source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/ShadowMapping.cpp @ 3219

Revision 3219, 17.6 KB checked in by mattausch, 16 years ago (diff)
RevLine 
[2891]1#include "ShadowMapping.h"
2#include "FrameBufferObject.h"
3#include "RenderState.h"
4#include "RenderTraverser.h"
5#include "Light.h"
[2911]6#include "Polygon3.h"
7#include "Polyhedron.h"
[3038]8#include "ResourceManager.h"
[2911]9
[2891]10#include <IL/il.h>
11#include <assert.h>
12
[2911]13
[2891]14using namespace std;
15
16
17namespace CHCDemoEngine
18{
19
[2911]20static Polyhedron *polyhedron = NULL;
[2929]21static Polyhedron *lightPoly = NULL;
[2911]22
23
[2891]24static void PrintGLerror(char *msg)
25{
26        GLenum errCode;
27        const GLubyte *errStr;
28       
29        if ((errCode = glGetError()) != GL_NO_ERROR)
30        {
31                errStr = gluErrorString(errCode);
32                fprintf(stderr,"OpenGL ERROR: %s: %s\n", errStr, msg);
33        }
34}
35
36
[2936]37static Polyhedron *CreatePolyhedron(const Matrix4x4 &lightMatrix,
38                                                                        const AxisAlignedBox3 &sceneBox)
[2931]39{
40        Frustum frustum(lightMatrix);
[2891]41
[2931]42        vector<Plane3> clipPlanes;
[2891]43
[2931]44        for (int i = 0; i < 6; ++ i)
45        {
46                ////////////
47                //-- normalize the coefficients
[2891]48
[2931]49                // the clipping planes look outward the frustum,
50                // so distances > 0 mean that a point is outside
51                const float invLength = -1.0f / Magnitude(frustum.mClipPlanes[i].mNormal);
52
53                frustum.mClipPlanes[i].mD *= invLength;
54                frustum.mClipPlanes[i].mNormal *= invLength;
55        }
56
[2939]57        // first create near plane because of precision issues
58        clipPlanes.push_back(frustum.mClipPlanes[4]);
59
[2931]60        clipPlanes.push_back(frustum.mClipPlanes[0]);
61        clipPlanes.push_back(frustum.mClipPlanes[1]);
62        clipPlanes.push_back(frustum.mClipPlanes[2]);
63        clipPlanes.push_back(frustum.mClipPlanes[3]);
[2936]64        clipPlanes.push_back(frustum.mClipPlanes[5]);
65
[2931]66        return Polyhedron::CreatePolyhedron(clipPlanes, sceneBox);
67}
68
69
[2891]70static void GrabDepthBuffer(float *data, GLuint depthTexture)
71{
72        glEnable(GL_TEXTURE_2D);
73        glBindTexture(GL_TEXTURE_2D, depthTexture);
74
75        glGetTexImage(GL_TEXTURE_2D, 0, GL_DEPTH_COMPONENT, GL_FLOAT, data);
76
77        glBindTexture(GL_TEXTURE_2D, 0);
78        glDisable(GL_TEXTURE_2D);
79}
80
81
82static void ExportDepthBuffer(float *data, int size)
83{
84        ilInit();
85        assert(ilGetError() == IL_NO_ERROR);
86
87        ILstring filename = ILstring("shadow.tga");
88        ilRegisterType(IL_FLOAT);
89
90        const int depth = 1;
91        const int bpp = 1;
92
93        if (!ilTexImage(size, size, depth, bpp, IL_LUMINANCE, IL_FLOAT, data))
94        {
95                cerr << "IL error " << ilGetError() << endl;
96       
97                ilShutDown();
98                assert(ilGetError() == IL_NO_ERROR);
99
100                return;
101        }
102
[3219]103        ilEnable(IL_FILE_OVERWRITE);
[2891]104        if (!ilSaveImage(filename))
105        {
106                cerr << "TGA write error " << ilGetError() << endl;
107        }
108
109        ilShutDown();
110        assert(ilGetError() == IL_NO_ERROR);
111
112        cout << "exported depth buffer" << endl;
113}
114
115
116
[2924]117static AxisAlignedBox3 GetExtremalPoints(const Matrix4x4 &m,
118                                                                                 const VertexArray &pts)
119{
120        AxisAlignedBox3 extremalPoints;
121        extremalPoints.Initialize();
122
123        VertexArray::const_iterator it, it_end = pts.end();
124               
125        for (it = pts.begin(); it != it_end; ++ it)
126        {
127                Vector3 pt = *it;
128                pt = m * pt;
129
130                extremalPoints.Include(pt);
131        }
132
133        return extremalPoints;
134}
135
136
[3062]137ShadowMap::ShadowMap(DirectionalLight *light,
138                                         int size,
[3011]139                                         const AxisAlignedBox3 &sceneBox,
[3062]140                                         PerspectiveCamera *cam):
[2897]141mSceneBox(sceneBox), mSize(size), mCamera(cam), mLight(light)
[2891]142{
143        mFbo = new FrameBufferObject(size, size, FrameBufferObject::DEPTH_32, true);
[2965]144
[3067]145        // need a color buffer to keep driver happy
[3011]146        mFbo->AddColorBuffer(ColorBufferObject::RGB_UBYTE,
[2965]147                                 ColorBufferObject::WRAP_CLAMP_TO_EDGE,
148                                                 ColorBufferObject::FILTER_NEAREST);
[2891]149
[3062]150        mShadowCam = new PerspectiveCamera(1);
[2891]151}
152
153
[2894]154ShadowMap::~ShadowMap()
[2891]155{
156        DEL_PTR(mFbo);
[2897]157        DEL_PTR(mShadowCam);
[3019]158
159        DEL_PTR(lightPoly);
160        DEL_PTR(polyhedron);
[2891]161}
162
163
[2963]164static void DrawPolyhedron(Polyhedron *poly, const Vector3 &color)
[2891]165{
[2929]166        if (!poly) return;
[2911]167
[2929]168        for (size_t i = 0; i < poly->NumPolygons(); ++ i)
[2911]169        {
[2929]170                glColor3f(color.x, color.y, color.z);
[2911]171
172                glBegin(GL_LINE_LOOP);
173
[2929]174                Polygon3 *p = poly->GetPolygons()[i];
[2911]175
[2929]176                for (size_t j = 0; j < p->mVertices.size(); ++ j)
[2911]177                {
[2929]178                        Vector3 v = p->mVertices[j];
[2911]179                        glVertex3d(v.x, v.y, v.z);
180                }
181
182                glEnd();
183        }
184}
185
186
[2963]187void ShadowMap::VisualizeFrustra()
[2911]188{
[2963]189        DrawPolyhedron(lightPoly, Vector3(1, 0, 1));
190        DrawPolyhedron(polyhedron, Vector3(0, 1, 0));
[2913]191}
[2911]192
[2913]193
[2944]194// z0 is the point that lies on the parallel plane to the near plane through e (A)
195//and on the near plane of the C frustum (the plane z = bZmax) and on the line x = e.x
196Vector3 ShadowMap::GetLightSpaceZ0(const Matrix4x4 &lightSpace,
197                                                                   const Vector3 &e,
198                                                                   const float maxZ,
199                                                                   const Vector3 &eyeDir) const
200{
201        // to calculate the parallel plane to the near plane through e we
202        // calculate the plane A with the three points
203        Plane3 planeA(e, eyeDir);
204
205        planeA.Transform(lightSpace);
206       
207        // get the parameters of A from the plane equation n dot d = 0
208        const float d = planeA.mD;
209        const Vector3 n = planeA.mNormal;
210       
211        // transform to light space
212        const Vector3 e_ls = lightSpace * e;
213
214        Vector3 z0;
215
216        z0.x = e_ls.x;
217        z0.y = (d - n.z * maxZ - n.x * e_ls.x) / n.y;
218        z0.z = maxZ;
219
220        return z0;
221        //return V3(e_ls.x(),(d-n.z()*b_lsZmax-n.x()*e_ls.x())/n.y(),b_lsZmax);
222}
223
224
225float ShadowMap::ComputeNOpt(const Matrix4x4 &lightSpace,
226                                                         const AxisAlignedBox3 &extremalPoints,
227                                                         const VertexArray &body) const
228{
229        const Vector3 nearPt = GetNearCameraPointE(body);
230        const Vector3 eyeDir = mCamera->GetDirection();
231
232        Matrix4x4 eyeView;
233        mCamera->GetModelViewMatrix(eyeView);
234
235        const Matrix4x4 invLightSpace = Invert(lightSpace);
236
237        const Vector3 z0_ls = GetLightSpaceZ0(lightSpace, nearPt, extremalPoints.Max().z, eyeDir);
238        const Vector3 z1_ls = Vector3(z0_ls.x, z0_ls.y, extremalPoints.Min().z);
239       
240        // transform back to world space
241        const Vector3 z0_ws = invLightSpace * z0_ls;
242        const Vector3 z1_ws = invLightSpace * z1_ls;
243
244        // transform to eye space
245        const Vector3 z0_es = eyeView * z0_ws;
246        const Vector3 z1_es = eyeView * z1_ws;
247
248        const float z0 = z0_es.z;
249        const float z1 = z1_es.z;
250
251        cout << "z0 ls: " << z0_ls << " z1 ls: " << z1_ls << endl;
252        cout << "z0: " << z0_es << " z1: " << z1_es << endl;
253
254        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
255
256        const float n = d / (sqrt(z1 / z0) - 1.0f);
257
258        return n;
259}
260
261
[2920]262float ShadowMap::ComputeN(const AxisAlignedBox3 &extremalPoints) const
[2913]263{
[2944]264        const float nearPlane = mCamera->GetNear();
[2916]265       
[2920]266        const float d = fabs(extremalPoints.Max()[2] - extremalPoints.Min()[2]);
267       
[2916]268        const float dotProd = DotProd(mCamera->GetDirection(), mShadowCam->GetDirection());
269        const float sinGamma = sin(fabs(acos(dotProd)));
270
[2944]271        // test for values close to zero
272        if (sinGamma < 1e-6f) return 1e6f;
273       
[2954]274        const float scale = 2.0f;
275        return scale * (nearPlane + sqrt(nearPlane * (nearPlane + d * sinGamma))) /  sinGamma;
[2916]276}
277
278
[2924]279Matrix4x4 ShadowMap::CalcLispSMTransform(const Matrix4x4 &lightSpace,
[2920]280                                                                                 const AxisAlignedBox3 &extremalPoints,
[2924]281                                                                                 const VertexArray &body
[2920]282                                                                                 )
[2917]283{
[2928]284        AxisAlignedBox3 bounds_ls = GetExtremalPoints(lightSpace, body);
285
[2913]286        ///////////////
[2915]287        //-- We apply the lispsm algorithm in order to calculate an optimal light projection matrix
[2924]288        //-- first find the free parameter values n, and P (the projection center), and the projection depth
289
[2945]290        const float n = ComputeN(bounds_ls);
291        //const float n = ComputeNOpt(lightSpace, extremalPoints, body); cout << "n: " << n << endl;
[2924]292
[2944]293        if (n >= 1e6f) // light direction nearly parallel to view => switch to uniform
294                return IdentityMatrix();
295
[2924]296        const Vector3 nearPt = GetNearCameraPointE(body);
[2933]297       
[2915]298        //get the coordinates of the near camera point in light space
[2924]299        const Vector3 lsNear = lightSpace * nearPt;
[2915]300
[2939]301        // the start point has the x and y coordinate of e, the z coord of the near plane of the light volume
[2924]302        const Vector3 startPt = Vector3(lsNear.x, lsNear.y, bounds_ls.Max().z);
[2943]303       
[2915]304        // the new projection center
[2936]305        const Vector3 projCenter = startPt + Vector3::UNIT_Z() * n;
[2915]306
307        //construct a translation that moves to the projection center
308        const Matrix4x4 projectionCenter = TranslationMatrix(-projCenter);
309
[2916]310        // light space y size
[2933]311        const float d = fabs(bounds_ls.Max()[2] - bounds_ls.Min()[2]);
[2922]312
[2924]313        const float dy = fabs(bounds_ls.Max()[1] - bounds_ls.Min()[1]);
314        const float dx = fabs(bounds_ls.Max()[0] - bounds_ls.Min()[0]);
[2922]315
[2924]316       
[2915]317
[2928]318        //////////
[2924]319        //-- now apply these values to construct the perspective lispsm matrix
320
321        Matrix4x4 matLispSM;
322       
[2939]323        matLispSM = GetFrustum(-1.0, 1.0, -1.0, 1.0, n, n + d);
[2924]324
325        // translate to the projection center
[2920]326        matLispSM = projectionCenter * matLispSM;
[2915]327
328        // transform into OpenGL right handed system
[2920]329        Matrix4x4 refl = ScaleMatrix(1.0f, 1.0f, -1.0f);
330        matLispSM *= refl;
[2924]331       
[2920]332        return matLispSM;
[2915]333}
334
[2925]335#if 0
[3063]336
[2925]337Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
338{
339        float maxDist = -1e25f;
340        Vector3 nearest = Vector3::ZERO();
[2915]341
[2925]342        Matrix4x4 eyeView;
343        mCamera->GetModelViewMatrix(eyeView);
344
345        VertexArray newPts;
346        polyhedron->CollectVertices(newPts);
347       
348        //the LVS volume is always in front of the camera
349        VertexArray::const_iterator it, it_end = pts.end();     
350
351        for (it = pts.begin(); it != it_end; ++ it)
352        {
353                Vector3 pt = *it;
354                Vector3 ptE = eyeView * pt;
[2943]355               
[2925]356                if (ptE.z > 0) cerr <<"should not happen " << ptE.z << endl;
357                else
358                if (ptE.z > maxDist)
359                {
360                        cout << " d " << ptE.z;
361       
362                        maxDist = ptE.z;
363                        nearest = pt;
364                }
365        }
366
[2933]367        //      return Invert(eyeView) * nearest;
[2925]368        return nearest;
369}
370
371#else
372
[2920]373Vector3 ShadowMap::GetNearCameraPointE(const VertexArray &pts) const
[2919]374{
[2925]375        VertexArray newPts;
376        polyhedron->CollectVertices(newPts);
377
[2922]378        Vector3 nearest = Vector3::ZERO();
379        float minDist = 1e25f;
[2920]380
[2924]381        const Vector3 camPos = mCamera->GetPosition();
[2920]382
[2925]383        VertexArray::const_iterator it, it_end = newPts.end();
[2920]384
[2925]385        for (it = newPts.begin(); it != it_end; ++ it)
[2920]386        {
387                Vector3 pt = *it;
388
389                const float dist = SqrDistance(pt, camPos);
390
391                if (dist < minDist)
392                {
393                        minDist = dist;
394                        nearest = pt;
395                }
396        }
397
398        return nearest;
399}
400
[2925]401#endif
[2920]402
[2933]403Vector3 ShadowMap::GetProjViewDir(const Matrix4x4 &lightSpace,
404                                                                  const VertexArray &pts) const
[2920]405{
[2919]406        //get the point in the LVS volume that is nearest to the camera
[2920]407        const Vector3 e = GetNearCameraPointE(pts);
408
[2919]409        //construct edge to transform into light-space
[2920]410        const Vector3 b = e + mCamera->GetDirection();
[2919]411        //transform to light-space
[2920]412        const Vector3 e_lp = lightSpace * e;
413        const Vector3 b_lp = lightSpace * b;
414
415        Vector3 projDir(b_lp - e_lp);
416
[2919]417        //project the view direction into the shadow map plane
[2932]418        projDir.y = .0f;
[2920]419
420        return Normalize(projDir);
[2919]421}
422
423
[2915]424bool ShadowMap::CalcLightProjection(Matrix4x4 &lightProj)
425{
426        ///////////////////
427        //-- First step: calc frustum clipped by scene box
428
[2922]429        DEL_PTR(polyhedron);
[2915]430        polyhedron = CalcClippedFrustum(mSceneBox);
431
432        if (!polyhedron) return false; // something is wrong
433
434        // include the part of the light volume that "sees" the frustum
435        // we only require frustum vertices
436
437        VertexArray frustumPoints;
[2939]438        IncludeLightVolume(*polyhedron, frustumPoints, mLight->GetDirection(), mSceneBox);
[2915]439
440
441        ///////////////
442        //-- transform points from world view to light view and calculate extremal points
443
444        Matrix4x4 lightView;
445        mShadowCam->GetModelViewMatrix(lightView);
446
[2920]447        const AxisAlignedBox3 extremalPoints = GetExtremalPoints(lightView, frustumPoints);
[2913]448
[2920]449        // we use directional lights, so the projection can be set to identity
450        lightProj = IdentityMatrix();
[2913]451
[2922]452        // switch coordinate system to that used in the lispsm algorithm for calculations
453        Matrix4x4 transform2LispSM = ZeroMatrix();
454
455        transform2LispSM.x[0][0] =  1.0f;
[2934]456        transform2LispSM.x[1][2] =  -1.0f; // y => -z
[2924]457        transform2LispSM.x[2][1] =  1.0f; // z => y
[2922]458        transform2LispSM.x[3][3] =  1.0f;
459
[2936]460
[2922]461        //switch to the lightspace used in the article
[2936]462        lightProj *= transform2LispSM;
[2922]463
[2924]464        const Vector3 projViewDir = GetProjViewDir(lightView * lightProj, frustumPoints);
[2916]465
[2952]466        //do DirectionalLight Space Perspective shadow mapping
[2922]467        //rotate the lightspace so that the projected light view always points upwards
468        //calculate a frame matrix that uses the projViewDir[lightspace] as up vector
[2917]469        //look(from position, into the direction of the projected direction, with unchanged up-vector)
[2938]470        //const Matrix4x4 frame = MyLookAt2(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
[2944]471        const Matrix4x4 frame = LookAt(Vector3::ZERO(), projViewDir, Vector3::UNIT_Y());
[2917]472
[2936]473        lightProj *= frame;
[2924]474
[2917]475        const Matrix4x4 matLispSM =
[2920]476                CalcLispSMTransform(lightView * lightProj, extremalPoints, frustumPoints);
[2917]477
[2936]478        lightProj *= matLispSM;
[2917]479
[2922]480        // change back to GL coordinate system
481        Matrix4x4 transformToGL = ZeroMatrix();
482       
[2940]483        transformToGL.x[0][0] =   1.0f;
484        transformToGL.x[1][2] =   1.0f; // z => y
[2934]485        transformToGL.x[2][1] =  -1.0f; // y => -z
[2940]486        transformToGL.x[3][3] =   1.0f;
[2922]487
[2936]488        lightProj *= transformToGL;
[2922]489
[2920]490        AxisAlignedBox3 lightPts = GetExtremalPoints(lightView * lightProj, frustumPoints);
491
[2917]492        // focus projection matrix on the extremal points => scale to unit cube
[2922]493        Matrix4x4 scaleTranslate = GetFittingProjectionMatrix(lightPts);
[2917]494
[2939]495        lightProj = lightProj * scaleTranslate;
496
497        Matrix4x4 mymat = lightView * lightProj;
498
499        AxisAlignedBox3 lightPtsNew = GetExtremalPoints(mymat, frustumPoints);
500
[2920]501        // we have to flip the signs in order to tranform to opengl right handed system
502        Matrix4x4 refl = ScaleMatrix(1, 1, -1);
503        lightProj *= refl;
[2916]504       
[2913]505        return true;
[2911]506}
507
508
[2913]509Polyhedron *ShadowMap::CalcClippedFrustum(const AxisAlignedBox3 &box) const
510{
[2931]511        Polyhedron *p = mCamera->ComputeFrustum();
512       
513        Polyhedron *clippedPolyhedron = box.CalcIntersection(*p);
514        DEL_PTR(p);
[2913]515       
[2931]516        return clippedPolyhedron;
517}
[2913]518
519
[2931]520//calculates the up vector for the light coordinate frame
521static Vector3 CalcUpVec(const Vector3 viewDir, const Vector3 lightDir)
522{
523        //we do what gluLookAt does...
524        //left is the normalized vector perpendicular to lightDir and viewDir
525        //this means left is the normalvector of the yz-plane from the paper
526        Vector3 left = CrossProd(lightDir, viewDir);
[2913]527       
[2931]528        //we now can calculate the rotated(in the yz-plane) viewDir vector
529        //and use it as up vector in further transformations
530        Vector3 up = CrossProd(left, lightDir);
[2913]531
[2931]532        return Normalize(up);
[2913]533}
534
535
[2932]536void ShadowMap::GetTextureMatrix(Matrix4x4 &m) const
537{
538        m = mTextureMatrix;
539}
540
541 
542unsigned int ShadowMap::GetDepthTexture() const
543{
544        return mFbo->GetDepthTex();
545}
546
[3063]547
[2932]548unsigned int ShadowMap::GetShadowColorTexture() const
549{
550        return mFbo->GetColorBuffer(0)->GetTexture();
551       
552}
553
554
555void ShadowMap::IncludeLightVolume(const Polyhedron &polyhedron,
556                                                                   VertexArray &frustumPoints,
557                                                                   const Vector3 lightDir,
558                                                                   const AxisAlignedBox3 &sceneBox
559                                                                   )
560{
561        // we don't need closed form anymore => just store vertices
562        VertexArray vertices;
563        polyhedron.CollectVertices(vertices);
564
[3063]565        // we 'look' at each point and intect rays with the scene bounding box
[2932]566        VertexArray::const_iterator it, it_end = vertices.end();
567
568        for (it = vertices.begin(); it != it_end; ++ it)
569        {
570                Vector3 v  = *it;
571
572                frustumPoints.push_back(v);
[2939]573                // hack: start at point which is guaranteed to be outside of box
[2932]574                v -= Magnitude(mSceneBox.Diagonal()) * lightDir;
575
576                SimpleRay ray(v, lightDir);
577
578                float tNear, tFar;
579
580                if (sceneBox.Intersects(ray, tNear, tFar))
581                {
582                        Vector3 newpt = ray.Extrap(tNear);
583                        frustumPoints.push_back(newpt);                 
584                }
585        }
586}
587
588
[3063]589void ShadowMap::ComputeShadowMap(RenderTraverser *renderer,
590                                                                 const Matrix4x4 &projView)
[2911]591{
[2891]592        mFbo->Bind();
[2892]593       
[2891]594        glDrawBuffers(1, mrt);
595
596        glPushAttrib(GL_VIEWPORT_BIT);
597        glViewport(0, 0, mSize, mSize);
598
[3068]599        // turn off colors + lighting (should be handled by the render state)
[2891]600        glShadeModel(GL_FLAT);
601
602
[2942]603        /////////////
604        //-- render scene into shadow map
[2894]605
[2942]606        _Render(renderer);
[2911]607
[2891]608        glPopAttrib();
[2943]609        glShadeModel(GL_SMOOTH);
[2928]610
[2913]611#if 0
[2911]612        float *data = new float[mSize * mSize];
[2891]613
614        GrabDepthBuffer(data, mFbo->GetDepthTex());
615        ExportDepthBuffer(data, mSize);
616
[2892]617        delete [] data;
[2911]618       
[2892]619        PrintGLerror("shadow map");
[2913]620#endif
[2942]621       
[3063]622
623        //////////////
624        //-- compute texture matrix
625
626        static Matrix4x4 biasMatrix(0.5f, 0.0f, 0.0f, 0.5f,
627                                                                0.0f, 0.5f, 0.0f, 0.5f,
628                                                                0.0f, 0.0f, 0.5f, 0.5f,
629                                                                0.0f, 0.0f, 0.0f, 1.0f);
630
631        mTextureMatrix = mLightProjView * biasMatrix;
632
[2891]633        FrameBufferObject::Release();
634}
635
636
[3063]637void ShadowMap::RenderShadowView(RenderTraverser *renderer,
638                                                                 const Matrix4x4 &projView)
[2931]639{
[2942]640        glEnable(GL_LIGHTING);
[2943]641       
[2942]642        _Render(renderer);
643       
[2943]644        /*glDisable(GL_LIGHTING);
645        glDisable(GL_DEPTH_TEST);
646
647        Polyhedron *hpoly = CreatePolyhedron(projView, mSceneBox);
648        DrawPoly(hpoly, Vector3(1, 1, 1));
649        DEL_PTR(hpoly);
650
651        glEnable(GL_LIGHTING);
652        glEnable(GL_DEPTH_TEST);*/
653
[2942]654        glDisable(GL_POLYGON_OFFSET_FILL);
655}
656
657
658void ShadowMap::_Render(RenderTraverser *renderer)
659{
[2939]660        const Vector3 dir = mLight->GetDirection();
[2931]661
662        mShadowCam->SetDirection(dir);
663
664        // set position so that we can see the whole scene
665        Vector3 pos = mSceneBox.Center();
666        pos -= dir * Magnitude(mSceneBox.Diagonal() * 0.5f);
667
[2932]668        mShadowCam->SetPosition(mCamera->GetPosition());
669
[3063]670        const Vector3 upVec = CalcUpVec(mCamera->GetDirection(), dir);
671        const Matrix4x4 lightView = LookAt(mShadowCam->GetPosition(), dir, upVec);
[2932]672
673        mShadowCam->mViewOrientation = lightView;
674
[2931]675        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
676
[2944]677        glPolygonOffset(5.0f, 100.0f);
[2931]678        glEnable(GL_POLYGON_OFFSET_FILL);
[2932]679       
680        Matrix4x4 lightProj;
[2931]681        CalcLightProjection(lightProj);
682
683        mLightProjView = lightView * lightProj;
[2932]684
[2931]685        DEL_PTR(lightPoly);
686        lightPoly = CreatePolyhedron(mLightProjView, mSceneBox);
687
[3063]688        glMatrixMode(GL_PROJECTION);
689        glPushMatrix();
690
[2931]691        glMatrixMode(GL_MODELVIEW);
692        glPushMatrix();
[2951]693       
[3063]694        // set projection matrix manually
695        mShadowCam->mProjection = lightProj;
696       
697        // load gl view projection
698        mShadowCam->SetupViewProjection();
[2931]699
[2942]700       
[2931]701        /////////////
702        //-- render scene into shadow map
703
704        renderer->RenderScene();
705
[2943]706
[2931]707        glMatrixMode(GL_PROJECTION);
708        glPopMatrix();
709
[2951]710        glMatrixMode(GL_MODELVIEW);
711        glPopMatrix();
712
[2942]713        glDisable(GL_POLYGON_OFFSET_FILL);
[2931]714}
[3062]715
716
[2891]717} // namespace
Note: See TracBrowser for help on using the repository browser.