each face by two pixel wide borders. (A more sophisticated and economic 
solution to the same problem is described in the chapter Light Path Maps, section Rendering to a 
texture atlas.) 

2.2.3.3. Program resources 

In the following we list the main resources used by the module grouped according to their types. 

TEXTURE 

g_pPhotonUVTexture  

This D3DFMT_A32B32G32R32F texture contains the positions of caustics 
hits in texture space. Its resolution defines the number of snippets to render. 
One snippet represents one photon hit for the caustics effect. 

 

g_pPowerOfSnippetTexelTexture 

This texture contains the power distribution inside a single caustic spot. It is 
used for every rendered snippet. It is a Gaussian filter. 

 

 

 

g_pRoomTexture 

Room's original Texture (brdf). 

 

 

 

g_pRoomModifyTexture 

This D3DFMT_A16B16G16R16F texture is used for blending the caustics 
effects into the light map of the room object representing the environment. 
It contains brdf, shadow, and caustics effects. 
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g_pRoomLastTexture 

This is a D3DFMT_A16B16G16R16F texture. This is used for eliminating 
the error edges in g_pRoomModifyTexture. This texture is used for the 
Room object when we render it to the screen. 

 

g_pColumnModifyTexture[4] 

These D3DFMT_A16B16G16R16F textures are used for blending the 
caustics effects into the light map of the column objects representing the 
static environment. They contain brdf, shadow, caustics effects, and errors 
at the edges. There are four columns, that is why we need four atlases 

 

g_pColumnLastTexture[5] 

They are D3DFMT_A16B16G16R16F textures. The first four are used for 
eliminating the error edges in g_pColumnModifyTexture[4]. These textures 
are used for the column objects when we render them to the screen. 

 

The last texture contains the original brdf loaded from file. 

 

g_pShadowMapTexture 

Shadow map texture with depth values from the light sources. This is used 
for shadow generation. 

 

g_pRoomCubeMapColorDistTexture 

A CubeMap to store the distance values between the surrounding objects 
and the center of the environment map. 

The image is just an illustration of a cube map. Now it is not containing the 
distance values 
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g_pRoomCubeMapUVTexture 

A CubeMap to store the UVs and the ObjectIDs. The ObjectID is the 
identification for every object in the scene. 

 

 

VERTEXBUFFER 

g_pFullScreenQuadVertexBuffer 

It contains vertex data for a full screen quad, and is used for removing the error edges from the 
atlases.  

g_bSnippetVertexBuffer         

It contains vertex data for the photon snippets. This is rendered when the caustics effect is 
generated into the atlases. The number of these objects can be changed. More objects create 
softer caustics transitions, but need more time to accomplish.  

MESH 

g_pCenterObjectMesh 

The mesh for the central object. This is the caustic generator object. This object is changeable 
at runtime. 

g_pRoomMesh 

Mesh representing the room (wall, floor, and ceiling) 

g_pColumnMesh 

Mesh representing one Column. In the scene there are 4 columns, they are moved by different 
transformations to different positions. 

g_pLightMesh 

Mesh representing the light object. 

2.2.3.4. Shader description 

The shaders call the following two global functions: 

float3 Hit( float3 x, float3 R, samplerCUBE mp ) 

It calculates the hit points after refraction on the receiver object. 

float4 FlowLight( sampler2D mp, float2 Tex ) 

It removes the black edges from the texture stretching it by two pixels at the edges. 
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Every shader uses only one pass. The shaders are as follows: 

RenderRoomColorDistance 

It renders the environment (Room and the object set of Columns) from the CenterObject 
position and stores the result in g_pRoomCubeMapColorDistTexture. The render target 
contains COLOR(x,y,z) + Distance(w). 

RenderRoomUV 

It renders the environment (Room and the object set of Columns) from the CenterObject 
position and stores the result in g_pRoomCubeMapUVTexture. The render target contains 
UV(x,y) + ObjectID(z) + "1".  

RenderUmbra 

It renders the environment (Room and the object set of Columns) from the CenterObject 
position and stores the result in their texture atlases. The render target contains Color(r,g,b,a). 
This shader copies the brdf color from the original texture atlas of the object to the 
g_p…ModifyTexture atlas of the actual object. It is needed, because the color is modulated by 
the shadow. 

RenderRoomAndColumnsScreen 

It renders the environment (Room and the object set of Columns) from the camera position and 
presents the image on the screen. 

RenderPhotonUVMap 

It renders the CenterObject from the light position and stores it in g_pPhotonUVTexture. The 
render target contains: UV(x,y) + ObjectID(1) + "1" or "-1". Here "-1" means that the actual 
pixel does not represent a valid photon hit. At snippet render time, such fragments are ignored. 
This shader creates the g_pPhotonUVTexture with the Hit function, which implements the 
distance impostor based approximate ray tracing algorithm. 

RenderPhotonUVMapClassic 

It renders the CenterObject from the light position and stores it in g_pPhotonUVTexture. The 
render target contains UV(x,y) + ObjectID(1) + "1" or "-1". Here "-1" means that the actual 
pixel does not represent a valid photon. At snippet render time, such fragments are ignored. 
This shader creates the g_pPhotonUVTexture. This is the classical environment mapping 
based method, which we implemented for comparisons. 

RenderPhotonHit 

It renders and blends impostors into the atlases of the environment objects (Room and the 
object set of Columns). The render target contains Color(r,g,b,a). This shader uses the 
g_pPhotonUVTexture as an input, and renders as many snippets to the object's atlas as many 
pixels the g_pPhotonUVTexture has. If a pixel in the g_pPhotonUVTexture is not connected to 
the actual object (not the same ObjectID), it will not be rendered. The result is blended into the 
Object's Atlas. 
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RenderRefractObjectScreen 

It renders CenterObject from the camera position and shows it on the screen. The render target 
contains Color(r,g,b,a). This shader calculates the color of the CenterObject with the Hit 
function, computing reflection and refraction effects. The result is displayed on the screen. 

RenderRefractObjectScreenClassic 

It renders CenterObject from the camera position and shows it on the screen. This shader 
calculates the color of the CenterObject with classical environment mapping method to allow 
comparisons. The result is displayed on the screen. 

RenderLightScreen 

This shader renders the light source object to the screen with a diffuse color. 

RenderShadow 

It renders CenterObject, Columns and Room from the light position and stores the depth image 
in g_pShadowMapTexture, which contains Depth(x).  

FullScreenQuad 

It renders a full screen quad and modifies the Room and Columns atlases, which contain 
Color(r,g,b,a). This shader modifies the atlases by removing the black edges from them. 

PhotonMapScreen 

It renders a full screen quad which is transformed into the lower left corner of the screen in the 
shader. The render target contains Color(r,g,b,a). This shader renders the photon map texture 
(g_txPhotonUVMap) into the screen lower left corner. The result is displayed on the screen. 

Concerning the usage of the shaders we can distinguish static and dynamic shaders. Static shaders run 
just once, for example, during initialization and when the light source or the CenterObject is moved. 
Dynamic shaders run in every frame. On the other hand, we can talk about global shaders that run for 
every object, or local ones that are executed just for specific objects. 

During initialization we call the following global/static shaders: 
o RenderRoomColorDistance 
o RenderRoomUV 

If the light source or the CenterObject moves, the caustics and shadow effects should be re-calculated 
with the following shaders in the specified order: 

o RenderPhotonUVMapClassic OR RenderPhotonUVMap 
o RenderShadow 
o RenderUmbra 
o RenderPhotonHit 
o FullScreenQuad 

The following shaders run in every frame in the specified order: 
o RenderRoomAndColumnsScreen 
o RenderLightScreen 
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o RenderRefractObjectScreenClassic 
o RenderRefractObjectScreen 
o PhotonMapScreen 

If the caustics or shadow effect need to be updated, caustics and shadow recalculation shaders are 
invoked. They generate textures which will be rendered at every frame for the objects. Note that this 
shader runs only if the caustic generator or the light source moves. 

2.2.4. Using the standalone Ray Trace Effects module 

There are many parameters that can be set on the graphics user interface (e.g. sliders, checkboxes, or 
keyboard shortcuts) to experiment with the system. 

F1 displays information about the general controls.  Note that for easier reading, the actual scene will 
be darkened while the help text is displayed. Press F1 again to hide the help text and restore the 
original brightness of the scene. 

To move the central object, use the arrow keys and Page Up / Page Down, respectively. To move the 
light source, you should press the ALT button simultaneously. 

You can change all parameters using the GUI sliders and checkboxes. If you prefer using your 
keyboard, press SPACE to enter to “Edit parameters” mode. In this mode, you can use the arrow keys 
to select a parameter and to change its value. Press Alt + Arrow keys to change the parameters in 
bigger steps. 

  

Figure 20. The main parameters of the algorithm are adjustable on the graphics user interface. The 
content of the photon map is also shown in a small image in the lower left corner. This map contains 

the photon hits used for caustics generation. 

The user interface controls are the followings: 
o Left click drag: Rotate mesh 
o Mouse wheel: Zoom 
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o Arrow keys: Move central object – the reflector/refractor object 
o Alt+Arrow keys: Move light object 
o F2: Settings 
o F3: Switch to REF device 
o F4: Show parameters ON/OFF 
o F5: Show HUD ON/OFF 
o F8: Switch to Wireframe mode 
o 1-5: Choose mesh 
o C: Caustics Effect ON/OFF 
o S: Shadow ON/OFF 
o X: Central Object render ON/OFF 
o D: Switch classic / our new distance impostor method 
o Y: Reset parameters 
o V: Independent Snippet size ON/OFF – we can adjust the snippets size 

automatically or it can be constant 
o M: Show Texture sample ON/OFF 

 

If the central object rendering is switched off, the central object is rendered with a single color.  

For the sake of uniformity, all meshes (including the rather simple meshes of the surrounding: room 
and columns) are stored in X file format of DirectX. 

The user can switch between different central objects by pressing the 1, 2, 3, 4, 5 and 6 buttons. Each 
central mesh is rescaled to (approximately) the same size and is translated to the center of the room. 

 

Figure 21. The possible choices for the central object: SPHERE, SKULL, BUNNY, TEAPOT, 
DRAGON, and HAPPY BUDDHA. 
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2.3. ILLUMINATION MODULE IN OGRE 
Some of the modules discussed in this document were integrated into the Ogre engine. The 
implemented modules are:  

o Ideal reflections and refractions with localized environment mapping 
o Metal materials 
o Diffuse reflections with preconvolved environment mapping 
o Caustics effects with the localized environment method 
o Spherical billboard particle rendering 
o Glow 

The Illumination Module collects and organizes these modules, standardizes them, manages the 
creation and refresh of render targets, sets the appropriate shaders for rendering. 

2.3.1. Role of the module 

This module is an organizing tool which enables different modules to work efficiently with each other. 
This is the collection of the other modules but organized in a way that the different tools can be treated 
similarly and common resources can be easily shared between modules and objects too. 

The module is based on the fact that all the different effects have some common features. They all 
need some kind of resources. These resources are usually textures. To create these resources one or 
more rendering passes should be made.  

Two different modules may require the same resources (e.g.: a distance impostor cubemap), so these 
resources can be shared between the modules. It is also possible that two objects that are used by two 
modules (not necessary the same module) can have common resources. This can happen in case of 
global resources (e.g.: scene depth map) or per light resources (e.g.: depth shadow map from a light 
source), but it can also happen in more general cases (e.g.: for efficiency reasons we would like to 
compute a common cubemap for several small objects that are close to each others). Managing shared 
resources in case of moving objects is complicated, as resources need to be joined and split 
dynamically. 

It is also necessary to automate the creation of resources, the assignment of resources to the different 
modules and the assignment of modules to be used to the objects. 

2.3.2. Program structure 

The source code of the illumination module library can be found in the repository. It consists of two 
projects: an abstract module (IllumModule) and an Ogre implementation (OgreIllumModule). 
The documentation generated by Doxygen can also be found in the repository. Hereinafter we do not 
discuss the source in details but will concentrate on the basic structure and usage. Neither do we 
discuss the abstract module nor the Ogre implementations separately as their basics are the same. 
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2.3.2.1. Base classes 

In the followings we list the basic objects which correspond to the basic concepts of the Illumination 
Module. 

ELEMENTARYRENDERABLE 

A renderable is an object with one material. It can be moved, rendered, it can be hidden and 
shown if needed. A renderable will contain information about which modules use it and how. 
The Ogre implementation of this class is a wrapper class that collects different Ogre 
Renderable types. 

RENDERINGRUN 

A rendering run is created to compute some kind of resource that can be used by the modules. 
A run typically - but not necessarily or exclusively - consists of a series of rendering passes. 
RenderingRuns are the resources which can be shared between objects and modules. Each 
run has an update frequency and a starting frame where the first update takes place. This can 
help to evenly distribute the updates of separate runs resulting in a smoother animation. 

E. g.: a DistanceCubeMapRenderingRun is responsible for creating a depth impostor 
cubemap of the surrounding environment of an object, or group of objects if the impostor can 
be shared (the objects are relatively small and close to each other). This cubemap can be used 
by the environment mapping module to display the object with refracting material, or by the 
ray tracing effects module to compute caustics, or even both (the run is shared between 
modules). 

RENDERINGTECHNIQUE 

A RenderTechnique gives a description how an object should be rendered, and what kinds 
of resources are needed to do this. A RenderTechnique does not define the whole process 
of rendering only one property of the display, for example: this object will need a cubemap, or 
this object is going to be a caustic caster. The technique defines the type of 
RenderingRuns that should be created. 

A RenderTechnique is always assigned to one renderable. On the other hand one 
renderable can have several RenderTechnique objects attached (e.g.: an object can be a 
caustic caster and a refracting material at the same time). The class that implements a group of 
techniques attached to a single renderable is TechniqueGroup. Its main task is to receive 
and forward messages to each RenderTechnique it contains. 

Whenever a RenderingRun is changed or updated, a messaging function is called to inform 
the RenderTechnique. 
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SHAREDRUNS  

This is the class that is responsible for sharing the resources. It collects the common resources 
of a group of techniques. It is also acts like a node of a binary tree so SharedRuns can be 
joined too. This way group of objects can be grouped further and treated as one object. 

RenderingRuns will operate on SharedRuns nodes as they represent the largest group of 
objects that can share the type of resource. As they represent groups of objects they should 
have functions for hiding and showing all the objects under the group. The Ogre 
implementation also has functions for retrieving the bounding sphere and axis aligned 
bounding box of the whole group as well as functions for adding all the objects to a 
RenderQueue or calling notifyCamera() for the objects. 

It is important to notice that one object can be a member of several groups as a binary tree of 
SharedRuns represent several groups (each node is a group of objects). The grouping takes 
place on the RenderingRun type level. 

ILLUMINATIONMANAGER 

The illumination manager is responsible for refreshing rendering techniques connected to 
visible renderables, and to render the scene with these updated resources. It also has the 
responsibility to manage shared runs, to join and split them if needed. 

The Ogre implementation of the class has even more tasks. It is responsible for creating the 
techniques and to assign them to renderables. It stores global and per light resources and 
updates them if necessary. It also stores information about the player camera and viewport. 

2.3.2.2. Implemented techniques and runs 

In the following a brief description is given about the implemented techniques and rendering runs. 

Rendering runs: 

 ColorCubeMapRenderingRun, OgreColorCubeMapRenderingRun 
generate a color cubemap of the surrounding environment of an object or group of objects. 

 DistanceCubeMapRenderingRun, OgreDistanceCubeMapRenderingRun 
generate a distance impostor cubemap of the surrounding environment of an object or group 
of objects. 

 ReducedCubeMapRenderingRun, OgreReducedCubeMapRenderingRun 
generate a reduced sized version of the color cubemap. It is created with averaging the 
original cubemap. 

 CausticCubeMapRenderingRun, OgreCausticCubeMapRenderingRun 
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generate a cubemap that stores caustic light spots caused by a caustic emitter object. The 
caustic spots are created with caustic particles cast on a cubemap. The directions where the 
particles should be put are read from a photon hit map. 

 PhotonMapRenderingRun, OgrePhotonMapRenderingRun 
generate a photon hit map texture. A photon hit map stores the directions where the 
incoming photons are refracted by a caustic emitter object. One pixel of the photon map 
represents one photon hit; the direction is encoded in the RGB channels (the directions are 
not normalized so the hit surface point can be exactly identified). If the alpha channel has 
zero value, the hit is invalid. 

 SceneCameraDepthRenderingRun, OgreSceneCameraDepthRenderingRun 
generate a scene depth map texture. The depth map stores the scene's camera space z 
coordinates (rendered from the player's view). 

 DepthShadowMapRenderingRun, OgreDepthShadowMapRenderingRun 
generate a depth shadow map texture. A shadow map stores depth or distance values from 
the light source.  

Rendering techniques: 

 CubeMapRenderTechnique, OgreCubeMapRenderTechnique 
define that the rendering will need a color cubemap. The color cubemap can be used to 
generate reflections and refractions. This technique creates a 
ColorCubeMapRenderingRun and binds its result to the material of the object. 

 DistanceCubeMapRenderTechnique, OgreDistanceCubeMapRenderTechnique 
define that the rendering will need a distance impostor cubemap.  The distance cubemap can 
be used to improve the accuracy of ray hits. This technique creates a 
DistanceCubeMapRenderingRun and binds its result to the material of the object. 

 ConvolvedCubeMapRenderTechnique, OgreConvolvedCubeMapRenderTechnique 
define that the rendering will need a reduced sized color cubemap. The lower resolution 
cubemap can be convolved faster and can efficiently be used in effects like diffuse 
reflection. This technique creates a ColorCubeMapRenderingRun and a 
ReducedCubeMapRenderingRun and binds its result to the material of the object. It 
also sets the connection between the ColorCubeMapRenderingRun and the 
ReducedCubeMapRenderingRun. 

 CausticRecieverRenderTechnique, OgreCausticRecieverRenderTechnique 
defined that the object can receive caustics. The technique forces the nearest caustic casters 
to refresh their resources and binds their caustic cubemaps to the material of the object. 

 CausticCasterRenderTechnique, OgreCausticCasterRenderTechnique 
define that the object casts caustics. This technique creates a 
PhotonMapRenderingRun, a CausticCubeMapRenderingRun and a 
DistanceCubeMapRendering run if distance impostors are needed. 

 DepthShadowRecieverRenderTechnique, OgreDepthShadowRecieverRenderTechnique 
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Defines that the object receives shadows with depth map shadow technique. This technique 
searches for the nearest light sources and forces them to update their shadow map, and then 
bind the map to the material of the object. 

 SBBRenderTechnique, OgreSBBRenderTechnique 
define that the object (a particle system) uses the spherical billboard method. This technique 
creates a SceneCameraDepthRenderingRun and binds its result to the material of the 
object. 

2.3.3. Usage of the illumination module in Ogre 

The Ogre implementation of the illumination module was designed to have a simple usage, and to fit 
to the concepts of a typical Ogre application. A few modifications in the Ogre core had to be made to 
fit the module into the engine. We have to store a RenderTechniqueGroup for each renderable so 
a new attribute was added to the Renderable class that stores a RenderTechniqueGroup 
reference. The material serializer was also changed for the following reasons. 

In Ogre RenderTechniques should operate on a Pass of the object’s material (note that most of the 
techniques set outputs from a resource to some input of a Material, typically to a texture unit state of a 
Pass). It would be very comfortable to define the RenderTechniques to be used in the material script 
within the pass the technique should operate on. 

We followed this solution so added a new keyword IllumTechniques within the pass definition of 
the materials. Within this scope we can define the techniques to be used for the given pass with the 
keyword RenderTechnique. This keyword needs a parameter that defines the type of the 
technique. Within the RenderTechnique scope we can set some technique specific parameters 
which will be passed to the technique’s constructor. An example of this technique definition which 
defines an object as a caustic and a shadow receiver is the following: 

material exampleMaterial 
{  
  technique  
  {  
    pass  
    {  
      IllumTechniques 
      { 
 RenderTechnique DepthShadowReciever 
 { 
          max_light_count  1 
 } 
 RenderTechnique CausticReciever 
 { 
          max_caster_count  2 
 } 
      } 
 /// … usual pass definition 
    } 
  } 
} 
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In the following we describe the material definitions for each RenderTechnique type. First the 
type name is given which should be set to the RenderTechnique keyword. Then the available 
parameters with their default values and a brief description are listed. 

Color cubemap 

type name: ColorCubeMap 

parameters: 

 start_frame   1 

number of the frame when the rendertarget created by this technique should be first 
updated 

 update_interval  1 

  update frequency of the rendertarget created by this technique  

 resolution   256 

  the resolution of the cubemap texture to be created 

 texture_unit_id  0 

  the texture unit state id to bind the cubemap 

 distance_calc  true 2.0 

if this is on, the cubemaps of the object is refreshed rarely if the object is far away 
from the viewer. The second value is a tuning value, the higher it gets the more 
precise, but slower the method will be.  

 face_angle_calc  false 2.0 

if this is on, the cubemap faces which are not facing directly the camera are refreshed 
rarely. The second value defines how the refresh rate depends on the facing, the higher 
it gets the more precise, but slower the method will be. 

 update_all_face  false 

if this is on, all six cubemap faces will be refreshed in a frame. If it is off, only one 
face will be updated in a frame. 

Distance cubemap 

type name: DistanceCubeMap 

parameters: 

 start_frame   1 

 (same as in ColorCubeMap) 
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 update_interval  1 

(same as in ColorCubeMap)  

 resolution   256 

  (same as in ColorCubeMap) 

 texture_unit_id  1 

  (same as in ColorCubeMap) 

 distance_calc  true 2.0 

  (same as in ColorCubeMap) 

 face_angle_calc  false 2.0 

  (same as in ColorCubeMap) 

 update_all_face  false 

  (same as in ColorCubeMap) 

Convolved cubemap 

type name: ReducedColorCubeMap 

parameters: 

 start_frame   1 

(same as in ColorCubeMap) 

 update_interval  1 

  (same as in ColorCubeMap)  

 resolution   256 

  resolution of the color cube map 

 reduced_resolution 8 

  resolution of the reduced sized color cubemap 

 texture_unit_id  0 

  (same as in ColorCubeMap) 

 distance_calc  true 2.0 

  (same as in ColorCubeMap) 

 face_angle_calc  false 2.0 

  (same as in ColorCubeMap) 
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 update_all_face  false 

  (same as in ColorCubeMap) 

Caustic caster 

type name: CausticCaster 

parameters: 

 start_frame    1 

(same as in ColorCubeMap) 

 update_interval   1 

  (same as in ColorCubeMap) 

 photonmap_resolution  64 

  the resolution of the photon hit map to be created 

 caustic_cubemap_resolution 256 

  resolution of the caustic cubemap texture to be created 

 photon_map_material  GameTools/PhotonMapCaustic 

  name of the material to use when rendering the photon hit map 

 caustic_map_material  GameTools/Cau 

  name of the material to use when rendering the custic cubemap 

 photon_map_tex_id   0 

texture unit id of the caustic material where the photon hit map should be bound to 

 distance_impostor   true 

use distance impostor cubemap when rendering the photon hit map (recommended) 

 update_all_face   false 

if this is on, all six cubemap faces of the caustic cubemap will be refreshed in a frame. 
If off, only one face will be updated in a frame. 
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Caustic receiver 

type name: CausticReciever 

parameters: 

 max_caster_count  1 

the maximum number of caustic casters to take into account (the nearest casters will 
be used) 

 vertex_program_name GameTools/Caustic/DefaultVS 

the name of the vertex program to be used when running the caustic gathering passes 

 fragment_program_name GameTools/Caustic/DefaultPS 

the name of the fragment program to be used when running the caustic gathering 
passes 

Spherical billboards 

type name: SphericalBillboard 

parameters: 

 texture_unit_id  0 

 the texture unit state id of this pass where the scene depth texture should be bound to 

Depth shadow receiver 

type name: DepthShadowReciever 

parameters: 

 max_light_count  1 

 the maximum number of light sources to take into account (the nearest ones will be 
used) 

 vertex_program_name GameTools/ShadowMap/ShadowVS 

 the name of the vertex program to be used when running the shadowing passes 

 fragment_program_name GameTools/ShadowMap/ShadowPS 

the name of the fragment program to be used when running the shadowing passes 

If we would like to build an Ogre application that uses the OgreIllumModule and its techniques, 
only a few changes should be needed in the ExampleApplication provided by the Ogre SDK. In 
the createScene() function we can set some global parameters of the 
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OgreIlluminationManager if needed. E.g.: we can set the maximum bounding radius used in 
joining SharedRuns, or if we use the spherical billboard method we should set the main camera. 

After mesh loading and material setup OgreIlluminationManager should search for 
RenderTechniques in the material definitions and initialize them (this can be done with the 
initTechiques function). 

In each frame the IlluminationManager should refresh the techniques of the visible objects. This can 
be done automatically if we add the IlluminationManager to the frame listeners, or it can be done 
manually if the application calls the update() function in each frame (the demos follow this 
method). The following listing shows a sample code: 
Class App : public ExampleApplication 
{ 
public: 
 Virtual void go(void) 
 { 
  if (!setup()) return; 
  renderScene(); 
  destroyScene(); 
 } 
protected: 
 void renderScene(){ 
  mWindow->resetStatistics(); 
    while(true){   
 //message handling  
 #if OGRE_PLATFORM == OGRE_PLATFORM_WIN32             
 // Pump events on Win32 
     MSG  msg; 
 while( PeekMessage( &msg, NULL, 0U, 0U, PM_REMOVE ) ) 
 { 
  TranslateMessage( &msg ); 
  DispatchMessage( &msg ); 
 } 
 #endif 
 //call framlisteners    
 if(!mRoot->_fireFrameStarted()){ 
  break; 
 } 
 unsigned long framenum = mRoot->getCurrentFrameNumber(); 
 //update techniques 
 OgreIlluminationManager::getSingleton().update(framenum, mWindow); 
 //Ogre’s standard rendering 
 mRoot->_updateAllRenderTargets(); 
 //call framlisteners    
 mRoot->_fireFrameEnded();  
   } 
 } 
 
void createScene(void) { 
 … 
 //usual Ogre code (mesh loading, transformations, material setup) 
 … 
 //set global parameters 

OgreIlluminationManager::getSingleton().setMaxJoinRadius(420); 
OgreIlluminationManager::getSingleton().setMainCamera(mCamera); 
//search for techniques and initialize them 
OgreIlluminationManager::getSingleton().initTechniques(); 

 } 
} 
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Figure 22. Caustics and environment mapping implemented in Ogre. The demo shows four reflecting 
head with different metal shaders (as introduced in 2.1.2.9) rotating around a refracting head 
which casts caustics on the walls and floor. The reflecting and refracting objects use localized 

environment mapping. The program uses a caustic generating method similar to the method described 
in 2.2.2.3. Also a glow effect was added to the scene (see 2.6.1). 

 

 

Figure 23. Spherical billboards implemented in Ogre. The demo shows an ogre head inside a particle 
system. Clipping and popping artifacts were removed by the spherical billboards method described in 

details in the GameTools technical documentation deliverable. Also a glow effect was added to the 
scene (see 2.6.1). 
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2.4. ILLUMINATION NETWORKS MODULE 

2.4.1. The role of the module 

Illumination networks estimate the discretized volumetric rendering equation by a Monte Carlo 
quadrature with a given set of directions. The process of calculation is described in details in the 
GameTools technical documentation deliverable (chapter 13). The main idea behind this method is to 
calculate incoming light radiance for a given set of directions for each particle. For any given direction 
and particle it is defined which other particle is the closest visible one from the given particle. This 
way the particles form a network according to this visibility information. This network can be used to 
calculate incoming radiance for every direction with an iteration process. During rendering we need 
the amount of radiance heading towards the eye to shade the individual particles. 

The tool offers real time rendering of realistically shaded participating media with multiple anisotropic 
scattering for multiple dynamic (both position and color can change) light sources. Even dynamic light 
sources inside the medium can be modeled. 

2.4.2. Rendering algorithm 

We need a set of sample directions which are randomly chosen and have uniform distribution on the 
unit sphere. In order to update the radiance of a particle, we should know the indices of the particles 
visible in sample directions, and also the distances of these particles to compute the opacity. This 
information can be stored in two-dimensional arrays as two dimensional textures. Incoming radiances 
can also be stored in a two dimensional texture. Initially this texture is black. Later on this texture will 
be refreshed in each iteration step (once in a frame). To add an initial radiance to this texture to start 
the iteration with we also store the particles emission in the given directions. 

The direct illumination of light sources should also be added. To do this we should identify those 
particles that are visible from the light source and store this information in an array (1D texture). This 
array can be initialized by rendering the volume from the point of view of the light source and 
identifying those particles that are directly visible on the resulting image. 

The visibility array can also be calculated in a similar way, but placing the camera at the given particle 
and the looking in the given direction. When a particular direction is processed, particles are 
orthographically projected onto the window, and rendered using a standard z-buffer algorithm, having 
set the color of a particle equal to its index. The contents of the image and depth buffers are read back 
to the CPU memory, and the indices and depths of the visible particles are stored together with the 
pixel coordinates. This information can also be calculated on the CPU as it is run only once. 

During iteration for each particle and for each direction we identify the visible particle in that direction 
with the help of the visibility map and calculate the light it scatters toward the examined particle with 
the help of the illumination texture. After collecting the light contributions from each direction their 
sum gives the refreshed value to be written to the illumination texture. The direct illumination and 
emission should also be taken into account. Note that both reading and writing is needed in the 
illumination texture, which can not be done on the GPU at the same time, so we need a copy with last 
state of this texture which can be read while the other one is written. 
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When the final image is needed, we can use a traditional participating media rendering method, which 
sorts the particles according to their distance from the camera, splats them, and adds their 
contributions with alpha blending. When the outgoing reflected radiance of a particle is needed, we 
compute the reflection from the sampled incoming directions to the viewing direction. Finally the sum 
of particle emission and direct illumination of the external lights is interpolated from the sample 
directions, and is added to the reflected radiance. 

2.4.3. Program structure 

The demo application named Illumination Networks Demo that demonstrates the described 
technique can be found in the repository. It is a small OpenGL/Glut application. It loads particle 
positions from a text file. It uses several simple wrapper classes (e.g.: camera, texture, render texture, 
Cg GPU program wrapper classes) which don’t concern strictly the technique described above, so they 
won’t be documented here. Main initializations event handling and the rendering loop is located in 
main.cpp. 

One main class is responsible for implementing a particle system shaded with the illumination 
networks method named PreIllumSystem. It contains a ParticleSystem instance which 
handles particle position loading and sends the particles to the graphics card as quads during 
rendering. PreIllumSystem is only responsible for the rendering process described above. It has 
functions for the main rendering tasks: 

CreateGivenDirections() is for generating random directions, 

CreateVisibilityTexture() builds the visibility texture, 

CreateLVisMap() creates the map that stores the visible particles from the light source, 

RefreshDirectIllumTexture() refreshes direct illumination and emission, 

Iterate() does one iteration step, 

CreateEyeRadTexture() gathers radiance to the eye. 

The following Cg shader programs correspond to the main rendering tasks, most of them are used with 
full screen quad rendering: 

LightIlluminatePrograms.cg: is used in direct illumination and emission refresh 

IllumIteratePrograms.cg: is used in one iteration step 

FinalizeIllumMap.cg: is to compute eye radiance 

FinalDisplay.cg: creates the final display of the particles (point sprite rendering) 

2.4.4. Using the illumination network application 

This sample application displays a cloud shaded with two light sources and skylight. The camera can 
be rotated around the cloud, one of the light sources can be moved, light colors and the cloud 
properties (albedo, opacity, scattering symmetry) can be changed. 
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Controls: 
o w, s : moves camera closer and further from cloud 
o a, d : rotates camera around cloud 
o r, f : moves camera up and down 
o left, right : rotates light source around cloud 
o up, down : moves light source up and down 
o F1, shift + F1: increase, decrease iterate count (recommended to set to 1) 
o F2, shift + F2 : increase, decrease cloud albedo 
o F3, shift + F3 : increase, decrease cloud opacity 
o F4, shift + F4 : increase, decrease red color value of light 1. 
o F5, shift + F5 : increase, decrease green color value of light 1. 
o F6, shift + F6 : increase, decrease blue color value of light 1. 
o F7, shift + F7 : increase, decrease red color value of light 2. 
o F8, shift + F8 : increase, decrease green color value of light 2. 
o F9, shift + F9 : increase, decrease blue color value of light 2. 
o F10, shift + F10 : increase, decrease red color value of skylight 
o F11, shift + F11 : increase, decrease green color value of skylight 
o F12, shift + F12 : increase, decrease blue color value of skylight 
o p : start/stop screenshot saving 
o h : change heads up display 
o l : change display 

Display types: 
o Normal: shows the shaded cloud. 

 The following display types are for debugging and representation: 
o Visible particles from light source colored with their ids. 
o Light visibility map: binary map contains 1 in column j if the particle is visible from 

the light source in direction j. It has two rows for the two light sources. 
o Illumination map1: last result of the illumination map. 
o Illumination map2: refreshed illumination map. 
o Eye radiance map: outgoing radiances of the particles towards the eye. 

   

24. Screenshots made with the illumination networks demo application. 
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2.5. HIERARCHICAL PARTICLE SYSTEMS MODULE 

2.5.1. The role of the module 

Hierarchical particle systems deal with the problem of high particle count that should be used to 
achieve realistic high quality effects. If we want to add detail to the individual particles, we can use a 
detail texture (usually a video texture) that visualizes the desired natural phenomena. This texture 
gives detail by perturbing the particle opacity and or color. This usually gives nice results but the 
cheating is usually visible if the camera moves in or rotates around the medium, because these images 
are only 2D and has no depth information. The main task of hierarchical systems is to create the 
correct image for all view directions. We use a particle system that will visualize the described 
phenomena and give a detail texture for all view directions. This way we build a particle system made 
out of duplications of a smaller particle system, but the smaller system needs to be rendered only once 
and the resulting image will be multiplied. 

Another great advantage of this method is that not only color and opacity but depth information can be 
stored for the given direction, which gives us a good substitute of the small system. These color or 
opacity images with their depth information are called depth impostors. To handle volumetric media 
as one depth information is not enough we have to store both front and back depth values. This 
information can be used to determine correct opacity taking into account the objects located inside 
particle system, so billboard clipping can be avoided which results even higher realism. 

The simplified modeling of the particle system also makes real time shading of the medium possible. 
Handling light volume interaction on the particle level would be too computation intensive since the 
light pass requires the incremental rendering of all particles and the read back of the actual result for 
each of them. To speed up the process, we render particle blocks one by one, and separate light 
volume interaction calculation from the particles. During a light pass we classify particle blocks into 
groups according to their distances from the light source, and store the evolving image in textures at 
given sample distances. These textures are called slices. The first texture will display the accumulated 
opacity of the first group of particle blocks; the second will show the opacity of the first and second 
groups of particle blocks and so on. The required number of depth samples depends on the particle 
count and the cloud shape. For a roughly spherical shape and relatively few particles (where 
overlapping is not dominant), even four depths can be enough. This method provides real time shading 
of animated particle systems under changing light conditions (both light color and position can be 
changed). 

The main concepts of particle hierarchies, depth impostors and the volume shading algorithm are 
described in details in the GameTools technical documentation deliverable (chapter 12). 

2.5.2. Hierarchical particle system rendering algorithm 

First we should make an image of the smaller particle system (a block). We make a frustum that 
tightly encloses the block and the eye point is in the player’s eye position. Then we render an opacity, 
a front depth and a back depth. Note that these tree passes can be done in one rendering pass if we set 
the proper blending factors.  

We need a depth map of the scene. This will help us to identify the objects positions. Finally we can 
render the main particle system; the particles are processed in back to front order. Each particle will 
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have the opacity of the precomputed block opacity. This opacity will also be altered according to the 
ray segment length light should travel in one particle before reaching an object. This can be calculated 
from the scene depth, the particle position and the precalculated depth information. 

The shading also needs additional passes. We should create the slices of the light volume texture. The 
number of passes needed can be reduced by reducing the number of slices used and with storing 
separate slices in separate color channels. The particles are sorted in front to back order and rendered 
in groups according to the slices. During final rendering for any given shaded point we can decide 
between which too depth sliced it is and can interpolate the opacities stored in the light volume texture 
slices.  

2.5.3. Program structure 

The demo application named Hierarchical Particle Systems Demo that demonstrates 
the described technique can be found in the repository. It is a small OpenGL/Glut application. It loads 
particle positions, scene data and animation data from a text files. It uses several simple wrapper 
classes (e.g.: camera, texture, render texture, Cg GPU program wrapper classes) which don’t concern 
strictly the technique described above, so they won’t be documented here. Main initializations event 
handling and the rendering loop is located in main.cpp. 

One main class is responsible for implementing a shaded hierarchical particle system named 
AdvancedParticleSystem. It contains a ParticleSystem instance which handles particle 
position loading, particle emitting, animation (needed in the smaller particle system block) and 
sending the particles to the graphics card as quads during rendering. AdvancedParticleSystem 
is only responsible for the rendering process described above. It has functions for the main rendering 
tasks: 

RefreshDepths() generates front, back depth and opacity textures of the system block 

RefreshIllumTextures() refreshes light volume texture slices 

RenderObjectDepths() renders scene depth 

Display() final rendering 

The demo uses four light slices stored in the four channels, so the light volume rendering can be done 
in a single render pass. 

The main Cg shader programs used by the application: 

PSystemDensityOnlyPrograms.cg: creates the opacity image of the block (used if no depth 
calculation used) 

PSystemFrontDepthPrograms.cg: creates the opacity, front and depth image of the block. 
Front depth, back depth and opacity will be stored in the red, green and blue color channels 
respectively. 

IllumPrograms.cg: used in light volume calculation. 

ObjDepthPrograms.cg: renders scene depth. 
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Psystem_Default.cg: renders particles with uniform color without depth calculation. 

Psystem_Default_Depth.cg: renders particles with uniform color with depth calculation. 

Psystem_Single_Phase.cg: renders particles with single scattering without depth 
calculation (the illumination texture is not used). 

Psystem_Single_Phase_Depth.cg: renders particles with single scattering with depth 
calculation (the illumination texture is not used). 

Psystem_Multiply_Forward.cg: renders particles with multiple forward scattering without 
depth calculation (the illumination texture is used). 

Psystem_Multiply_Forward_Depth.cg: renders particles with multiple forward scattering 
with depth calculation (the illumination texture is used). 

2.5.4. Using the demo application 

This sample application displays a cloud shaded with one light source. As the application starts a plane 
flies into the cloud and the camera follows it. The animation loops and can be stopped. If the 
animation is stopped we can control the camera ourselves. The scattering properties of the cloud can 
be changed interactively. The displayed cloud is made out of 100 blocks each with 400 particles 
resulting in a total count of 40000 modeled particles. The positions of the particles inside a block are 
animated which give a swirling effect to the cloud, while the positions where the blocks should be 
placed (particle positions of the bigger system) are read from a file. 

Controls: 
o w, s : moves camera forward and back 
o a, d : slides camera left  and right 
o r, f : moves camera up and down 
o left, right : rotates camera (also can be done with mouse while holding left button) 
o F1, shift + F1 : increase, decrease cloud density 
o F2, shift + F2 : increase, decrease cloud albedo 
o F3, shift + F3 : increase, decrease cloud scattering symmetry 
o h : change heads up display 
o l : change lighting mode (see shaders above) 
o i : toggle depth calculation 
o p : start/stop screenshot saving 
o o : start/stop plane and camera animation 
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Figure 25. Screenshots made with the hierarchical particle systems demo application. 
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2.6. POST PROCESSING EFFECTS 

2.6.1. Glow 

Glow is the effect when a very shiny object in the picture causes the neighboring pixels to be brighter 
than they would be normally. It is caused by scattering in the lens and other parts of the eye, giving a 
glow around the light and dimming contrast elsewhere in the scene. In video production, the video 
camera captures an image by converting photons to charge using a charge coupled device (CCD). 
Glow occurs in a video camera when a charge site in the CCD gets saturated and overflows into 
neighboring sites. 

This effect can easily reconstructed on modern graphics hardware with post-processing or image-space 
rendering technique. 

 

Figure 26. Die with glow. 

2.6.1.1. Post-processing method 

If the scene rendered to floating point buffer, we can use a post-processing pass to create the desired 
glow effect. In the buffer the pixels with high intensities represents the glowing parts of the scene. We 
use a low pass filter to separate these parts to another image buffer. The second step to blur this image 
using convolution with Gaussian kernel. This part requires the most computation. Instead of using a 
single n x n kernel with the appropriate values of the Gaussian distribution function, we can use 
separable convolution. This is a two pass convolution, in the first pass we use an n pixel wide kernel to 
blur the pixels horizontally. The second pass is the same with the exception that we use a transposed 
kernel. After the blurring pass we can combine the original image with the generated glow image 
during or before the tone-mapping with adding the two images pixel by pixel. To the best result we 
need to use high dynamic range source image, otherwise we may catch too much or too less "glowing 
emitter" part of the image. 
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Figure 27. Die with and without glow. 

2.6.1.2. Image-space method 

The image-space method is almost the same as the post-processing technique. The main advantage is 
that we have full control over what parts of the picture are glowing. Other advantage is that we can use 
this technique with LDR rendering. On the counterpart this method needs more computation than the 
post-processing technique. The difference is the creation of the initial glow image. In this method we 
use the original geometry with a special shader to render only the glowing parts. In the sample 
implementation we use a shader that renders normally when the texture's alpha value is 1.0f and 
renders black pixel otherwise. 

With this shader we can precisely define where the glowing part is. After this pass we use the same 
Gaussian blur as the other technique. The final composition is also the same. 

We can add an interesting trailing effect to the glow easily. If we store the blurred glow image we can 
modulate the next frame's glow image with it. We can control the long of the trail during the 
composition with a dimming parameter. 

2.6.1.3. Example shaders 

To achieve the right results, we used the vertex shader presented below during all the effects. This 
shader modifies the texture coordinates for the right sampling. 
 
struct VS_INPUT { 
        float4 pos : POSITION; 
        float2 tex0 : TEXCOORD0; 
    }; 
 
    struct VS_OUTPUT { 
        float4 pos : POSITION; 
        float2 tex0 : TEXCOORD0; 
    }; 
 
    uniform float4x4 modelViewProjection; 
    uniform float dsWidth, dsHeight; 
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    VS_OUTPUT VS_VertexBlurShader(in VS_INPUT input){ 
        VS_OUTPUT output0; 
        output0.pos = mul(input.pos,modelViewProjection); 
        output0.tex0 = input.tex0 + 0.5*float2(1.0f/dsWidth, 1.0f/dsHeight); 
        return output0; 
    } 

 

The following shader creates the glow texture. It also respects of the alpha value of the source texture. 
 
texture SourceTexture; 
    sampler2D SourceTextureSampler = sampler_state { 
        texture = <SourceTexture>; 
        mipfilter = LINEAR; 
        AddressU = Clamp; 
        AddressV = Clamp; 
    }; 
 
    half4 PS_Glow(in float2 tex0:TEXCOORD0) : COLOR { 
        half4 texLookUp; 
        texLookUp.rgba = tex2D(SourceTextureSampler,tex0).rgba; 
 
        if (texLookUp.a == 1.0f) texLookUp = half4(0,0,0,0);; 
        return texLookUp; 
    } 

 

These two shaders blur the glow image. In this step we combine the old glow image with the newly 
computed one. The GlowGain controls the addition of the old glow image, and the Stretch parameter 
modifies the sampling points. 
 
texture Glow; 
    sampler2D GlowSampler = sampler_state { 
        texture = <Glow>; 
        mipfilter = LINEAR; 
        AddressU = Wrap; 
        AddressV = Wrap; 
    }; 
 
    uniform float dsWidth, dsHeight; 
    uniform float Stretch; 
 
    half4 PS_Blur_h(in float2 tex0:TEXCOORD0) : COLOR { 
        half4 texLookUp_h; 
        texLookUp_h =    tex2D(GlowSampler, float2(tex0.x-(3.8697f*Stretch/dsWidth), tex0.y))+ 
                         tex2D(GlowSampler, float2(tex0.x-(1.7229f*Stretch/dsWidth), tex0.y))+ 
                         tex2D(GlowSampler, tex0)+ 
                         tex2D(GlowSampler, float2(tex0.x+(1.7229f*Stretch/dsWidth), tex0.y))+ 
                         tex2D(GlowSampler, float2(tex0.x+(3.8697f*Stretch/dsWidth), tex0.y)); 
        half4 oldGlow = tex2D(OldGlowSampler, tex0); 
        return texLookUp_h + oldGlow * GlowGain; 
    } 
 
    half4 PS_Blur_v(in float2 tex0:TEXCOORD0) : COLOR { 
        half4 texLookUp_v; 
        texLookUp_v =   tex2D(GlowSampler, float2(tex0.x, tex0.y- .8697f*Stretch/dsHeight)))+ 
                        tex2D(GlowSampler, float2(tex0.x, tex0.y-1.7229f*Stretch/dsHeight)))+ 
                        tex2D(GlowSampler, tex0)+ 
       tex2D(GlowSampler, float2(tex0.x, tex0.y+(1.7229f*Stretch/dsHeight)))+ 
                        tex2D(GlowSampler, float2(tex0.x, tex0.y+(3.8697f*Stretch/dsHeight))); 
 
        half4 oldGlow = tex2D(OldGlowSampler, tex0); 
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        return texLookUp_v + oldGlow * GlowGain; 
    } 

 

The final shader combines the original image with the glow image to create the final image. 
 
texture Original; 
    sampler2D OriginalSampler = sampler_state { 
        texture = <Original>; 
        mipfilter = LINEAR; 
        AddressU = Wrap; 
        AddressV = Wrap; 
    }; 
 
    float4 PS_Final(in float2 tex0:TEXCOORD0) : COLOR { 
        float4 Orig = tex2D(OriginalSampler,tex0).rgba; 
        half4 Glow = tex2D(GlowSampler,tex0).rgba; 
        return Orig + Glow; 
    } 

 

2.6.2. Star effect 

This effect differs in the blurring part from the glow effect. Instead of creating a flowing aura this 
effect creates a "star" shape around the light spots of the source image. To generate the "emitting" 
image we can use both of methods described in the previous effect. The difference is in the blur 
process. Instead of using Gaussian blur we use directional blur. To create the star shapes we need at 
least four blur pass, each for one direction. The final composition is a simple addition of the source 
and "starry" images. 

2.6.3. Lens flare 

When we see a light source in low light conditions (eg. the lamps along the road at night), we can see 
flaring around the light emitter. This flare is composed of a lenticular halo and a ciliary corona caused 
by the camera lens or the human eye. 

Rays of the ciliary corona appear as radial streaks emanating from the center of the source. Similar ray 
patterns associated with other coronas have been studied by physicists and are caused by random 
fluctuations in refractive index of the ocular media. 

The lenticular halo is observed as a set of colored, concentric rings, surrounding the light source and 
distal to the ciliary corona. The irregular rings are composed of radial segments, where the color of 
each segment of the ray varies with its distance from the source. The apparent size of the halo is 
constant and independent from the distance between the observer and the source. 

This phenomenon is caused by the radial fibres of the crystalline structure of the lens. 

We can use billboards to simulate the lens flare affect. The billboards are spaced along the line 
between the center of the screen and the light source. The intensity of the billboards weakens by the 
distance. 

Off the shelf monitors can control the intensity just in a limited, low dynamic range (LDR). Therefore 
the values written into the frame buffer are unsigned bytes in the range of [0,255]. However, realistic 
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rendering involves the reproduction of high dynamic range (HDR) luminance values on the computer 
screen. The variation in light levels we experience in the real world environment is vast. The average 
luminance in an outdoor scene can be 100 million times greater during a shiny day than at night. The 
dynamic range of luminances can also be large from shadows to highlights. So the luminance levels 
can change dramatically over time and from place to place. 

Vision functions can adapt to these changes fairly quickly. The adaptation mechanism based on the 
pupil, the rod and cone receptors, photopigment bleaching and regeneration and neural gain control. 
Vision is not equally good under all conditions. The daylight scene appears very bright and colorful, 
but under low light conditions like at night or in a dark room everything looks greyish and darker. 

The conversion of HDR image values to displayable LDR values is called tone mapping. The 
perceptual effects must be taken into account during the tone mapping process. 

2.6.4. Tone mapping operators 

The tone mapping can be categorized according to how they map the HDR data to LDR. The two main 
groups are the global and local operators. Global operators apply a single mapping function to the 
whole image, whereas the local operators modulate the mapping depending on different parts of the 
image. 

The other distinction is between perceptually and empirical operators. Perceptually based operators 
strive to produce images that are predictive visual simulations of scene appearance. Empirical 
operators seek to meet criteria such as detail preservation, artefact elimination, or dynamic range 
compression. 

Third distinction is between dynamic and static operators. Static operators are developed for still 
images. The dynamic operators are designed for processing image streams. 

2.6.5. Ward's visibility preserving operator 

The main goal of this operator to produce displayable images that accurately present the threshold 
visibility of scene features. To do this, Ward's operator uses histogram adjustment constrained by a 
visual adaptation model. 

This operator contains several stages. In the first stage the input image is downsampled to create a low 
resolution “foveal image” in which each pixel covers 1o of visual angle. In the second stage a visual 
model is applied on this image to simulate the effects of veiling glare and low-luminance color and 
acuity loss. Next a histogram adjustment algorithm is applied to define the mapping from scene 
luminances to display luminances. This histogram adjustment is constrained by the human threshold 
versus intensity function. 

This operator is a simple but elegant solution to the perceptually based tone mapping problem. 
However, it is a static operator, designed to use on single images, and it is unable to correctly 
represent the changes in scene visibility over time. 
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2.6.5.1. Pattanaik's time dependent operator 

To address the issues of Ward's operator on image streams, Pattanaik developed a new operator. This 
operator incorporates a model of the temporal dynamics of vision. The goal is to process a stream of 
input images of the scene and produce an output stream that simulates the changes in visual 
appearance caused by variations in scene luminance. To accomplish this, the operator merges 
components of an advanced color appearance model with psychologically based model of temporal 
dynamics of visual adaptation. 

At the highest level the operator consists of a forward and inverse pair of visual models. First, an 
adaptation model transforms input scene intensities into retina-like responses. After that, these 
responses are transformed by a simplified version of Hunt's color appearance model, to produce a 
representation of the scene's suprathreshold “blackness/whiteness” and “colorfulness” appearance 
correlates. To complete the tone mapping process, the adaptation state of the display observer is 
determined, and the inverse appearance model transforms the appearance correlates into display values 
that are calculated to produce corresponding responses in the display observer. 

The time dependent features of the operator are derived from the forward adaptation model. In the 
neural visual system both neural and photochemical adaptation mechanism are responsible for altering 
the sensitivity of the rod and cone systems and shifting the S-shaped response profiles across the 
luminance range. Neural adaptation is a fast and symmetric process that can alter sensitivity within 
milliseconds, however the magnitude of this effect is limited. Photopigment bleaching and 
regeneration can have much greater impact on sensitivity, but it is an asymmetric process, with a 
relatively fast bleaching followed by a slow regeneration and recovery of sensitivity. Pattanaik models 
the dynamics of the adaptation with four low-pass exponential filters. 

This operator is one of the most advanced perceptually based operators for tone mapping in image 
streams. Despite, it still has limitations. It uses a suprathreshold color appearance model rather than a 
threshold visibility model so the images produced may not accurately represent visibility. It produces a 
simple S-shaped global mapping function so high dynamic range scenes may not be mapped correctly. 

2.6.6. A real-time tone mapping operator 

The algorithm proposed by Reinhard et al. operates solely on the luminance values which can be 
extracted from RGB intensities using the standard CIE XYZ transform (D65 white point). The Y 
component of the XYZ vector is the luminance, so we can compute it with the following equation: 

Y = 0.2126 * R + 0.7132 * G + 0.0722 * B. 

The method is composed of global a scaling function and local dodging and burning techniques, which 
allow to preserve fine details. The results are driven by two parameters: the adapting luminance for the 
HDR scene and a key value. The adapting luminance ensures that the global scaling function provides 
the most efficient mapping of luminance to the display intensities for given illumination conditions in 
the HDR scene. The key value controls whether the tone mapped image appears relatively bright or 
relatively dark. 

The source luminance values Y are first mapped to the relative luminance Yr:  

Yr = α * Y / Y 
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where Y is the logarithmic average of the luminance in the scene, which is an approximation of the 
adapting luminance, and alpha is the key value. The relative luminance values are then mapped to the 
displayable pixel intensities L using the following function: 

L = Yr / 1+Yr. 

The above formula maps all luminance values to the [0:1] range in such way that the relative 
luminance Yr = 1 is mapped to the pixel intensity L = 0.5. This property is used to map a desired 
luminance level of the scene to the middle intensity on the display. Mapping higher luminance level to 
middle gray results in a subjectively dark image whereas mapping lower luminance to middle gray 
will give a bright result. Images which we perceive at low light condition are relatively dark compared 
to what we see during a day. We can simulate this impression by modulating the key value with 
respect to the adapting luminance in the screen. 

This tone mapping function may lead to the loss of details in the scene due to the extensive contrast 
compression. Reinhard et al. propose a solution to preserve local details by employing a spatially 
variant local adaptation value V in the second equation: 

L(x,y) = Yr (x,y) / 1+V(x,y), 

where x,y are the pixel coordinates. 

The local adaptation V equals to an average luminance in a surround of the pixel. The problem lies 
however in the estimation of how large the surround of the pixel should be. The goal is to have as 
wide surround as possible, however too large area may lead to well known inverse gradient artefacts, 
halos. The solution is to successively increase the size of a surround on each scale of the pyramid, 
checking each time if no artefacts are introduced. For this purpose a Gaussian pyramid is constructed 
with successively increasing kernel. The Gaussian for the first scale is one pixel wide, setting kernel 
size to s = 1 / (2√2), on each subsequent scale s is 1.6 times larger. 

2.6.6.1. Temporal Luminance adaptation 

While tone mapping the sequence of HDR frames, it is important to note that the luminance conditions 
can change drastically from frame to frame. The human vision reacts to such changes through the 
temporal adaptation processes. The time course of adaptation differs depending on whether we adapt 
to light or to darkness, and whether we perceive mainly using rods (during night) or cones (during a 
day). To take into account the adaptation process, a filtered Ya value can be used instead of the actual 
adapting luminance Y. The filtered value changes according to the adaptation processes in human 
vision, eventually reaching the actual value if the adapting luminance is stable for some time. The 
process of adaptation can be modeled using an exponential decay function: 

Ynew
a = Ya + (Y - Ya) (1 - e-T/τ) 

where T is the discrete time step between the display of two frames, and τ is the time constant 
describing the speed of the adaptation process. These time constants are different for rods and cones: 

τrods = 0.4s, τcones = 0.1s 

Therefore, the speed of the adaptation depends on the level of the illumination in the scene. The time 
required to reach the fully adapted state depends also whether the observer is adapting to light or dark 
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conditions. The above numbers describe the adaptation to light. The full adaptation to dark takes up to 
tens of minutes, so it's not simulated. 

2.6.6.2. Scotopic vision 

On low light conditions only the rods are active, so color discrimination is not possible. The cones 
start to loose sensitivity at 3.4cd/m2 and become completely insensitive at 0.03cd/m2 where the rods 
are dominant. We can model the sensitivity of rods with the following equation: 

σ(Y) = 0.04/0.04 + Y 

where Y denotes the luminance. The value sigma = 1 describes the monochromatic vision and sigma = 
0 the full color discrimination. 

2.6.6.3. Veiling Luminance 

Due to the scattering of light in the optical system of the eye, sources of relatively strong light cause 
the decrease of contrast in their vicinity. Such an effect cannot be naturally evoked while perceiving an 
image on a display due to different viewing conditions and limited maximum luminance of such 
devices. It is therefore important to account for it while tone mapping. 

The amount of scattering for a given spatial frequency ρ under a given pupil aperture d is modelled by 
an Ocular Transfer Function: 

OTF(ρ, d) = e-ρ/20.9 - 2.1*d  1.3 - 0.07 * d 

where d(Y) = 4.9 - 3 tan (0.4 log10 Y + 1). 
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2.6.7. Implementation 

 

Figure 28. Original image, dark mapped, normal mapped, bright mapped images 

2.6.7.1. The key value 

The key value determines, whether the tone mapped image appears relatively dark or bright. The exact 
value can be left as user choice, or it can be estimated automatically based on the relations between 
minimum, maximum, and average luminance in the scene. Although the result of this method is 
appealing, this solution does not necessary correspond to the impressions of everyday perception. The 
critical changes in the absolute luminance values may not always affect the relation between the three 
values. This may lead to dark night scenes appearing too bright and very light too dark. 

Krawczyk proposed an empirical method to calculate the key value. His method is based on the 
absolute luminance. Since the key value was introduced in photography, there is no scientifically 
based experimental data which would provide an appropriate relation between the key value and the 
luminance. The low key is 0.05, the typical choice for moderate illumination is 0.18 and 0.8 is the high 
key. Krawczyk empirically specified key values for several illumination conditions and interpolated 
the rest using the following formula: 

α(Y) = 1.03 - 2/2+log10 (Y + 1) 

where α is the key value and Y is an approximation of the adapted luminance. 
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2.6.7.2. Hardware implementation 

In order to perform tone mapping with perceptual effects, we need to compose two maps: a local 
adaptation map for the tone mapping, and a map of light scattering in the eye for the glare effect. We 
will refer to these maps as perceptual data. Because different areas of these maps require different 
spatial processing, they cannot be constructed in one rendering pass.  Instead, we render successive 
scales of the Gaussian pyramid and update the maps by filling in the areas for which the current scale 
has appropriate spatial processing. In the last step we use these maps to compose the final tone 
mapped result. 

We start with calculating the luminance from the HDR frame and mapping it to the relative luminance. 
We calculate the logarithmic average of the luminance Y in the frame using the down sampling 
approach described in Goodnight’s paper, and apply the temporal adaptation process. The map of 
relative luminance values constitutes the first scale of the Gaussian pyramid. At each scale, we render 
the successive scale by convolving the previous scale with the appropriate Gaussian. The convolution 
performed in two passes: one for the horizontal and one for the vertical convolution. Having the 
current and the previous scales, we update the perceptual data on a per pixel basis in a separate 
rendering pass. The local adaptation is computed using the measure of the difference between the 
previous and the current scale as described in Reinhard’s paper. For the glare map, we first estimate 
the proper scale for the luminance of the current pixel. It depends on the adapting luminance and it is 
uniform for the whole frame so we supply it as a parameter to the fragment program. Before 
descending to the next scale of the Gaussian pyramid, the texture containing the current scale becomes 
the previous scale, and the texture with the current set of the perceptual data becomes the previous set. 

After descending to the lowest scale of the Gaussian pyramid, the perceptual data texture is complete. 
In the final rendering step, we tone map the HDR frame and apply the perceptual effects with the 
equation L(x,y) = (Yr + Yglare)/(1+V(x,y)), where L is the final pixel intensity value, Yr the relative 
luminance, Yglare is the amount of additional light scattering in the eye, and V is the local adaptation 
map. We account for the last perceptual effect, the scotopic vision, while applying the final pixel 
intensity value to the RGB channels in the original HDRframe.  

2.6.7.3. Shaders 

We use the following declarations and vertex shader code all across the tone mapping process: 
 
struct VS_INPUT { 
    float4 Position : POSITION; 
    float  TexCoord : TEXCOORD0; 
}; 
 
struct VS_OUTPUT { 
    float4 hPosition: POSITION; 
    float  TexCoord : TEXCOORD0; 
}; 
 
uniform float4x4 ModelViewProj; 
 
VS_OUTPUT VertexShader(VS_INPUT IN) { 
    VS_OUTPUT OUT; 
    OUT.hPosition = mul(IN.Position, ModelViewProj); 
    OUT.TexCoord = IN.TexCoord; 
    return OUT; 
} 
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The pixel shader computing the luminance for each pixel is: 
 
texture SourceTexture; 
 
sampler2D SourceTextureSampler = sampler_state { 
    texture = <SourceTexture>; 
    mipfilter = LINEAR; 
    AddressU = Wrap; 
    AddressV = Wrap; 
} 
 
float PS_Luminance(in float2 TexCoord : TEXCOORD0) : COLOR { 
    float3 color = tex2D(SourceTextureSampler, TexCoord).rgb; 
    float avg = dot(color, float3(0.21f, 0.39f, 0.4f)); 
    return avg; 
} 
 

In order to downscale the luminance image, Gaussian filter is used. For performance reasons, the 
convolution is executed separately for the two directions (this is possible because of the separability of 
the Gaussian filter), thus this shader should be called multiple times to obtain a 2D convolution: 
texture LuminanceTexture; 
 
sampler2D LuminanceTextureSampler = sampler_state { 
    texture = <LuminanceTexture>; 
    mipfilter = LINEAR; 
    AddressU = Wrap; 
    AddressV = Wrap; 
} 
 
half4 PS_DownScale_H(in float2 tex0:TEXCOORD0) : COLOR { 
    half4 texLookUp; 
    texLookUp = tex2D(LuminanceTextureSampler, float2(tex0.x-(3.8697f/Width), tex0.y)).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x-(1.7229f/Width), tex0.y)).r + 
                tex2D(LuminanceTextureSampler, tex0).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x+(1.7229/Width), tex0.y)).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x+(3.8697f/Width), tex0.y)).r; 
 
    return half4(texLookUp / 5, 0, 0, 1.0f); 
} 
 
half4 PS_DownScale_V(in float2 tex0:TEXCOORD0) : COLOR { 
    half4 texLookUp; 
    texLookUp = tex2D(LuminanceTextureSampler, float2(tex0.x, tex0.y-(3.8697f/Height))).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x, tex0.y-(1.7229f/Height))).r + 
                tex2D(LuminanceTextureSampler, tex0).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x, tex0.y+(1.7229f/Height))).r + 
                tex2D(LuminanceTextureSampler, float2(tex0.x, tex0.y+(3.8697f/Height))).r; 
 
    return half4(texLookUp / 5, 0, 0, 1.0f); 
} 

 

The final pass takes the average luminance value of the neighborhood and scales the color 
accordingly: 
texture AvgLumiTexture; 
sampler2D AvgLumiTextureSampler = sampler_state { 
    texture = <AvgLumiTexture>; 
    mipfilter = LINEAR; 
    AddressU = Wrap; 
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    AddressV = Wrap; 
} 
 
//----------------------------------------------------------------------------- 
float4 PS_Final(in float2 TexCoord : TEXCOORD0) : COLOR { 
    float Key = 1.03f - 2 / (2 + log10(tex2D(AvgLumiTextureSampler, TexCoord).r + 1)); 
    float RelLum = Key * tex2D(LuminanceTextureSampler, TexCoord).r / 
                         tex2D(AvgLumiTextureSampler, TexCoord).r; 
    float Lum = RelLum / (1+RelLum); 
    float4 Color = tex2D(SourceTextureSampler, TexCoord) * Lum; 
    Color = pow(Color * float3(1.05, 0.97, 1.27), 1.0 / 2.2); 
    return Color; 
} 
//----------------------------------------------------------------------------- 

2.6.7.4. Tone mapping standalone application and its Ogre integration 

The glowing dice program demonstrates the glow and the tone mapping technique. The various 
parameters controlled by the on-screen sliders. The tone map has one control to adjust the 
automatically determined key value. 

The glow technique has gain and stretch parameters. The gain controls the participation of the glow 
map to the final image, and the stretch parameter modify the Gaussian kernel’s sample points. 

These techniques are ported to the Ogre3D framework. The 1.2 release has a new so called 
Compositing framework, so these effects are converted to compositor and material scripts. 

   

Figure 29. Glow effect in the standalone module and integrated into Ogre. 
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2.7. LIGHT PATH MAPS 

2.7.1. Rendering to texture atlases  

This section describes a solution to preprocess geometry so that seam artifacts of texture atlas 
renderings are eliminated. This is not considered to be a module in itself, but it is a prerequisite for 
tools using texture atlases. Path Maps, described in the section 2.6, are based on texture atlases, and 
utilize the solution described here. 

Render-to-texture has become a very basic operation in graphics hardware programming, allowing for 
computations to be decomposed into consequent passes. Most prominently, all kinds of lighting 
algorithms, including stochastic iteration, photon maps, caustics, or light animation can be transposed 
into the two-dimensional surface domain by using texture atlases. Computations are carried out using 
a render-to-atlas operation, and data is later accessed by texturing. However, the rasterization 
algorithm supported by the hardware does not necessarily trigger rendering to every texel that can be 
addressed by surface texture coordinates. This causes artifacts near texturing seams. In order to 
eliminate them, we have to simulate conservative overestimated rasterization of triangle charts when 
rendering to the texture atlas. In the standalone illumination package, the Path Map and the Ray 
Tracing effects modules use texture atlases. In the Path Map module, we will use the technique 
described in this chapter. 

In this section, we describe a method that processes the original model geometry and constructs a 
minimal set of line segments that will rasterize to complete the texture atlas. There is no increase in the 
complexity of the geometry, and the overlying computation algorithm does not have to be modified. 

2.7.1.1. Texture atlases 

The most straightforward and often unavoidable means to pre-compute and store illumination data is 
the usage of texture atlases. Whenever we need to know the illumination of surface elements without 
fixing a specific viewing direction, we may carry out computations at sample points of the surface: 
these will be the texels of our texture atlas. In case of a fixed light position, we may also pre-compute 
a shadow map to speed up lighting, but it may not be as effective as the using the atlas. Furthermore, if 
we wish to pre-compute inter-reflections independent of both light position and viewing direction, the 
use of a texture atlas is imperative. Similarly, if we have to blend impostors on surfaces, like in the 
caustic generation method using approximate ray tracing (see the Ray Tracing Effects chapter), it also 
has to be performed in the texture atlas domain. 

An important feature of textures is the possibility of filtering. While a texture atlas may not sample 
surface points very densely, bilinear interpolation of pre-computed values comes practically for free. 
Still, quality will depend on the resolution, and poor sampling may appear as texturing artifacts. 
However, similar effects appear for any algorithm that reuses stored data. 
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Figure 30. An atlas texture with triangle edges. The mesh is decomposed to triangle charts. 

A texture atlas has to ensure a unique mapping of texture coordinates to surface points. While some of 
the texture space may be empty, every surface point has to have unique texture coordinates. It is also 
desirable to avoid discontinuities. Generally, the texture atlas mapping for a triangular mesh will 
contain a number of flattened charts of adjacent triangles, separated by a few texels wide empty 
margin. The contours of these charts are the seams of the mapping: that is where adjacent surface 
points are mapped to distant coordinates. Seams are usually unavoidable without extremely distorting 
triangles. There are several approaches to generate atlas mappings with as few seams as possible or to 
find those seams that are visually least disturbing. While these approaches are very useful to reduce 
artifacts, it cannot always be assumed that the virtual world model an algorithm has to work on is 
practically seamlessly textured. 

2.7.1.2. Render to texture 

Using a texture atlas involves two basic steps. The first one is to render the triangles of the model onto 
the texture atlas, to invoke vertex and pixel shaders that compute illumination data and output it to 
atlas texels. This is the render-to-atlas operation, which is simply performed by issuing a draw call 
with the original vertex and index buffers of the mesh. In the vertex shader, however, the vertices are 
displaced to their respective texture atlas coordinates, transforming the triangles to texture space. 
Theoretically, the pixel shaders should be invoked for all valuable texels of the atlas, filling it with the 
desired data. Having computed the atlas, it can be accessed from the pixel shaders of later passes, 
typically addressed by texture coordinates interpolated between vertices. The problem this chapter 
addresses is how to ensure that these texture reads will always address a texel for with the render-to-
atlas has been performed and thus contains valid information. 

2.7.1.3. Triangle rasterization 

How to convert render primitives (points, line segments and polygons) to screen pixels effectively was 
exhaustively researched by pioneers of computer graphics. Variant algorithms to render smooth anti-
aliased edges, or to include pixels only touching the area of primitives were also invented. However, 
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only the most effective and clear-cut variant could make it to current incredibly fine-tuned graphics 
hardware. The issue of anti-aliasing is more effectively solved by the multi-sampling post-filtering 
approach. On the other hand, this specialization forces a need for workarounds when we need a 
different rasterization logic. 

 

Figure 31. Hardware supported triangle rasterization. Pixels marked with circles are not colored, 
even though they overlap with the triangle 

The general rule for rasterizing a triangle is to color those pixels, whose center is within the triangle 
(Figure 31). With adjacent triangles, this ensures there are no holes and no doubly colored pixels in the 
image. However, if we apply this rasterization rule when rendering to the texture atlas, there may be 
some texels whose center is not within the triangle, but they are overlapping with it. The texture 
coordinates in these areas will address a texel which was not considered by the rasterization, and 
therefore the pixel shader computing the value that should be there was not invoked. These texels will 
appear as non-initialized or black blocks or stripes near the seams of the texture atlas. These cases can 
be avoided by very careful texturing, if the seams are all horizontal or vertical in texture space, but 
they will always appear in the general case of slant-edged triangle mesh atlases. Furthermore, if the 
texture is read using linear filtering, these non-initialized values will influence and even larger area. 
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Figure 32. A texture atlas. Gray texels are rasterized by conventional rasterization. White texels 
should also be computed. 

A simple but neither effective nor accurate method is to filter the texture atlas, and copy valid 
neighbouring texel values to non-initialized ones. This approach is really easy to implement, but it 
needs a full-screen rendering of the texture atlas, invoking a moderately expensive pixel shader using a 
number of texture reads for every texel. The overhead may be critical for a real-time algorithm. 
Furthermore, it is impossible to plausibly decide which neighbour's value is actually valid for a texel 
without knowledge of the geometry. Usually the heuristics of choosing the maximum is applied to 
keep visual artifacts low. 

2.7.1.4. The render to texture algorithm 

Looking at the texture atlas, we can realize that we actually need to extend the contours of the charts 
of adjacent triangles. Instead of exchanging all the triangles with more complex extended polygons, 
we only need to rasterize a few line segments along the seams. In order to do this, we need to identify 
those edges of the model mesh which are duplicated and placed on seams, and find out how to offset 
the line segments to augment the triangles to cover all the pixels the triangle is overlapping with. 

A line segment is rasterized according to the principles set by the DDA or the Bresenham algorithms. 
Cases are separated depending on whether the line segment is closer to the vertical or the horizontal 
direction. Then, in every line or every column respectively, that pixel is colored the center of which is 
closest to the line (Figure 33). We always measure distances on the scan line or the pixel column, thus 
we can state that pixels whose center is within the half-a-pixel distance form the line will be colored. 
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Figure 33. Line segment rasterization The pixel whose center is nearest to the line is colored is every 
column of pixels. 

Fortunately, albeit not by coincidence, this produces the exact same pattern as the one that appears at 
the edge of a rasterized triangle. In order to extend the triangle by one pixel, we can simply draw a line 
next to it. This line has to cover those pixels, the center of which is not within the triangle, but is 
within the one pixel distance. As line rasterization will color the pixels within half-a-pixel distance to 
the line, we have to offset the edge exactly by half a pixel. Therefore, the vertices serving as the 
endpoints of the line segment can be derived from the original triangle vertices by offsetting their 
texture coordinates by an amount corresponding to half a pixel, in the positive or negative u or v 
direction, depending on the orientation of the edge (Figure 34). 

 

Figure 34. Line segment drawn to rasterize overlapping pixels along edge. 

It is possible that two consecutive edges along the contour of a chart have different orientations, and 
the pixels of offsetted edges do not cover the corner (Figure 35). To avoid missing these small areas, 
the edge should be extended by one pixel measured perpendicular to the offset direction at both ends. 
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Figure 35. Non-covered area may appear at corners where two differently aligned edges meet 
(above). Extending the edge line segment to cover corner pixels (below). 

Thus we acquire a supplemental set of geometry made up of line segments. Whenever rendering the 
original geometry, we can also render the supplemental geometry as a vertex buffer describing line 
primitives. As all vertex data are derived from the original triangle vertices, and the texture 
coordinates have been manipulated, there is no need to change the shaders. Neither the vertex shader 
nor the pixel shader will experience any difference from what happens when rendering the original 
triangles. 

2.7.1.5. Finding the seam edges 

In order to assemble the geometry of offsetted seam edges, we have to identify such edges in the mesh 
texture mapping. In mesh description file formats or data structures, seam vertices are already replaced 
by two identical vertices with different texture coordinates, referenced by different triangles. 
Adjacency of triangles is usually not stored. However, we may build an adjacency graph based on the 
index buffer, disregarding the fact that duplicated edges actually would connect adjacent triangles. 
What we get is exactly the adjacency graph of the mesh charts in the texture domain. For this graph it 
is easy to identify those triangles that miss a neighbour, and thus, the edges that are on the seams of 
the texture atlas. We also need the texture coordinates of the third vertex of the triangle, to be able to 
find the proper offset direction for the extra line segment. 

The program code assembling a vertex buffer of seam edges for a D3D mesh can be found in the Path 
Map tool, described in the following section. The method responsible is PathMapEffect:: 
RenderMesh::buildEdgeVertexBuffer(). When rendering to the texture atlas, not only 
the mesh, but the edges are also rendered. 

2.7.1.6. Results of the render to texture application 

The approach has been effective at eliminating artifacts, without any measurable performance impact. 
Even when the texture atlas is accessed using bilinear filtering, the undesired influence of black pixels 
in gaps between triangle charts has vanished. 
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Figure 36. Seam artifacts in the Ray Tracing Effects module, and a correct image rendered using the 
seam edge buffer. 

     

Figure 37. Seam artifacts in the Light Path Maps module, and a correct image rendered using the 
seam edge buffer. 

2.7.2. The role of the Path Map tool 

The Path Map standalone module implements the Light Path Map approach for indirect lighting, as 
was described previously in the GameTools technical documentation deliverable. Its purpose is to add 
realism to computer games by computing dynamically changing indirect illumination. It is an 
improvement over ambient lighting or static light maps. Not unlike light maps, global illumination 
computations are performed in a precomputing step, using ray casting and indirect photon mapping 
(the virtual light sources method). The contributions of virtual light samples are computed on the 
GPU, with depth mapping. However, instead of computing a single light map, multiple texture atlases 
(constituting the PRM) are generated for the scene objects, all corresponding to a cluster of indirect 
lighting samples. Then these atlases are combined according to actual lighting conditions. Weighting 
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factors depend on how much light actually arrives at the sample points used for PRM generation. This 
computation is also performed in a GPU pass. 

  

Figure 38. Marble chamber scene rendered in the Light Path Maps module. Entry points are also 
displayed in the image on the right. 

  

Figure 39. Escher steps scene rendered in the Light Path Maps module. Indirect shadows and color 
bleeding is observable. 

The final result will be a plausible rendering of indirect illumination. Indirect shadows and color 
bleeding effects will appear. Indirect illumination will change as the light sources move. However, this 
comes at the price of fetching data from all PRM texture panes (clusters of indirect illumination) 
instead of just fetching a light map color. This limits the number of panes we can use. The accuracy 
will depend on a number of factors: 

• First of all, the number of samples (entry points). Increasing this number will make 
preprocessing longer, but not influence rendering times. 

• Then, the number of PRM panes (independent entry point clusters). In the standalone 
implementation this number is 32, which provides pretty accurate, lighting dependant indirect 
illumination, but may not be affordable if the approach is combined with other effects. 
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Decreasing this number will still produce nice indirect illumination, although with less fidelity 
to the changes of actual lighting. 

• The resolution of the PRM atlas is of course important. In the program this is 256 x 256 for 
every pane, requiring 4 Mbytes of video RAM for every static object. As indirect illumination 
tends to be low frequency, this resolution is usually sufficient. However, large objects will 
have large texels, and should be avoided. Large objects like complete levels should be 
separated into smaller ones like rooms. This will also make it possible to use a large number 
of indirect illumination clusters, but only store and use some of them for individual objects. 

The program performs two tasks: compute the PRM, and use it to display the scene with indirect 
illumination. The PRM, along with the location of the sample points, is saved to files, and does not 
need to be computed every time. When this approach will be integrated into a game engine, only the 
final rendering must be implemented. This tool should be adapted to process the level description 
format used, and compute the PRM textures for the static geometry. The textures and sample point 
data should be associated with the levels and their entities, and applied in the game engine. 

2.7.3. Program structure of the path map tool 

2.7.3.1. Program resources 

The PathMap application is a DirectX program. It loads meshes for its scene from the .x file format. 
Class PathMapEffect manages all resources necessary to represent the scene entities, compute the 
PRMs and render to the screen. Shaders are contained in effect (.fx) files, which PathMap.fx 
referencing all the others using #include directives. As rendering the PRMs is a combined ray-
tracing and GPU rendering task, a representation of all meshes and entities that supports the ray 
intersection operation is also maintained. 

Therefore, PathMapEffect contains the following types of resources: 

Scene description: 

• materialTextures: a vector of material textures 

• renderMeshes: a vector of meshes 

o mesh: a D3D mesh 

o materials: an array of D3D materials of submeshes 

o textures: an array of references to the material textures of submeshes 

o rayTraceMesh: a raytraceable TriangleMesh 

o rayTraceMaterial: a material used for raytracing 

• entities: a vector of entities 

o renderMesh: a reference to a mesh 
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o modelWorldTransform, 
inverseTransposedModelWorldTransform: modeling transformations 

o rayTraceEntity: a raytraceable entity, referencing the associated mesh's 
TriangleMesh 

PRM: 

• bushStarters: a vector of entry points (Entry points are primary sample points on the 
surface. As they are the starting points of a bush of light paths, they will act as virtual light 
sources, just like any node of a light path. Just like all virtual light sources, they are referred to 
in the code as 'radions', or, being at the root of a radion bush, 'bush starters') 

• clusterLength: an array of cluster length (the vector of entry points is sorted so that it 
can be divided into cluster of samples near to each other. How long each cluster is, is given in 
this array.) 

• radionTexture: a texture containing entry point positions and surface normals 

• in every entity in the vector of entities (entities) 

o nearClusterIndices: an array of cluster indices (A large level geometry may 
require a higher number of clusters, but most of them will not influence a given 
object. This array contains the indices of those clusters, which should be computed 
and used for the illumination of this entity.) 

o prmTexture: a PRM texture (The PRM texture contains mini-lightmap atlases, 
tiled next to each other. These atlases (the PRM panes) correspond to those entry point 
clusters, which have been listed in the array of near cluster indices for this entity.) 

 

Figure 40. The first few tiles of a PRM texture. Illumination corresponding to clusters of entry points 
is stored in tiled atlases. 

Resources for PRM computation (Technique BushToAtlas, Depth): 

• in every mesh (renderMeshes) 

o a vertex buffer of line primitives ( Described in detail in the previous chapter 2.5.) 
This is a set of lines, that should be rendered along with the mesh when rendering to a 
vertex buffer. These are the edges along texture atlas seams, offset by half a pixel to 
assure valid values along texture atlas edges. However, care must be taken, because 
several pixels may be rendered to multiple times, which is a problem when using 
blending.) 
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• prmBlendingDepthStencilBuffer: a PRM-texture-sized stencil buffer (When 
rendering to the PRM atlas, we will use blending. We have to avoid rendering to the same 
pixel multiple times for the same virtual light source. We use the stencil buffer for this.) 

• depthMapTexture: a depth texture (When rendering the contribution of virtual light 
sources into PRM atlases, we need to accont for shadows. For every virtual light source, we 
will prepare a depth map, and use it when rendering its illumination. The same depth texture is 
reused for every light source.) 

Resources for indirect illumination rendering (Techniques ComputeWeights, Walk, Depth): 

• depthMapTexture: a depth texture (used for depth shadow mapping of direct 
illumination and weight computation) 

• weightsTexture: a weights texture (a render target to compute the form factor, or weight, 
corresponding to all entry points) 

• weights: a weights array (an array to hold the averaged weights of entry points in all 
clusters) 

2.7.3.2. Shader description 

The following techniques are used. All of them contains a single pass, with a unique vertex and pixel 
shader. They are defined in their respective effect files. 

Depth 

Renders the scene with the given transformation (modelToProjMatrix). Color is 
irrelevant. This technique is invoked for every entity, with appropriate model and camera 
settings to render a depth map. It is more robust to render back faces when rendering the depth 
map, to avoid z-fighting when determining shadows. 

BushToAtlas 

Renders the contribution of a single virtual light source (Radion, described by lightPos, 
lightDir, lightPower) into a texture atlas. This technique is invoked with a tile of a 
PRM set as the render target and viewport. Blending is used to add up the contributions of 
radions that belong to the same cluster in a tile of the entity's PRM. Comparison with a depth 
map is used to determine shadows. The point-to-point form factor between the virtual light 
source and the shaded fragment is modified if the shaded fragment is near to the plane of the 
radion. This avoids typical virtual light source artifacts like spikes and dark corner edges. The 
basic assumption is that the virtual light source is on a plane. Form factors near this plane are 
(distance squared less than cutNearness2), are considered inaccurate because of 
insufficient sampling. cutNearness2 should be set according to the sampling probability. 
Any shaded fragment that is considered too close will be projected onto the cutting plane 
perpendicular to the surface normal at the virtual light source. This ensures that a planar 
surface perpendicular to the surface of the virtual light source will receive uniform 
illumination near the corner. 
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ComputeWeights 

Takes a texture containing an array of entry point positions and surface normals as input 
(radionSamper), and computes the weights corresponding to every individual entry point 
into a target texture (weightsTexture). Weights are actually the incoming illuminations of 
the entry points: they involve finding the visibility  and the form factor. Visibility is 
determined using a depth map (depthMapSampler), which should be previously rendered 
using technique Depth. The form factor is computed for a spotlight (lightPos, lightDir, 
lightPower). When the direct illumination of the scene will be computed in technique 
Walk, the same spotlight characteristics should be used. 

Walk 

The final rendering technique, named as such because it is used for walkthroughs of the scene 
when precomputing is already done. It computes indirect and direct lighting for a spotlight 
(lightPos, lightDir, lightPower). For direct lighting shadows, a depth map is used 
(depthMapSampler, the same depth map that was used to find entry point visibilities for 
weight computation.) For indirect lighting, tiled PRM panes from the texture assigned to 
filteredAtlasSampler are combined, according to the weights specified in uniform 
parameter array weightsa. The weight should be the average weight of those entry points, 
whose contribution has been rendered to the PRM pane. Individual weights are computed by 
technique ComputeWeights, averages must be computed on the CPU. 

2.7.3.3. Data flow 

2.7.3.3.1. Preprocessing 
For the indirect lighting of the scene, we need the PRM textures and the array of entry points along 
with clustering information. These computations are carried out in method 
PathMapEffect::precompute(). It is invoked from the constructor, after setting up the scene 
in renderMeshes and entities. Precomputation has the following steps: 

• Generate entry points on the surfaces using method sampleSurfaceRadion. Entry points 
will be stored as Radion instances in bushStarters. 

• Entry points are clustered according to their position and orientation. 

o Initial clustering is performed by method clusterRadions, building a balanced 
kd-tree, forming uniformly sized clusters. 

o More refined clustering is done in clusterRadionsKMeans, where the initial 
clusters are iteratively reclustered. Empty clusters are illegal, if any cluster would be 
empty, half of the contents of another cluster is moved to it. 

• For every entity, the cluster relevant for its illumination are found, and stored in 
Entity::nearClusterIndices. 

• For all entry points in a cluster, a bush of virtual light sources is generated using ray shooting 
(shootRadionBush() invokes sampleShootingDiffuseDirection() and 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 77 / 112

KDTree::traverse()). Then, for all entities in vector entities, their contribution is 
added to the PRM texture Entity::prmTexture in Entity::renderPRM(). In that 
method: 

o For the actual cluster, the corresponding tile in the PRM texture is found using the 
nearClusterIndices array. If it is not listed, nothing is rendered. 

o For all virtual light sources in the cluster (passed in parameter bushRadions): 

 A depth map is rendered using technique Depth, into depth buffer 
depthMap. 

 prmBlendingDepthStencilBuffer is set as the stencil buffer. For one 
light source, one pixel is added to only once. 

 Using blending, the contribution of the virtual light source, respecting 
shadows as per the depth map, is rendered to the appropriate PRM tile with 
technique BushToAtlas. For conservative atlas rendering, 
RenderMesh::edgeVertexBuffer has to be drawn besides 
RenderMesh::mesh. 

After these steps, the PRM textures for all entities are ready. All precomputed data might be saved to 
disk (savePathMaps()) or used instantly. With the appropriate weighting the RPM textures can be 
used to render indirect illumination. Weighting factors are computed at final rendering time, based on 
current lighting. 

2.7.3.3.2. Final rendering 
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Figure 41. Data flow between shaders during the final rendering (walkthrough) phase. Rounded 
rectangles correspond to shader techniques Depth, ComputeWeights, and Walk. 
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During the final walkthrough, we have to find weights based on the light position, and entry point 
visibility, and then use them to render objects combining texture atlases in PRMs. This functionality is 
provided in method PathMapEffect::renderWithPRM(). After computing the weights with 
technique ComputeWeights, the result texture weightsTexture has to be read in system memory 
back using sysMemWeightsTexture. The weights are averaged in every cluster, and cluster 
weights are passed to final rendering pass Walk in shader parameter weightsa. Both for weights 
computation and direct illumination computation in the final rendering, a depth map 
(depthTexture) has to prepared for the light source in advance. 

2.7.4. Using the standalone Path Map tool 

2.7.4.1. Compilation 

The PathMap program can be compiled in two modes, set by the compiler directive #define 
GENERATE_PATH_MAPS. If it is defined, the tool will compute the PRM textures corresponding to 
the scene entities, and the entryPoints, and save them in the prm subfolder. Then it will launch the 
realtime visualization of the scene with the computed PRM. If GENERATE_PATH_MAPS is not 
defined, however, the PRM data will not be computed, but restored from the prm folder. There are a 
few constants that can be set in file PathMapEffect.h to customize PRM quality. NRADIONS must be a 
multiple of 4096, and defines the number of entry points. Increasing this will increase image quality at 
the cost of more preprocessing, but without effecting final rendering frame rates. 
NCLUSTERSPERENTITY  defines how many of the most significant clusters will be computed and 
used for a single entity. It must be a multiple of 32, though anything more than 32 is practically not 
feasible. NCLUSTERS defines the number of clusters for the complete scene. This number should be 
higher than 32. The entry points will be divided into this number of clusters. However, only 
NCLUSTERSPERENTITY clusters can be considered when shading an entity. Therefore, if there are 
too many clusters within the scene, there may be some significant clusters omitted. For a large level, 
NCLUSTERS should be set so that NCLUSTERSPERENTITY clusters approximately cover a visually 
confined segment, like a room. DEPTHMAPRES sets depth map resolution. 

2.7.4.2. Runtime controls 

There is a number of on-screen controls available to navigate the scene and adjust lighting. Use the 
mouse to look around, the A, S, D, W keys to move. If the “Move light” box is checked, the same 
controls move the light source. If “Look from light” is checked, the scene is rendered as seen from the 
light source instead of the camera. It is convenient to check both boxes when positioning the light 
source. Selecting the “Entry points” checkbox will add small squares to the scene to indicate entry 
points. Colors indicate weights. The clustering also becomes visible. The “Turbo” checkbox toggles 
camera movement speed. Pressing the “Tab” button will display a PRM texture, or revert to scene 
rendering. The technique ShowTex may be modified to display other internal textures for illustration. 
The slider “Tone scale” allows scaling the resulting image, which can also be viewed as changing the 
light source intensity. 
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Figure 42. Screen controls in the Path Map standalone tool. 
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2.8. IMAGE BASED LIGHTING 

2.8.1. Role of the module 

The image based lighting application implements the environment map lighting algorithm with self 
shadows as it was described in the technical documentation. Its main purpose is to render outdoor 
scenes where lighting from the environment is widely distributed. The environment map is 
decomposed into directional samples using Delaunay triangulation and Lloyd’s relaxation. Then the 
contribution of these directional light samples is rendered to the screen using blending. Depth maps 
are used for accurate shadows, including self-shadowing. 

   

Figure 43. Scenes rendered with image based lighting, using the Uffizi environment. Multiple objects 
cast shadows on each other, and environment lighting enters a room through windows. 

2.8.2. Program structure 

Rendering the scene with the lighting due to the directional light samples is implemented in class 
IBLEffect. An IBLEffect instance is created whenever a new D3D device context is initialized, 
and destroyed if the context is lost. Some callbacks, most importantly the OnFrameRender callback, 
invoke IBLEffect methods. IBLEffect also manages virtual world objects. When it is 
constructed, it loads meshes and textures from the "media" subfolder and the environment map form 
the "hdr" subfolder. 

The most important resources encapsulated by the IBLEffect class are the following: 

• LPDIRECT3DCUBETEXTURE9 environmentMap is the environment cube map texture, 
loaded from a .dds file using D3DXCreateCubeTextureFromFile 

• HdriSampler* hdriSampler is used to generate directional light samples when 
IBLEffect is instantiated. 

• LPDIRECT3DTEXTURE9 lightSampleDepthTextures[8] are 8 pre-allocated 
depth textures. 8 samples will be processed in one pass, therefore 8 maps are needed. They are 
created in IBLEffect::IBLEffect by: 
device->CreateTexture(depthMapResolution, depthMapResolution, 1, 
D3DUSAGE_RENDERTARGET, D3DFMT_A16B16G16R16F, D3DPOOL_DEFAULT, 
&lightSampleDepthTextures[iDepthMap], NULL); 
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We need to set the usage to D3DUSAGE_RENDERTARGET because we will render the depth 
maps into the textures using a shader. D3DFMT_A16B16G16R16F is used because it allows 
linear filtering, and we can store the surface normal along with the depth. This will allow us to 
get artifact-free results from lower resolution depth maps. 

2.8.3. Shader description 

The functionality that comprises the image based lighting algorithm is in method 
IBLEffect::render(). Using the LPDIRECT3DDEVICE9 device and LPD3DXEFFECT 
effect references stored at construction, this method assigns resources and values to effect file 
variables, which are associated with uniform shader parameter registers and texturing stages by the 
effect framework. Non-uniform parameters like vertex position, normal and texture coordinates are 
always encoded in vertex streams. Vertex streams for rendering primarily come from the meshes 
loaded at construction time. These meshes are therefore converted to the desired vertex format in the 
IBLEffect::loadMesh(LPCWSTR) method by invoking IBLEffect::RenderMesh:: 
setVertexFormat(DWORD, LPDIRECT3DDEVICE9), which replaces the mesh with a clone 
having appropriate vertex format, created using CloneMeshFVF. When we render a full-screen quad, 
the Delaunay mesh or the light samples, then vertex data is assembled in the code, and sent to the 
hardware using DrawPrimitive calls. These tasks are implemented in: 

• IBLEffect::renderFullScreen() 

• VoronoiGenerator::d3dDrawDelaunay(LPDIRECT3DDEVICE9 device) 

• hdriSampler::d3dDrawPowers(LPDIRECT3DDEVICE9 device). 

Rendering a scene with possibly several hundred lights and on-the-fly generated depths maps for all of 
them requires a large number off passes, with different render targets, device settings, shader programs 
and parameters. The skeleton of the algorithm is the following: 

1. Lay down depth. We render the scene geometry, with the camera transformation, with Z 
buffering enabled, but color writes disabled. Further passes rendering to the frame buffer will 
be able to use early Z tests to discard pixels that will not be visible. (Technique 
renderBlack in file iblFinal.fx.)  

2. Take a batch of directional light samples and compute their depth maps. To do this, we have to 
loop through these samples, construct their world-to-texture transformations, and render the 
scene to the depth map textures set as render targets. (Technique renderDepth in file 
iblDepth.fx.) We also need to set a depth-stencil buffer which has the same dimensions as the 
depth maps. It is also important that the contents of the frame buffers depth-stencil must not be 
discarded. Hence is the callback in ImageBasedLighting.cpp necessary: 
bool CALLBACK ModifyDeviceSettings( 
DXUTDeviceSettings* pDeviceSettings, const D3DCAPS9* pCaps, void* pUserContext ) { 
    pDeviceSettings->pp.Flags &= 
    ~D3DPRESENTFLAG_DISCARD_DEPTHSTENCIL; 
    return true; 
} 

3. Render the contribution of the light samples in the current batch to the frame buffer. 
(Techniques renderFinal, renderFinalPerPixelTransform, 
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renderFinalShiny in file iblFinal.fx.) We want to add contributions of batches in 
the frame buffer, and we use blending to accomplish that. It is now important that we have laid 
down depth in step 1., as only visibly surfaces will be rendered. 

4. If there are light samples not yet processed, go back to step 2. 

Render the environment cube. (Technique renderBackground in file ibl.fx.) This is done by 
rendering a full-screen quad at projected Z depth of (1 - ε). 

The following subsections elaborate on the most complicated steps and explain the shaders used. 

2.8.3.1. Rendering the depth maps 

A depth map is a texture that contains depth values as seen from a light source. Transforming any 
world point into the texture space of the depth map, a comparison of the Z value and the value stored 
in the map answers the question, whether there is a surface occluding the light source. For a point-like 
light sources the transformation is the generic perspective projection, and for directional lights it is a 
simple orthogonal projection. 

Depth mapping is directly supported in graphics hardware. A texture may be created with the usage 
D3DUSAGE_DEPTHSTENCIL, allowing it to be set as a depth-stencil surface. Reading this map 
with a world point transformed into texture space only returns 0 or 1 depending on the result of the 
comparison. assigning linear filtering to the texture only interpolates these values, not the depth stored 
in the map. 

In our application, we need a lot of rapidly generated depth maps, but any of them will only contribute 
to a fraction of the total illumination, so accurate shadow silhouettes are not important. On the other 
hand, we want to avoid periodic artifacts due to low resolution. Depth maps have a finite resolution, 
both in terms of dimensions and bit depth. If the comparison of performed on nearest-neighbor-
sampled depth values, then world points on slant surfaces will appear to be behind the depth map Z 
values. This is generally handled by subtracting a constant bias from Z values of points checked for 
illumination. However, if the depth map is small, this bias needs to be large to avoid artifacts (they 
appear as jigsaw-edged stripes on completely smooth surfaces). A large bias means that light may leak 
through thin objects, with very disturbing results. Much of these concerns are eliminated if depth 
values are interpolated. In case of an orthogonal projection, depth values within a triangle will change 
linearly, providing perfect results. However, for geometries that are concave as seen from the light, 
linear interpolation can also cause undesirable shadows. We can help this if we take the orientation of 
the surfaces into account. If we save the surface normals along with the depth values to the depth map, 
we can check whether it is oriented similarly to shaded the surface point. If it is, then it is probably on 
the same surface, so a large bias to eliminate artifacts is justified. If it is not, then it is certainly not on 
the same surface, and the bias should be small. Linear interpolation of depth values and storing 
normals in depth maps is not supported by hardware depth mapping, so we use conventional floating 
point render target textures to accomplish this goal. 

Theoretically, we have to use the same transformation matrix when rendering to the depth map, and 
when reading the depth value for a world point to be shaded. However, we have use the screen 
coordinates when rendering, and texture coordinates when addressing the texture. This means we have 
to append the screen-to-texture matrix to the depth map's world-to-screen matrix after rendering the 
depth maps. 
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Note that both in the program code and in the shaders transformation matrices are always named 
according to which transformations of the graphics pipeline they include. The depth map's world-to-
depth map transformations are therefore referred to as DepthViewProj in shaders and 
depthViewProjTransform in C++ code. Thus, this transformation includes the view (world-to-
camera) and projection (camera-to-screen, orthographic) matrices. The matrix which transforms the 
world points to texture space so that the coordinates can be used to address the depth map is called 
DepthViewProjTex and depthViewProjTexTransforms, respectively. 

The matrix has to be constructed so that all the geometry is visible on the depth map. When loading 
meshes, we compute their bounding spheres using D3DXComputeBoundingSphere. Then we 
compute the bounding enclosing sphere of all model-transformed bounding spheres in method 
IBLEffect::buildDepthViewProjTransform. Then the camera is set up so that it looks 
towards the center of the sphere, from the surface of the sphere, from the direction of the light sample. 
The projection matrix is then a simple orthographic projection of the cube with twice-the-radius length 
edges to unit screen space.  
    D3DXVECTOR3 from = center + lightDirection * radius; 
    D3DXVECTOR3 at = center; 
    D3DXVECTOR3 up; 
    //build a view matrix to look at the center from the given direction, from the sphere 
surface 
    D3DXMatrixLookAtLH(&depthViewProjTransform, &from, &at, &up); 
    D3DXMATRIX projMatrix; 
    //transform the sphere into [-1 -- 1, -1 -- 1, 0 -- 1] 
    D3DXMatrixOrthoLH( &projMatrix, radius * 2.0f, radius * 2.0f, 0.001f, 2.0f * radius); 
    D3DXMatrixMultiply( &depthViewProjTransform, &depthViewProjTransform, &projMatrix); 

The shader rendering the depth-and-normal textures is then very simple. 
struct VS_INPUT_DEPTH { 
    float4  Position    : POSITION; 
    float3  Normal      : NORMAL; 
}; 
 
struct VS_OUTPUT_DEPTH { 
    float4  Position    : POSITION; 
    float3  Normal      : NORMAL; 
    float1  Depth       : TEXCOORD0; 
}; 
 
VS_OUTPUT_DEPTH 
    DepthVS(VS_INPUT_DEPTH IN) 
{ 
    VS_OUTPUT_DEPTH OUT = (VS_OUTPUT_DEPTH)0; 
    OUT.Position = mul(IN.Position, World); 
    OUT.Position = mul(OUT.Position, DepthViewProj); 
    OUT.Normal = mul(float4(IN.Normal.xyz, 0.0), WorldIT); 
    OUT.Depth = OUT.Position.z; 
    return OUT; 
} 
 
float4 
    DepthPS(VS_OUTPUT_DEPTH IN) : COLOR0 
{ 
    return float4(normalize(IN.Normal), IN.Depth); 
} 
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2.8.3.2. Rendering illumination 

In the effect files, the techniques to render the scene geometry with the contribution of 8 light samples 
using the depth maps are called renderFinal, with postfixes for variants. They are the final step of 
the algorithm in the sense that they render to the screen using the previously computed depth maps. 
There are four variants: 

• renderFinal is the fastest method. All 8 depth map coordinates are computed in the vertex 
shader, and interpolated by the hardware. This is efficient as there are usually fewer vertices 
then pixels, and the method is pixel-shader intensive. However, all possible registers are 
occupied, so if we wanted to add further pixel shader input data, e.g. non-constant material 
properties, we would have to decrease the number of light samples processed in one pass. 

• renderFinalPerPixelTransform remedies this situation by passing the world space 
coordinates only, and depth map texture addresses are computed in the pixel shader. This 
should be slightly slower, but leaving a lot of registers free. renderFinalShiny is the 
same as renderFinalPerPixelTransform, but it adds a Phong component to the 
BRDF model. The shininess and albedo of this component can be set using the application 
GUI. 

• renderFinalShinyRadius is a complicated method to smear specular highlights that 
might be disturbing when there are few samples and very shiny materials. With one hundred 
or more samples it is less of an issue, and the technique is only there for the sake of 
completeness. It is not available for the user interface. 

As the techniques are very similar, let us examine the most complete renderFinalShiny. The 
vertex shader receives the raw mesh vertex: the vertex position and normal in model space, and the 
associated texture coordinate. It has to output the position transformed to screen coordinates, the 
position, normal and ideal reflection vectors in world space, and the unaltered texture coordinates. 
Uniform variables are camera position EyePosition, the model-to-world transform World, its 
inverse transposed WorldIT, and the current camera's world-to-screen ViewProj matrix. The 
vertex shader simply uses the matrices to transform input data to the appropriate coordinate systems. 
OUT.Reflect is the reflected eye direction vector. Note we have to use OUT.Normal, the world-
space surface normal vector for the reflection computation. 
float3   EyePosition; 
float4x4 World; 
float4x4 WorldIT; 
float4x4 ViewProj; 
 
struct VS_INPUT_FINAL_SHINY { 
    float4 Position         : POSITION; 
    float3 Normal           : NORMAL; 
    float2 TexCoord         : TEXCOORD0; 
}; 
 
struct VS_OUTPUT_FINAL_SHINY { 
    float4 Position         : POSITION; 
    float3 Normal           : NORMAL; 
    float2 TexCoord         : TEXCOORD0; 
    float4 WorldPosition    : TEXCOORD1; 
    float3 Reflect          : TEXCOORD2; 
}; 
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VS_OUTPUT_FINAL_SHINY 
    FinalShinyVS(VS_INPUT_FINAL_SHINY IN) 
{ 
    VS_OUTPUT_FINAL_SHINY OUT = (VS_OUTPUT_FINAL_SHINY)0; 
 
    OUT.WorldPosition   = mul( IN.Position,                 World); 
    OUT.Position        = mul( OUT.WorldPosition,           ViewProj); 
    OUT.Normal          = mul( float4(IN.Normal.xyz, 0.0),  WorldIT); 
    OUT.TexCoord        = IN.TexCoord; 
 
    float3 eyeDir = normalize(EyePosition.xyz - OUT.Position.xyz); 
    OUT.Reflect = reflect(eyeDir, OUT.Normal); 
    return OUT; 
} 

The pixel shader receives the interpolated vertex shader output. It has to have access to all the light 
sample information, including the depth map textures, the DepthViewProjTex transformation 
matrices, light sample directions and powers. It also needs to access surface material properties 
encoded in the brdf texture brdfMap and variables ShinyKS and ShinyExponent. 
texture brdfMap; 
sampler2D BrdfMapSampler =  sampler_state{ 
        texture = < brdfMap >; 
        MinFilter = LINEAR; 
        MagFilter = LINEAR; 
        MipFilter = None; 
        AddressU  = Wrap; 
        AddressV  = Wrap; 
        }; 
 
float ShinyExponent; 
float ShinyKs; 
 
float4x4    DepthViewProjTex[8]; 
float3      LightDir[8]; 
float3      LightPower[8]; 
 
//There is no such thing as a texture array. 
//We use a macro to define 8 textures and samplers. 
 
#define DECLARE_DEPTH_MAP_WITH_SAMPLER(index)   \ 
    texture depthMap##index ;                   \ 
    sampler2D DepthMapSampler##index =  sampler_state{  \ 
            texture = < depthMap##index >;      \ 
            MinFilter = LINEAR;                 \ 
            MagFilter = LINEAR;                 \ 
            MipFilter = None;                   \ 
            AddressU  = Clamp;                  \ 
            AddressV  = Clamp;                  \ 
            }; 
 
DECLARE_DEPTH_MAP_WITH_SAMPLER(0) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(1) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(2) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(3) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(4) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(5) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(6) 
DECLARE_DEPTH_MAP_WITH_SAMPLER(7) 
 

Unfortunately, we cannot use a loop to process the 8 samples, because we cannot access our 8 textures 
using an index. Instead of typing the same for all eight of them, we use a macro. In the pixel shader, 
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we first normalize incoming Normal and Reflection vectors, then define the variables used for 
lighting. 

We use variable rcolor to sum the contributions of the eight samples. DepthTexCoordPos will 
be the position transformed to the depth map texture space, which can be used to address the texture. 
cosTheta is NL, cosPsi is RL in the usual notation N is the normal, L is the light direction, R is 
the ideal reflected direction of the eye direction.) In the macro, we first compute NL. If it is not facing 
the light, then we compute depth map coordinates and read the depth map for an occluding depth and 
surface normal value. We compare the depth values, allowing a larger bias for similarly aligned 
(probably identical) surface elements. If the surface is visible form the light, we compute RLn for the 
Phong component. Finally, we multiply by the light sample's power. Before we return the sum 
accumulated in rcolor, we modulate the color with the value read from the material texture 
brdfMap. 
 
float4 
    FinalShinyPS(VS_OUTPUT_FINAL_SHINY IN) : COLOR 
{ 
    IN.Normal = normalize(IN.Normal); 
    IN.Reflect = normalize(IN.Reflect); 
    float3 rcolor = 0; 
    float3 DepthTexCoordPos; 
    float cosTheta; 
    float cosPsi; 
    float4 mapNormalAndDepth; 
 
#define COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY( iLight )    \ 
        cosTheta = dot(LightDir[ iLight ], IN.Normal);  \ 
        if(cosTheta > 0.0)  \ 
        {   \ 
            DepthTexCoordPos = mul(IN.WorldPosition, DepthViewProjTex[ iLight ]);   \ 
            mapNormalAndDepth = tex2D( DepthMapSampler##iLight , DepthTexCoordPos.xy);  \ 
            if( DepthTexCoordPos.z - 0.01 * dot(normalize(mapNormalAndDepth.xyz), IN.Normal) < 
mapNormalAndDepth.w )    \ 
            {   \ 
                float as = 0.0; \ 
                cosPsi = -dot(IN.Reflect, LightDir[ iLight ]);  \ 
                if(cosPsi > 0.0)    \ 
                {   \ 
                        as = pow(cosPsi, ShinyExponent);    \ 
                }   \ 
                rcolor +=  (cosTheta + as * ShinyKs) * LightPower[ iLight ]; \ 
            }   \ 
        } 
 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(0) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(1) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(2) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(3) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(4) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(5) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(6) 
    COMPUTE_LIGHT_SAMPLE_CONTRIB_SHINY(7) 
 
    return float4(ToneScale * rcolor * tex2D(BrdfMapSampler, IN.TexCoord).rgb, 1.0); 
} 
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2.8.4. Using the standalone Image Based Lighting module 

 

Figure 44. Screen controls in the Image Based Lighting standalone module. 

The A, W, S, D buttons and the mouse can be used to navigate the scene by moving the camera. The 
following options are available: 

• The Regenerate button will re-build the scene, and re-compute the directional samples. It is 
required if the scene is changed by adding a second model, or any of the resources (depth map, 
directional samples) must to be updated. 

• Second model shows a second entity based on the loaded mesh. It can be observed how objects 
cast shadows on each other. You need to regenerate the scene for this change to take effect. 

• Num of samples is a slider to set how many directional samples should be used. You need to 
regenerate the scene for this change to take effect. 

• Depth map size sets the resolution of the depth map. You need to regenerate the scene for this 
change to take effect. 

• Show Delaunay & lights toggles whether the Delaunay decomposition of the environment and 
the directional samples are displayed. 

• Tone scale set scene light intensity. 

• Phong shininess and Phong albedo let you set the material properties of the models. 

• Model rotation sets the angular velocity of the primary model’s rotation. 

• Tab can be used to switch between rendering modes. 
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2.9. HIERARCHICAL RAY ENGINE 

2.9.1. The role of the module 

CPU-based acceleration schemes are spatial object hierarchies. For a ray, they try to exclude as many 
objects as possible from intersection testing. This cannot be done in the ray engine architecture, as it 
follows the per primitive processing scheme instead of the per ray philosophy. Therefore, we also have 
to apply an acceleration hierarchy the other way round, not on the objects, but on the rays. 

In typical applications, realtime ray casting augments scan conversion image synthesis where recursive 
ray tracing from the eye point or from a light sample point is necessary. In both scenarios, the primary 
ray impact points are determined by rendering the scene from either the eye or the light. As nearby 
rays hit similar surfaces, it can be assumed that reflected or refracted rays may also travel in similar 
directions, albeit with more and more deviation on multiple iterations. If we are able to compute 
enclosing objects for groups of nearby rays, it may be possible to exclude all rays within a group based 
on a single test against the primitive being processed. This approach allows for an acceleration of the 
ray engine algorithm, making its use feasible in realtime environments. 

The Illumination Workpackage includes modules addressing ray tracing effect generation, most 
notably the Ray Trace Effects module itself. The Indirect Illumination Gathering module extends on 
its capabilities, and the OGRE Illumination Module hosts it in the game engine. However, these 
modules use approximate methods, suitable for a game environment, but prone to artifacts for difficult 
geometries. The hierarchical ray engine performs accurate ray tracing, and it could work with ray 
tracing primitives other than triangles. 

In the original ray engine, we store all the rays to be traced in a texture. Then, all primitives are 
rendered as full-texture quads, and pixel shaders compute ray-primitive intersections. In the 
hierarchical version, we find a way not to render it on the entire screen as a quad, but invoke the pixel 
shaders only where an intersection is possible. The solution is to split the render target into tiles, 
render a set of tiles (DirectX point primitives) instead of a full screen quad, but make a decision for 
every tile beforehand whether it should be rendered at all. This way we utilize vertex shaders, while 
pixel shader load is significantly decreased. 

2.9.2. Program structure 

The standalone ray engine module can be found in folder HierRayEngine. It is a DirectX application 
that displays a scene of refractive objects in an environment defined by a cube map. Shaders can be 
found in the effect file rayEngine.fx. 

2.9.2.1. Program resources 

The class that contains the main functionality is the HREEffect class. It encapsulates the resources 
and operations necessary to render scenes with recursive ray tracing of refractive objects. This 
includes a scene entity and mesh structure similar to the one described for the Light Path Maps 
module. For every mesh, a ray engine representation (a buffer of vertices encoding primitives) is 
maintained. Furthermore, textures storing ray information and various intersection test output buffers 
are required. 
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Therefore, HREEffect contains the following types of resources: 

Scene description: 

• meshes: a vector of meshes 

o mesh: a D3D mesh 

o materials: an array of D3D materials of submeshes 

o textures: an array of references to the material textures of submeshes 

o primitiveVertexBuffer: ray engine representation of the mesh (list of D3D 
point primitives with a triangle encoded in each) The vertex data describing a triangle 
primitive is composed as: 

 position: enclosing sphere center and radius 

 normal: the normal and offset of the triangle’s plane 

 texture: 0-2 pre-processed triangle vertex position data for fast intersection 
computation 

 further texture registers: normals at the triangle’s vertices 

 further texture registers: texture coordinates at the triangle’s 
vertices 

• entities: a vector of entities 

o mesh: a reference to a mesh 

o modelWorldTransform, inverseTransposedModelWorldTransform: 
modeling transformations 

Ray buffers: 

• rayOriginTableTexture, rayDirTableTexture: textures containing a two-
dimensional array of rays to be traced. Rays in nearby pixels will be considered likely to be 
coherent. Both textures have four channels, three of which contain the 3D coordinates and 
direction vector for the ray that belongs to the texel. The fourth channel in the directions 
texture encodes a color modulation associated with the ray. 

• rayOriginTableTexture2, rayDirTableTexture2: render target textures to hold 
refracted rays, as intersection results. These results are then copied back to the ray origin and 
direction textures for the next iteration. 

• conePeakTexture, coneDirTexture: render target textures containing enclosig cone 
data for tiles of the ray textures. Every texel in the cone textures corresponds to a tile. 
conePeakTexture contains the 3D apex coordinates, coneDirTexture contains the 3D 
direction vector and the cosine of the opening angle. These textures must always be computed 
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from the textures describing rays to be traces with the ComputeCones technique. Then they are 
used by the vertex shader of the intersection shader RayCast. 

• conePeakTextureMem, coneDirTextureMem: System-memory copies of the cone 
data textures. As these textures are small, they can be read into system memory fast, and then 
their contents passed to the RayCast vertex shader as uniform parameters. This way there is no 
need to perform texture fetches in the vertex shader. 

• depthSurface: The depth and stencil buffer surface for rendering refracted rays, for both 
RenderPrimaryRayArray and RayCast techniques. The depth test ensures that always the 
nearest intersection is stored. The stencil buffer is used to exclude those pixels where there is 
no ray to be traced, because the ray path corresponding to the texel has already terminated. 

• environmentCubeTexture: Environment texture loaded from a file 
(media/uffizi_lowrange.dds). It is used in shader technique Background to fetch colors 
corresponding to eye rays, or refracted rays, where a refractive object is visible. 

2.9.2.2. Rendering a scene 

To render a scene of refractive objects, the following passes are required: 

• Clear the stencil buffer in depthSurface indicating which ray paths have already 
terminated. 

• The “current stencil bit” is the LSB of the stencil buffer. 

• Render the refractive objects to the ray textures, with technique RenderPrimaryRayArray. The 
output for every surface fragment will be the fragment position and the direction of the 
refracted eye ray, in world coordinates. Z-buffering is required. The current stencil bit is set 
for a pixel if any object was rendered. 

• For a number of iterations, repeat: 

o The “actual stencil bit” is shifted towards the MSB. 

o Using shader ComputeCones, render the cone data to the cone textures. Ray textures 
containing the latest rays to be traced are used as input. Then the render targets are 
read back to system memory.  

o Render the intersections to the duplicates of the ray textures. 

 The ray textures are inputs as textures. The information from cone textures is 
provided as uniform parameter input. 

 Depth must be cleared. 

 For every tile of the render target: 

• The vertex buffers containing the refracted objects encoded into D3D 
point primitives are rendered using technique RayCast. Cone data for 
the tile is provided as a uniform parameter. 
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• For every vertex (encoding a ray-casting triangle), the vertex shader 
checks if there is an intersection between the cone and the enclosing 
sphere of the triangle. If there is no intersection, it outputs a position 
which assures the point is clipped away and no pixel shader is 
invoked. Else, triangle data is passed down to the pixel shader. 

• If the previous stencil bit is not set, the stencil test will discard the 
pixel shader result. (Or, with early stencil test, it preempts it.) 

• For every pixel, the ray data is read from the ray textures. The ray-
triangle intersection is computed. If there is an intersection, the 
refracted ray is computed. The output is the refracted ray data. The 
color of the object is blended with the current color modulation of the 
ray path (fourth channel of the direction texture.) Depth output is the 
intersection distance. The current stencil bit is set if any intersection 
was found. 

• Late depth testing discards the result if a nearer intersection has 
already been found. 

o In texels where the actual stencil bit is set (there was a valid result), the results are 
copied back to the “rays to be traced” textures using technique CopyBack. 

• Now the ray textures contain the refracted rays after all the iterations. Where no object was 
visible, we have a zero value, so we have to use the original eye ray. Where the ray paths has 
terminated, we have the final ray exiting the scene towards the environment. Rendering a full 
screen quad to the screen, the directions of these exiting rays are used to address the cube map 
environment texture in environmentCubeTexture. Incoming radiances are modulated 
according to the color value stored in the directions texture. This produces the final image. 
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Figure 45. Block diagram of the hierarchical ray engine. 

2.9.2.3. Shader description 

RenderPrimaryRayArray 

Simply renders objects, transformed according to the current modeling, view and perspective 
transformation. Outputs refracted ray origin and direction data to its two render target textures. 

ComputeCones 

Enclosing infinite cones of rays within a tile are described by an origin (first render target: 
conePeakTexture), a direction and an opening angle (second render target: 
coneDirTexture). The infinite enclosing cones are constructed using this technique. The 
algorithm in the pixel shader proceeds as follows:  

1) Start with the zero angle enclosing cone of the first ray (fetched from the ray textures). 

2) For each ray (fetched from the ray textures) 

a) Check if the direction of the ray lies within the solid angle covered by the cone, as seen 
from its apex. If it does not, extend the cone to include both the original solid angle and 
the new direction. 

b) Check if the origin of the ray is within the area enclosed by the cone. If it is not, 
translate the cone so that it includes both the original cone and the origin of the ray. 
The new cone should touch both the origin of the ray and the original cone, along one 
of its generator lines. 
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RayCast 

This technique computes intersections for an array of rays, and return refracted rays in its two 
(origin and direction) render targets. Primitive data is taken from the vertex buffer, through the 
incoming non-uniform registers. The technique is invoked for a tile, by rendering a buffer of 
point primitives covering pixels of the tile. The vertex buffer does not contain the position of 
the tile; it is passed as the uniform parameter tilePos. The POSITON vertex buffer slot is 
used to pass the enclosing sphere data to the vertex shader. The vertex shader transforms the 
cone to modeling space, and performs the sphere-cone intersection test. If the test fails, a 
position not in the unit cube is output in the POSITON output register. Else, tilePos is 
output in POSITION. In the pixel shader, the ray origin and direction are fetched from the 
textures. They are transformed to modeling space. Ray-triangle intersection is performed by 
computing the barycentric coordinates of the ray-plane hit point. There is no hit, if any of the 
coordinates is negative. Normals are interpolated using the barycentric weights. Then, 
knowing the normal and the hit point, the refracted ray is computed, and output as an origin 
and direction into the first two render targets. Object color given in uniform parameter 
colOrder is appended to the color modulation stored in the fourth channel of the direction 
texture. 

CopyBack 

This shader does not do anything but copy pixels of two textures, when a full screen quad is 
rendered. Combined with the stencil buffer, it can be used to copy the new, refracted rays back 
to the ray textures only where an intersection has been found. All other pixels -- containing 
already terminated, exiting rays -- are left intact. 

Background 

This shader should be invoked by rendering a full-screen quad on the screen. It fetches the 
directions of exiting rays, plus the corresponding color modulations from the ray directions 
texture, and uses them to look up an environment map. If zero is read, the camera-to-pixel ray 
is used. This shader renders a final image, displaying visible refractive objects. 

2.9.3. Using the standalone Hierarchical Ray Engine module 

The A, W, S, D buttons and the mouse can be used to navigate the scene by moving the camera. 
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Figure 46. Scene of refractive objects rendered in the hierarchical ray engine standalone module. 
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2.10. OBSCURANCE 
The standalone obscurance module can be found in the Obscurances directory of the repository. 

2.10.1. Role of the module 

The obscurance method is a powerful technique that simulates the effect of diffuse interreflections.  It 
approximates radiosity, but requires much lower computational cost. Its main advantage lies in the fact 
that this technique considers only neighboring interactions instead of attempting to solve all the global 
ones. Another advantage of this technique is that it is decoupled from direct illumination computation. 
Obscurances allow realistic and fast illumination of scenes.  

This technique can deal with any number of moving light sources with no added cost since the indirect 
illumination and direct illumination are effectively decoupled. The obscurance technique also allows 
the addition of color bleeding to your lighting. The algorithm to compute obscurances uses the depth 
peeling technique as explained in the following sections. 

2.10.2. Algorithm explanation 

Given a geometry and a desired obscurance map resolution, the application returns the corresponding 
obscurance map. The obscurance map simulates the indirect illumination that receives each part 
(patch) of a scene. This indirect illumination can be combined with the direct illumination and an 
ambient light to increase the realism of the scene. This obscurance map assigns to each patch in the 
scene a degree of darkness (obscurance) that is given by the geometry that surrounds the patch. 

In order to create the obscurance map, a technique called “Global lines using depth peeling” is used. 
The process starts calculating the bounding sphere of the scene (Figure 47, left). After this step we 
start taking random points at the surface of this sphere to create the global directions (Figure 47, right). 

 

Figure 47. Global directions 

For each selected point we traverse the scene using a technique called “Depth Peeling”. This technique 
consists in peeling layers of the scene using the depth of the previous layer.  In the following figure 
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you can see the layers that would be created traversing the scene with the RGB components in the 
pictures with blue background and the depth in the pictures with white background (Figure 48). 

 

 

Figure 48. Peel Layers 

Once the layers are obtained, we start calculating the obscurance transfer between layers. To have 
transfer between patches in a given direction, both patches have to be projected onto the same position 
in neighboring layers, have to look at each other, and be at a distance smaller than a user defined 
threshold dmax. 
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If these conditions are met, the transferred obscurance will be given by the following function (Figure 
49): 

d dmax  if d<dmax and 1 otherwise. 

 ρ(d) 

d

1 

dmax  

Figure 49. Transfer function 

Once the obscurances are calculated for several directions we obtain the obscurances map (Figure 50). 
This map has to be normalized. This normalization consists in dividing the RGB components of each 
texel by its Alpha component.  

 

        

Figure 50. Obscurance maps 

The obscurance map can then be applied as a kind of lightmap. 
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Direct + Ambient + Obscurance Map = Final Result 

Figure 51. Final results generated by the obscurances method 

2.10.3. Ogre integration 

The GPUObscurances module has not been embedded into Ogre, it has been instead implemented as a 
standalone application which loads Ogre’s mesh and XML files and generates an image file containing 
the Obscurance information. This image file can be applied to Ogre scenes as a lightmap. 
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2.10.4. Implementation details 

The most important classes of the application are vcObscuranceMap and CMesh. The first 
contains all the necessary information and functionality to compute the obscurance map and has a 
method that returns a pointer to the resulting image (vcObscurerGenerateImage). CMesh 
contains the geometry of the scene and carries the scene parsing plus the hardware-accelerated 
structures used in the process to generate the obscurance map. 

Some of the parameters that can affect the performance of the application and the image quality of the 
result are already adjusted. The number of directions taken is set to 180 (3 steps * 60 directions / step), 
but this number can be modified changing the step and iteration variables in the code. Changing steps 
is not a problem. The greater the number, the better the result you achieve, but it takes longer to finish. 
But if you try to increment the iterations per step it can result in some image glitches due to saturation 
of the fp16 values used for accumulative blending. 

Another variable that can be changed is dmax. The default is 0.3. The variable can be found in the 
RenderTransfer function. 

Another parameter that can be tweaked is the relative resolution between the projection planes used to 
calculate obscurance transfer and the resolution of the resulting obscurance map. This can be done in 
vcObscurerGenerateImage at the definition of ResX and ResY. Now they are set to 2.0 so the 
projection images have double the resolution of the desired obscurance map. This can be changed to 
4.0 or 8.0 but then you have to decrease the iterations variable to avoid the saturation of fp16 buffer 
used for accumulation. 

Finally, there can be some problems while filtering the obscurance map. There are three ways to solve 
that: 

• The first method is to expand the charts of the resulting obscurance map. 

• In the first method the obscurance map created by the application is normalized (RGB 
components are divided by A component). If the application does not normalize components 
and the normalization is done on the GPU just before visualizing the model with obscurances, 
filtering problems will be avoided and chart expansion will not be necessary anymore. 

• A third solution can be not using the hardware filtering and program the filtering in the shader. 
This filtering shader should discard all the samples with zero alpha component. 
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2.10.5. Using the standalone obscurances generation module 

The application has a GUI that guides the user through four steps in order to set up the parameters 
needed to calculate the lightmap.  

 

Figure 52. GUI 

• The first step consists of selecting the mesh we want to calculate the obscurance map for. 

• The second step asks you to choose the name and destination folder of the resulting image. 

• The third step lets you choose the desired image resolution. 

• Finally you only have to push the Start button. A progress bar will appear. After completion of 
the progress bar, you will have your obscurance map stored as a .bmp in the destination folder 
you choose in step 2. 

 
Once finished all the steps you get an image that contains the obscurance map. This image can be used 
as the indirect lighting of your scene. 
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Figure 53. Obscurance map 
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2.11. IBR BILLBOARD CLOUD TREE MODULE 

2.11.1. IBR Billboard Cloud Tree Generator 

This is a standalone module has been integrated into the Ogre engine. 

2.11.1.1. Role of the module 

The IBR Billboard Cloud Tree Generator provides a set of tools for creating and previewing 3D tree 
models for being used in real-time applications. The generated tree is thus represented by a set of 
billboards, called billboard cloud. The billboards are built automatically by a clustering algorithm. 
Unlike classical billboards, the billboards of a billboard cloud are not rotated when the camera moves, 
thus the expected occlusion and parallax effects are provided. On the other hand, this approach allows 
the replacement of a large number of leaves by a single semi-transparent quadrilateral, which 
considerably improves the rendering performance. A billboard cloud well represents the tree from any 
direction and provides accurate depth values, thus the method is also good for shadow. The billboard 
cloud decomposes the original object into subsets of patches and replaces each subset by a billboard. 
These billboards are fixed and the final image is the composition of their images. 

 

Figure 54. Billboard image generation. 

 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 103 / 112

 

Figure 55. Decomposition of the original leaves model. 

 

 

Figure 56. Visual comparisons of the original polygonal tree and the tree rendered with different 
number of billboards. 

2.11.1.2. Application components overview 

The IBR Billboard Cloud Tree Generator have been developed using the Ogre3D graphic engine, 
being compatible with both, the OpenGL and Direct3D render systems, the other optional dependency 
is OpenEXR. The system has been tested under Windows but there shouldn’t be big problems for 
making it to work under Linux or Mac platforms. 

2.11.1.3. Using the IBR Tree module 

Creating a tree suitable for real-time rendering must take into account some restrictions, basically the 
polygon count and texture memory used. The sample tree shown has 11291 leaves defined by 112910 
faces and 338731 vertices. The trunk of the tree has 46174 faces. Current graphics hardware cannot 
handle a forest using this tree model. In those cases this tool is necessary. 
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Figure 57. Sample polygonal tree decomposed in two models. The leaves model will be processed with 
the IBR Billboard Cloud Tree Generator. 

1. The 3d content creator at first have to create a high detailed tree with some of the available 
tools, such as Xfrog or PovTree.  

2. Then the high-detailed tree model should be decomposed into the leaves and the trunk. 

3. The leaves model must be converted into the Ogre3D Mesh file format, there are exporters 
available for the main 3D DCC, such as Maya or 3ds Max. Check the Ogre 3D webpage 
(http://www.ogre3d.org) in the Downloads / Tools section. 

The trunk model won’t be processed with the generator tool and the designer must create a set of 
levels of detail of the original mesh using a simplification software. The IBR Billboard Cloud Tree 
Generator receives as input the leaves model and the texture used to map each leaf. 

The output generated is a billboard cloud mesh and three texture atlases as described here: 

1. The billboard cloud model that replaces the original leaves model. The billboard cloud model 
will be used in with two techniques later, in the in game visualization. 

2. The texture atlas that contains the diffuse color texture atlas has all the textures that will be 
used with the billboard cloud mesh. This texture will be used by the lower-end technique with 
standard texture mapping. 

3. The rotated leaf texture atlas contains the leaf placed with different orientations. 

4. The leaves distribution atlas texture. This texture will be used with the rotated leaf texture 
atlas in the technique indirect texturing technique. 
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Figure 58. Texture atlas generation 

 

The IBR Billboard Cloud Tree Generator, is a command line application managed through 
configuration files. For each kind of tree we want to process we should create a configuration file. The 
application must have as input parameter the configuration file as shown here: 
IBRBillboardCloudTreeGeneratorCmd.exe −cfg 
../../media/chestnut/leaves/sample.cfg 

 

These configuration files contain all the parameters you have to specify in order to obtain the desired 
output. 

Those parameters can be summarized as: 

• The media folder parameters. 

• The input file parameters. 

• The output file parameters. 

• The user custom parameters. 
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2.11.1.4. Media folders 

Input folders: 
# Folder where the sample input leaves model can be found … 
Entities Folder ../../ media/chestnut/leaves/ 
# Folders where the sample temporary data will be stored … 
Entity Distribution Folder ../ ../ media/chestnut/leaves/ 
Entity Clusters Folder ../ ../media/chestnut/leaves/ 
# Folder where the sample output files will be stored … 
Billboard Cloud Folder ../../media/chestnut/leaves/ 

 

Temporary folders: 
# Folders where the sample temporary data will be stored … 
Entity Distribution Folder ../ ../media/chestnut/leaves/ 
Entity Clusters Folder ../ ../media/chestnut/leaves/ 

 

Output folders: 
# Folder where the sample output files will be stored … 
Billboard Cloud Folder ../../media/chestnut/leaves/ 
Input files parameters 
# This is the sample input leaves model filename  
Entities Mesh Name chestnutLeaves.mesh 
# This is the sample input leaf texture filename  
Entity Clusters Grouped Texture Unit 0 Name chestnutLeaf.png 

 

2.11.1.5. Output files parameters 

Rotated leaf texture atlas parameters: 
# This is the sample input leaf texture filename  
Diffuse Color Entity Texture Name chestnutLeaf.png 
# The output texture atlas file name  
Diffuse Color Entity Texture Atas Name chestnutRotatedLeafAtlas.png 
# The output texture atlas bit range (8 bits , 16 bits , 32 bits per 
# channel ) 
Diffuse Color Entity Texture Atlas Bit Range 8 
# The output texture altas size in pixels 
Diffuse Color Entity Texture Atlas Size 512 
# The number of  textures with different leaf orientations we want 
Diffuse Color Entity Texture Atlas NumSamples 16 

 

Diffuse color texture atlas parameters: 
# The output texture atlas file name 
Diffuse Color Texture Atlas Name diffuseColorAtlas.png 
# The output texture atlas bit range (8 bits , 16 bits , 32 bits per  
# channel ) 
Diffuse Color Texture Atlas Bit Range 8 
# The output texture altas size in pixels 
Diffuse Color Texture Atlas Size 1024 
# The size that must have each billboard texture in the texture atlas 
Diffuse Color Texture Size 16 

 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 107 / 112

 

Leaves distribution texture atlas parameters: 
# The output texture atlas file name 
Indirect Texture Atlas Name indirectTextureAtlas.png 
# The output texture atlas bit range (8 bits , 16 bits , 32 bits per 
#channel ) 
Indirect Texture Atlas Bit Range 8 
# The output texture altas size in pixels 
Indirect Texture Atlas Size 1024 
# The size for each billboard texture in the texture atlas  
Indirect Texture Size 16 

 

User custom parameters 
# This is the maximum number of billboards desired 
EntityClusters MaxClusters 1024 

 

Note: The IBR Billboard Cloud Tree Generator has more custom parameters, for more details read the 
user manual included with the tool. 

2.11.1.6. View Modes 

The IBR Billboard Cloud Tree Generator has three different view modes: 

• Diffuse Color Texture Atlas View Mode: This view mode shows the diffuse color texture atlas 
generation process, and each billboard plane with its texture mapped leaves. 

• Indirect Texture Atlas View Mode: This view mode shows the leaves distribution impostor 
texture atlas generation. 

• Rotated Leaf Texture Atlas View Mode: This view mode shows the rotated leaf texture atlas. 

• Billboard Cloud Final View Mode: In this mode you can look at your billboard cloud mesh 
using indirect texturing or standard texture mapping techniques, is good to check that the 
resulting billboard cloud tree has been generated correctly. Here we can apply a tweak into the 
indirect texturing leaf position.  

2.11.1.7. Keyboard Controls 

Views controls: 

• Key F1: Enable Diffuse Color Texture Atlas View Mode. 

• Key F2: Enable Indirect Texture Atlas View Mode. 

• Key F3: Enable Rotated Leaf Texture Atlas View Mode. 

• Key F4: Enable Billboard Cloud Final View Mode. 

• SPACE: This key iterates along all the billboards generated to see how each group of leaves has 
been placed on them. This key is working only in the Diffuse Color Texture Atlas View Mode and 
Indirect Texture Atlas View Mode. 
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Navigation controls: 

These controls are enabled only in the Billboard Cloud Final View Mode. With them you can go 
around the billboard cloud, using the mouse as the looking forward direction. 

• Key E/Key D: Accelerate/Brake 

• Key S/Key F: Turn 

• Key PGUP/Key PGDOWN: Shift 

The next version will handle Collada as input/output file format for more compatibility with the 
3D DCC tools.  

2.11.2. Using IBR Billboard Cloud Trees in Games 

For using the billboard cloud trees in games, two techniques are shown: 

• Standard texturing technique: Use only diffuse color texture atlas. This technique is for low-
end graphic cards. 

• Indirect texturing technique: This technique uses the rotated leaf texture atlas and the leaves 
distribution texture atlas in order to have high resolution rendered leaves. 

We will cover only the Indirect texturing technique in more detail, because the direct texturing 
technique is straightforward. 

 

Figure 59. Diffuse color texture atlas that contains all the billboard textures. This texture atlas is used 
in the standard texturing technique. 

 

2.11.2.1. Indirect texturing technique 

The indirect texturing technique is a one pass technique. The billboard cloud is the input geometry. 
The billboard cloud model generated with the IBR Billboard Cloud Tree Generator encodes some 
information in the TEXCOORD0 and COLOR0 parameters. 
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Figure 60. Leaves distribution texture atlas and rotated leaf texture atlas. These texture atlases are 
used in the Indirect texturing technique. 

• COLOR0 encodes the uniform texture coordinates of each the billboard from [0,0] to [1,1]. 
They are used when computing which texel will be looked up from the rotated leaf texture 
atlas. 

• TEXCOORD0 encodes the texture coordinates for looking up the texture information of the 
leaves distribution texture atlas for each billboard. 

 

Figure 61. Indirect texturing rendering pass. A is the billboard cloud geometry, B is the rotated leaf 
texture atlas, C is the leaves distribution texture, and D is the frame buffer. 

During the rendering pass, the leaf distribution texture is accessed using the TEXCOORD0(u,v) 
coordinates. 

(a) If the value stored in the b channel is equal to 0, then this texel is not indexing a leaf position 
inside the billboard. Therefore it will be rendered as a transparent texel on the billboard plane. 

(b)  1. Else if the b channel is not equal to 0, the stored coordinates at (r,g) will be the lower-
left coordinates of the position where the leaf will be shaded. 

              2. Using the leaf orientation value, stored in g, we will select the desired rotated leaf texture 
atlas. 
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Figure 62. Indirect texturing. The billboard is replaced by a leaf distribution impostor and the rotated 
images of the leaves. 

The billboard cloud trees have been used in two applications: 

Ogre Demo: The demo has been tested under OpenGL and DirectX using GLSL/Cg Cg/HLSL shaders 
respectively. 

RenderMonkey Effect: This demo has the same effects as the Ogre3D Demo, using GLSL/HLSL 
shaders. This application should be the easiest to understand for those developers who want to use this 
technique with other game engines and applications. 

 

Figure 63. Screenshot of the Ogre Demo application. 

 

 



Doc. Identifier:

TGameTools-5-D5.3-03-1-1-
Stand-Alone Computation 

Package for Illumination 
AlgorithmsTTT 

STAND-ALONE COMPUTATION 
PACKAGE FOR ILLUMINATION 

ALGORITHMS 
 

Date: 04/05/2006 

 

 

IST-2-004363 CONFIDENTIAL 111 / 112

 

Figure 64. Screenshot of the RenderMonkey indirect texturing effect. 

The indirect texturing technique is good also for shadows. The Ogre Demo has been implemented 
using depth mapped shadows. 

 

Figure 65. Ogre Demo application with shadow mapping. 

2.11.2.2. Implementation Issues 

One problem that can appear is due to the wrong placement of the leaf texture, this can be avoided 
adjusting an epsilon shift displacement. 
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Figure 66. The first picture shows the result of the indirect texturing before fixing the shift 
displacement. In the second picture all the leaves are placed correctly.  

The epsilon value must be tweaked for the generation of each kind of different tree. 
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