source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/shaders/ssao.cg @ 3342

Revision 3342, 19.0 KB checked in by mattausch, 15 years ago (diff)

found error

Line 
1#include "../shaderenv.h"
2#include "common.h"
3
4////////////////////
5// Screen Spaced Ambient Occlusion shader
6// based on shader of Alexander Kusternig
7
8
9#define USE_EYESPACE_DEPTH 1
10
11
12struct fragment
13{
14        float2 texCoord: TEXCOORD0;
15        float3 view: TEXCOORD1;
16};
17
18
19struct pixel2
20{
21        float4 illum_col: COLOR0;
22        float4 col: COLOR1;
23};
24
25
26// this function is inspired from the paper of shamulgaan in order
27// to get a physical expression for the occlusion culling
28inline float occlusionPower(float radius, float dist)
29{
30        return 6.283185307179586476925286766559f * (1.0f - cos(asin(radius / dist)));
31}
32
33
34
35// reconstruct world space position
36inline float3 ReconstructSamplePos(float eyeSpaceDepth,
37                                                                   float2 texcoord,
38                                                                   float3 bl, float3 br, float3 tl, float3 tr)
39{
40        float3 viewVec = Interpol(texcoord, bl, br, tl, tr);
41        float3 samplePos = -viewVec * eyeSpaceDepth;
42
43        return samplePos;
44}
45
46
47float ComputeConvergence(uniform sampler2D tex, float2 texCoord, float2 res)
48{
49        // get the minimum convergence by exactly sampling the 4 surrounding
50        // texels in the old texture, otherwise flickering because convergence
51        // will be interpolated when upsampling and filter size does not match!
52
53        const float2 invRes = float2(1.0f / res.x, 1.0f / res.y);
54
55        // get position exactly between texel centers
56        float2 center = (floor(texCoord * res) + float2(.5f)) * texCoord;
57        //center.x = (floor(texCoord.x * res.x - .5f) + 1.0f) / res.x;
58        //center.y = (floor(texCoord.y * res.y - .5f) + 1.0f) / res.y;
59        //center.y = (floor(texCoord.y * res.y) + .5f) * yOffs;
60
61        /*texelCenterConv.x = tex2Dlod(tex, float4(center + float2( xoffs,  yoffs), 0, 0)).y;
62        texelCenterConv.y = tex2Dlod(tex, float4(center + float2( xoffs, -yoffs), 0, 0)).y;
63        texelCenterConv.z = tex2Dlod(tex, float4(center + float2(-xoffs, -yoffs), 0, 0)).y;
64        texelCenterConv.w = tex2Dlod(tex, float4(center + float2(-xoffs,  yoffs), 0, 0)).y;
65
66        const float m1 = min(texelCenterConv.x, texelCenterConv.y);
67        const float m2 = min(texelCenterConv.z, texelCenterConv.w);
68
69        const float convergence = min(m1, m2);*/
70
71        //const float convergence = tex2Dlod(tex, float4(center, 0, 0)).y;
72        const float convergence = tex2Dlod(tex, float4(texCoord, 0, 0)).y;
73
74        return convergence;
75}
76
77/** This shader computes the reprojection and stores
78        the ssao value of the old pixel as well as the
79        weight of the pixel in the new frame.
80*/
81inline float3 Reproject(float4 worldPos,
82                                                float eyeSpaceDepth,
83                                                float2 texcoord0,
84                                                float3 oldEyePos,
85                                                sampler2D oldTex,
86                                                float4x4 oldModelViewProj,
87                                                sampler2D colors,
88                                                float3 projPos,
89                                                float invW,
90                                                float3 oldbl,
91                                                float3 oldbr,
92                                                float3 oldtl,
93                                                float3 oldtr,
94                                                float3 diffVec
95                                                )
96{
97        // compute position from old frame for dynamic objects + translational portion
98        const float3 translatedPos = diffVec - oldEyePos + worldPos.xyz;
99
100
101        /////////////////
102        //-- reproject into old frame and calculate texture position of sample in old frame
103
104        // note: the old model view matrix only holds the view orientation part
105        float4 backProjPos = mul(oldModelViewProj, float4(translatedPos, 1.0f));
106        backProjPos /= backProjPos.w;
107       
108        // fit from unit cube into 0 .. 1
109        const float2 oldTexCoords = backProjPos.xy * 0.5f + 0.5f;
110        // retrieve the sample from the last frame
111        const float4 oldPixel = tex2Dlod(oldTex, float4(oldTexCoords, .0f, .0f));
112
113        // the ssao value in the old frame
114        const float ssao = oldPixel.x;
115
116        // calculate eye space position of sample in old frame
117        const float oldEyeSpaceDepth = oldPixel.w;
118
119        // vector from eye pos to old sample
120        const float3 viewVec = Interpol(oldTexCoords, oldbl, oldbr, oldtl, oldtr);
121        const float invLen = 1.0f / length(viewVec);
122        const float projectedEyeSpaceDepth = invLen * length(translatedPos);
123        //const float projectedEyeSpaceDepth = length(translatedPos);
124       
125        const float depthDif = abs(1.0f - oldEyeSpaceDepth / projectedEyeSpaceDepth);
126
127        // the weight of the accumulated samples from the previous frames
128        float w;
129        float idx;
130
131
132        //////////////
133        //-- reuse old value only if it was still valid in the old frame
134
135        if (1
136                && (oldTexCoords.x > 0) && (oldTexCoords.x < 1.0f)
137                && (oldTexCoords.y > 0) && (oldTexCoords.y < 1.0f)
138                && (depthDif <= MIN_DEPTH_DIFF)
139                )
140        {
141                // pixel valid => retrieve the convergence weight
142                /*float w1 = tex2Dlod(oldTex, float4(oldTexCoords + float2(0.5f / 1024.0f, 0), .0f, .0f)).y;
143                float w2 = tex2Dlod(oldTex, float4(oldTexCoords - float2(0.5f / 1024.0f, 0), .0f, .0f)).y;
144                float w3 = tex2Dlod(oldTex, float4(oldTexCoords + float2(0, 0.5f / 768.0f), .0f, .0f)).y;
145                float w4 = tex2Dlod(oldTex, float4(oldTexCoords - float2(0, 0.5f / 768.0f), .0f, .0f)).y;
146
147                w = min(min(w1, w2), min(w3, w4));*/
148               
149                //w = ComputeConvergence(oldTex, oldTexCoords, float2(1024.0f, 768.0f));
150                w = oldPixel.y;
151                idx = floor(oldPixel.z);
152
153        }
154        else
155        {       
156                w = 0.0f;
157                idx = .0f;
158        }
159
160        return float3(ssao, w, idx);
161}
162
163
164/** The ssao shader returning the an intensity value between 0 and 1.
165        This version of the ssao shader uses the dotproduct between
166        pixel-to-sample direction and sample normal as weight.
167
168    The algorithm works like the following:
169        1) Check in a circular area around the current position.
170        2) Shoot vectors to the positions there, and check the angle to these positions.
171        3) Summing up these angles gives an estimation of the occlusion at the current position.
172*/
173float3 ssao2(fragment IN,
174                         sampler2D colors,
175                         sampler2D noiseTex,
176                         sampler2D samples,
177                         float3 normal,
178                         float3 centerPosition,
179                         float radius,
180                         float3 bl,
181                         float3 br,
182                         float3 tl,
183                         float3 tr,
184                         float3 viewDir,
185                         float convergence,
186                         float sampleIntensity,
187                         bool isMovingObject,
188                         sampler2D normalTex,
189                         float idx
190                         )
191{
192        float total_ao = .0f;
193        float validSamples = .0f;
194        float numSamples = .0f;
195
196        for (int i = 0; i < NUM_SAMPLES; ++ i)
197        {
198                float2 offset;
199
200                const float2 ssaoOffset =
201                        tex2Dlod(samples, float4((0.5f + i + idx) / NUM_PRECOMPUTED_SAMPLES, 0.5f, .0f, .0f)).xy;
202
203                ////////////////////
204                //-- add random noise: reflect around random normal vector
205                //-- (affects performance for some reason!)
206
207                if (convergence < SSAO_CONVERGENCE_THRESHOLD)
208                {
209                        float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
210                        //offset = myreflect(samples[i], mynoise);
211                        //offset = myrotate(samples[i], mynoise.x);
212                        offset = myrotate(ssaoOffset, mynoise.x);
213                }
214                else
215                {
216                        offset = ssaoOffset;
217                }
218               
219                // weight with projected coordinate to reach similar kernel size for near and far
220                const float2 texcoord = IN.texCoord.xy + offset * radius;
221
222                const float4 sampleColor = tex2Dlod(colors, float4(texcoord, .0f, .0f));
223                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
224               
225
226                ////////////////
227                //-- compute contribution of sample using the direction and angle
228
229                float3 dirSample = samplePos - centerPosition;
230
231                const float minDist = 1e-6f;
232                const float delta = 1e-3f;
233
234                const float lengthToSample = length(dirSample);
235                const float sampleWeight = 1.0f / (lengthToSample + delta);
236
237                dirSample /= max(lengthToSample, minDist); // normalize
238
239
240                // angle between current normal and direction to sample controls AO intensity.
241                const float cosAngle = dot(dirSample, normal);
242
243                // the normal of the current sample
244                const float3 sampleNormal = normalize(tex2Dlod(normalTex, float4(texcoord, 0, 0)).xyz);
245               
246                // angle between current normal and direction to sample controls AO intensity.
247                //const float cosAngle2 = dot(-dirSample, sampleNormal);
248                const float cosAngle2 = .5f + dot(sampleNormal, -normal) * .5f;
249
250                dirSample *= minDist;
251                const float aoContrib = sampleIntensity * sampleWeight;
252
253                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
254                //total_ao += max(cosAngle, .0f) * max(cosAngle2, .0f) * aoContrib;
255                total_ao += max(cosAngle, .0f) * cosAngle2 * aoContrib;
256
257                ++ numSamples;
258
259                // check if the samples have been valid in the last frame
260                // only mark sample as invalid if in the last / current frame
261                // they possibly have any influence on the ao
262
263                const float changeFactor = sampleColor.y;
264                const float pixelValid = sampleColor.x;
265
266                // hack:
267                // we check if the sample could have been near enough
268                // to the current pixel or if the angle is small enough
269                // to have any influence in the current or last frame
270#if 1
271                const float tooFarAway = step(0.5f, lengthToSample - changeFactor);
272                const float partlyResetThres = 1.0f;
273
274                if (pixelValid <= partlyResetThres)
275                        validSamples = max(validSamples, pixelValid * (1.0f - tooFarAway) * step(-0.1f, cosAngle));
276                else
277                        validSamples = max(validSamples, pixelValid);
278#endif
279
280#ifdef USE_GTX
281                // we can bail out early and use a minimal #samples)
282                // if some conditions are met as long as the hardware supports it
283                if (numSamples >= MIN_SAMPLES)
284                {
285                        //break;
286                        // if the pixel belongs to a static object and all the samples stay valid in the current frame
287                        if (!isMovingObject && (validSamples < 1.0f) && (convergence > NUM_SAMPLES)) break;
288                        // if the pixel belongs to a dynamic object but the #accumulated samples for this pixel is sufficiently high
289                        // (=> there was no discontinuity recently)
290                        //else if (isMovingObject && (convergence > SSAO_CONVERGENCE_THRESHOLD)) break;
291                        else if (isMovingObject && (convergence > NUM_SAMPLES * 5)) break;
292                }
293#endif
294        }
295
296        // "normalize" ao contribution
297        total_ao /= numSamples;
298
299#if 1
300        // if surface normal perpenticular to view dir, approx. half of the samples will not count
301        // => compensate for this (on the other hand, projected sampling area could be larger!)
302        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
303        total_ao *= viewCorrection;
304#endif
305
306        //return float3(total_ao, validSamples, numSamples);
307        return float3(min(1.0f, total_ao), validSamples, numSamples);
308}
309
310
311/** The ssao shader returning the an intensity value between 0 and 1.
312        This version of the ssao shader uses the dotproduct between
313        pixel-to-sample direction and sample normal as weight.
314
315    The algorithm works like the following:
316        1) Check in a circular area around the current position.
317        2) Shoot vectors to the positions there, and check the angle to these positions.
318        3) Summing up these angles gives an estimation of the occlusion at the current position.
319*/
320float3 ssao(fragment IN,
321                        sampler2D colors,
322                        sampler2D noiseTex,
323                        sampler2D samples,
324                        float3 normal,
325                        float3 centerPosition,
326                        float radius,
327                        float3 bl,
328                        float3 br,
329                        float3 tl,
330                        float3 tr,
331                        float3 viewDir,
332                        float convergence,
333                        float sampleIntensity,
334                        bool isMovingObject,
335                        float oldIdx
336                        )
337{
338        float total_ao = .0f;
339        float validSamples = .0f;
340        float numSamples = .0f;
341
342        for (int i = 0; i < NUM_SAMPLES; ++ i)
343        {
344                float2 offset;
345
346                const float2 ssaoOffset =
347                        tex2Dlod(samples, float4((0.5f + i + oldIdx) / NUM_PRECOMPUTED_SAMPLES, 0.5f, .0f, .0f)).xy;
348
349                ////////////////////
350                //-- add random noise: reflect around random normal vector
351                //-- (affects performance for some reason!)
352
353                if (convergence < SSAO_CONVERGENCE_THRESHOLD)
354                {
355                        float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
356                        //offset = myreflect(samples[i], mynoise);
357                        //offset = myrotate(samples[i], mynoise.x);
358                        offset = myrotate(ssaoOffset, mynoise.x);
359                }
360                else
361                {
362                        offset = ssaoOffset;
363                }
364
365
366                // weight with projected coordinate to reach similar kernel size for near and far
367                const float2 texcoord = IN.texCoord.xy + offset * radius;
368
369                const float4 sampleColor = tex2Dlod(colors, float4(texcoord, .0f, .0f));
370                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
371               
372
373                ////////////////
374                //-- compute contribution of sample using the direction and angle
375
376                float3 dirSample = samplePos - centerPosition;
377
378                const float minDist = 1e-6f;
379                const float delta = 1e-3f;
380
381                const float lengthToSample = length(dirSample);
382                const float sampleWeight = 1.0f / (lengthToSample + delta);
383
384                dirSample /= max(length(dirSample), minDist); // normalize
385
386                // angle between current normal and direction to sample controls AO intensity.
387                const float cosAngle = dot(dirSample, normal);
388
389                //const float aoContrib = sampleIntensity / sqrLen;
390                const float aoContrib = sampleIntensity * sampleWeight;
391                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
392
393                total_ao += max(cosAngle, .0f) * aoContrib;
394
395                ++ numSamples;
396
397#ifdef PERFORMANCE_TEST
398                // check if the samples have been valid in the last frame
399                // only mark sample as invalid if in the last / current frame
400                // they possibly have any influence on the ao
401
402                const float changeFactor = sampleColor.y;
403                const float pixelValid = sampleColor.x;
404
405                // hack:
406                // we check if the sample could have been near enough to the current pixel
407                // or if the angle is small enough
408                // to have any influence in the current or last frame
409
410#if 1
411                const float partlyResetThres = 1.0f;
412
413                const float tooFarAway = step(0.5f, lengthToSample - changeFactor);
414                if (0)//pixelValid <= partlyResetThres)
415                        validSamples = max(validSamples, pixelValid * (1.0f - tooFarAway) * step(-0.1f, cosAngle));
416                else
417                        validSamples = max(validSamples, pixelValid);
418#endif
419
420#ifdef USE_GTX
421                // we can bail out early and use a minimal #samples)
422                // if some conditions are met as long as the hardware supports it
423                if (numSamples >= MIN_SAMPLES)
424                {
425                        //break;
426                        // if the pixel belongs to a static object and all the samples stay valid in the current frame
427                        if (!isMovingObject && (validSamples < 1.0f) && (convergence > NUM_SAMPLES)) break;
428                        // if the pixel belongs to a dynamic object but the #accumulated samples for this pixel is sufficiently high
429                        // (=> there was no discontinuity recently)
430                        //else if (isMovingObject && (convergence > SSAO_CONVERGENCE_THRESHOLD)) break;
431                        else if (isMovingObject && (convergence > NUM_SAMPLES * 5)) break;
432                }
433#endif
434
435#endif // PERFORMANCE_TEST
436        }
437
438        // "normalize" ao contribution
439        total_ao /= numSamples;
440
441#if 1
442        // if surface normal perpenticular to view dir, approx. half of the samples will not count
443        // => compensate for this (on the other hand, projected sampling area could be larger!)
444        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
445        total_ao *= viewCorrection;
446#endif
447
448        //return float3(total_ao, validSamples, numSamples);
449        return float3(min(1.0f, total_ao), validSamples, numSamples);
450}
451
452
453
454/** The mrt shader for screen space ambient occlusion
455*/
456pixel2 main(fragment IN,
457                        uniform sampler2D colors,
458                        uniform sampler2D normals,
459                        uniform sampler2D noiseTex,
460                        uniform sampler2D samples,
461                        uniform sampler2D oldTex,
462                        uniform float4x4 modelViewProj,
463                        uniform float4x4 oldModelViewProj,
464                        uniform float temporalCoherence,
465                        uniform float3 bl,
466                        uniform float3 br,
467                        uniform float3 tl,
468                        uniform float3 tr,
469                        uniform float3 oldEyePos,
470                        uniform float3 oldbl,
471                        uniform float3 oldbr,
472                        uniform float3 oldtl,
473                        uniform float3 oldtr,
474                        uniform sampler2D attribsTex,
475                        uniform float kernelRadius,
476                        uniform float sampleIntensity
477                        )
478{
479        pixel2 OUT;
480
481        //const float3 normal = normalize(tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz);
482        const float3 normal = tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz;
483
484        // reconstruct position from the eye space depth
485        const float3 viewDir = IN.view;
486        const float eyeSpaceDepth = tex2Dlod(colors, float4(IN.texCoord, 0, 0)).w;
487        const float4 eyeSpacePos = float4(-viewDir * eyeSpaceDepth, 1.0f);
488
489
490        ////////////////
491        //-- calculcate the current projected posiion (also used for next frame)
492       
493        float4 projPos = mul(modelViewProj, eyeSpacePos);
494        const float invw = 1.0f / projPos.w;
495        projPos *= invw;
496       
497        //const float radiusMult = kernelRadius;
498        //const float radiusMult = 3e-2;
499        const float radiusMult = kernelRadius * invw;
500       
501#ifdef PERFORMANCE_TEST
502
503        float3 diffVec = tex2Dlod(attribsTex, float4(IN.texCoord, 0, 0)).xyz;
504
505        const float sqrMoveSpeed = SqrLen(diffVec);
506        const bool isMovingObject = (sqrMoveSpeed > DYNAMIC_OBJECTS_THRESHOLD);
507
508       
509        /////////////////
510        //-- compute temporal reprojection
511
512        float3 temporalVals = Reproject(eyeSpacePos, eyeSpaceDepth, IN.texCoord, oldEyePos,
513                                        oldTex, oldModelViewProj,
514                                                                        colors,
515                                                                        projPos.xyz,
516                                                                        invw,
517                                                                        oldbl, oldbr, oldtl, oldtr,
518                                                                        diffVec
519                                                                        );
520       
521        const float oldSsao = temporalVals.x;
522       
523        float oldWeight = temporalVals.y;
524        float oldIdx = /*temporalCoherence > 1 ? */temporalVals.z/* : 0*/;
525       
526#else
527
528        const bool isMovingObject = false;
529        const float oldSsao = 0;
530       
531        float oldWeight = 0;
532        float oldIdx = 0;
533       
534#endif
535
536        float3 ao;
537
538        // cull background note: this should be done with the stencil buffer
539        if (eyeSpaceDepth < DEPTH_THRESHOLD)
540        {
541                if (1)
542                {
543                        ao = ssao(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz,
544                                      radiusMult, bl, br, tl, tr, normalize(viewDir),
545                                          oldWeight, sampleIntensity, isMovingObject, oldIdx);
546                }
547                else
548                {
549                        ao = ssao2(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz, radiusMult,
550                                   bl, br, tl, tr, normalize(viewDir), oldWeight, sampleIntensity,
551                                           isMovingObject, normals, oldIdx);
552                }
553        }
554        else
555        {
556                 ao = float3(1.0f, 1.0f, 1.0f);
557        }
558
559
560#ifdef PERFORMANCE_TEST
561
562        ///////////
563        //-- check if we have to reset pixel because one of the sample points was invalid
564        //-- only do this if the current pixel does not belong to a moving object
565
566        // the weight equals the number of sampled shot in this pass
567        const float newWeight = ao.z;
568
569        // completely reset the ao in this pixel
570        const float completelyResetThres = 20.0f;
571        // don't fully reset the ao in this pixel, but give low weight to old solution
572        const float partlyResetThres = 1.0f;
573       
574        // don't check for moving objects, otherwise almost no coherence
575        if (!isMovingObject)
576        {
577                if (ao.y > completelyResetThres)
578                {
579                        oldWeight = .0f;
580                        oldIdx = .0f;
581                }
582                else if (ao.y > partlyResetThres)
583                {
584                        oldWeight = min(oldWeight, 4.0f * newWeight);
585                        //oldWeight = .0f;
586                        //oldIdx = .0f;
587                }
588        }
589
590
591        //////////
592        //-- blend ao between old and new samples (and avoid division by zero)
593
594        OUT.illum_col.x = (ao.x * newWeight + oldSsao * oldWeight);
595        OUT.illum_col.x /= (newWeight + oldWeight);
596
597        // the new weight for the next frame
598        const float combinedWeight = clamp(newWeight + oldWeight, .0f, temporalCoherence);
599
600        OUT.illum_col.y = combinedWeight;
601        OUT.illum_col.z = oldIdx + 8;//newWeight; // the new index
602        OUT.illum_col.w = eyeSpaceDepth;
603
604        //if (OUT.illum_col.z > 1000) OUT.illum_col.z = 0;
605
606        // this value can be used to check if this pixel belongs to a moving object
607        OUT.col.x = SqrLen(diffVec);
608        //OUT.illum_col.z = SqrLen(diffVec);
609
610#else
611
612        OUT.illum_col.x = ao.x;
613        OUT.illum_col.w = eyeSpaceDepth;
614       
615#endif
616
617        return OUT;
618}
Note: See TracBrowser for help on using the repository browser.