source: GTP/trunk/App/Demos/Vis/FriendlyCulling/src/shaders/ssao.cg @ 3355

Revision 3355, 19.0 KB checked in by mattausch, 16 years ago (diff)
Line 
1#include "../shaderenv.h"
2#include "common.h"
3
4////////////////////
5// Screen Spaced Ambient Occlusion shader
6// based on shader of Alexander Kusternig
7
8
9#define USE_EYESPACE_DEPTH 1
10
11
12struct fragment
13{
14        float2 texCoord: TEXCOORD0;
15        float3 view: TEXCOORD1;
16};
17
18
19struct pixel2
20{
21        float4 illum_col: COLOR0;
22        float4 col: COLOR1;
23};
24
25
26// this function is inspired from the paper of shamulgaan in order
27// to get a physical expression for the occlusion culling
28inline float occlusionPower(float radius, float dist)
29{
30        return 6.283185307179586476925286766559f * (1.0f - cos(asin(radius / dist)));
31}
32
33
34
35// reconstruct world space position
36inline float3 ReconstructSamplePos(float eyeSpaceDepth,
37                                                                   float2 texcoord,
38                                                                   float3 bl, float3 br, float3 tl, float3 tr)
39{
40        float3 viewVec = Interpol(texcoord, bl, br, tl, tr);
41        float3 samplePos = -viewVec * eyeSpaceDepth;
42
43        return samplePos;
44}
45
46
47float ComputeConvergence(uniform sampler2D tex, float2 texCoord, float2 res)
48{
49        // get the minimum convergence by exactly sampling the 4 surrounding
50        // texels in the old texture, otherwise flickering because convergence
51        // will be interpolated when upsampling and filter size does not match!
52
53        const float2 invRes = float2(1.0f / res.x, 1.0f / res.y);
54
55        // get position exactly between texel centers
56        float2 center = (floor(texCoord * res) + float2(.5f)) * texCoord;
57        //center.x = (floor(texCoord.x * res.x - .5f) + 1.0f) / res.x;
58        //center.y = (floor(texCoord.y * res.y - .5f) + 1.0f) / res.y;
59        //center.y = (floor(texCoord.y * res.y) + .5f) * yOffs;
60
61        /*texelCenterConv.x = tex2Dlod(tex, float4(center + float2( xoffs,  yoffs), 0, 0)).y;
62        texelCenterConv.y = tex2Dlod(tex, float4(center + float2( xoffs, -yoffs), 0, 0)).y;
63        texelCenterConv.z = tex2Dlod(tex, float4(center + float2(-xoffs, -yoffs), 0, 0)).y;
64        texelCenterConv.w = tex2Dlod(tex, float4(center + float2(-xoffs,  yoffs), 0, 0)).y;
65
66        const float m1 = min(texelCenterConv.x, texelCenterConv.y);
67        const float m2 = min(texelCenterConv.z, texelCenterConv.w);
68
69        const float convergence = min(m1, m2);*/
70
71        //const float convergence = tex2Dlod(tex, float4(center, 0, 0)).y;
72        const float convergence = tex2Dlod(tex, float4(texCoord, 0, 0)).y;
73
74        return convergence;
75}
76
77/** This shader computes the reprojection and stores
78        the ssao value of the old pixel as well as the
79        weight of the pixel in the new frame.
80*/
81inline float3 Reproject(float4 worldPos,
82                                                float eyeSpaceDepth,
83                                                float2 texcoord0,
84                                                float3 oldEyePos,
85                                                sampler2D oldTex,
86                                                float4x4 oldModelViewProj,
87                                                sampler2D colors,
88                                                float3 projPos,
89                                                float invW,
90                                                float3 oldbl,
91                                                float3 oldbr,
92                                                float3 oldtl,
93                                                float3 oldtr,
94                                                float3 diffVec
95                                                )
96{
97        // compute position from old frame for dynamic objects + translational portion
98        const float3 translatedPos = diffVec - oldEyePos + worldPos.xyz;
99
100
101        /////////////////
102        //-- reproject into old frame and calculate texture position of sample in old frame
103
104        // note: the old model view matrix only holds the view orientation part
105        float4 backProjPos = mul(oldModelViewProj, float4(translatedPos, 1.0f));
106        backProjPos /= backProjPos.w;
107       
108        // fit from unit cube into 0 .. 1
109        const float2 oldTexCoords = backProjPos.xy * 0.5f + 0.5f;
110        // retrieve the sample from the last frame
111        const float4 oldPixel = tex2Dlod(oldTex, float4(oldTexCoords, .0f, .0f));
112
113        // the ssao value in the old frame
114        const float ssao = oldPixel.x;
115
116        // calculate eye space position of sample in old frame
117        const float oldEyeSpaceDepth = oldPixel.w;
118
119        // vector from eye pos to old sample
120        const float3 viewVec = Interpol(oldTexCoords, oldbl, oldbr, oldtl, oldtr);
121        const float invLen = 1.0f / length(viewVec);
122        const float projectedEyeSpaceDepth = invLen * length(translatedPos);
123        //const float projectedEyeSpaceDepth = length(translatedPos);
124       
125        const float depthDif = abs(1.0f - oldEyeSpaceDepth / projectedEyeSpaceDepth);
126
127        // the weight of the accumulated samples from the previous frames
128        float w;
129        float idx;
130
131
132        //////////////
133        //-- reuse old value only if it was still valid in the old frame
134
135        if (1
136                && (oldTexCoords.x > 0) && (oldTexCoords.x < 1.0f)
137                && (oldTexCoords.y > 0) && (oldTexCoords.y < 1.0f)
138                && (depthDif <= MIN_DEPTH_DIFF)
139                )
140        {
141                // pixel valid => retrieve the convergence weight
142                /*float w1 = tex2Dlod(oldTex, float4(oldTexCoords + float2(0.5f / 1024.0f, 0), .0f, .0f)).y;
143                float w2 = tex2Dlod(oldTex, float4(oldTexCoords - float2(0.5f / 1024.0f, 0), .0f, .0f)).y;
144                float w3 = tex2Dlod(oldTex, float4(oldTexCoords + float2(0, 0.5f / 768.0f), .0f, .0f)).y;
145                float w4 = tex2Dlod(oldTex, float4(oldTexCoords - float2(0, 0.5f / 768.0f), .0f, .0f)).y;
146
147                w = min(min(w1, w2), min(w3, w4));*/
148               
149                //w = ComputeConvergence(oldTex, oldTexCoords, float2(1024.0f, 768.0f));
150                w   = oldPixel.y;
151                idx = floor(oldPixel.z);
152                //idx = oldPixel.z;
153        }
154        else
155        {       
156                w   = .0f;
157                idx = .0f;
158        }
159
160        return float3(ssao, w, idx);
161}
162
163
164/** The ssao shader returning the an intensity value between 0 and 1.
165        This version of the ssao shader uses the dotproduct between
166        pixel-to-sample direction and sample normal as weight.
167
168    The algorithm works like the following:
169        1) Check in a circular area around the current position.
170        2) Shoot vectors to the positions there, and check the angle to these positions.
171        3) Summing up these angles gives an estimation of the occlusion at the current position.
172*/
173float3 ssao2(fragment IN,
174                         sampler2D colors,
175                         sampler2D noiseTex,
176                         sampler2D samples,
177                         float3 normal,
178                         float3 centerPosition,
179                         float radius,
180                         float3 bl,
181                         float3 br,
182                         float3 tl,
183                         float3 tr,
184                         float3 viewDir,
185                         float convergence,
186                         float sampleIntensity,
187                         bool isMovingObject,
188                         sampler2D normalTex,
189                         float idx
190                         )
191{
192        float total_ao = .0f;
193        float validSamples = .0f;
194        float numSamples = .0f;
195
196        for (int i = 0; i < NUM_SAMPLES; ++ i)
197        {
198                float2 offset;
199
200                const float2 ssaoOffset =
201                        tex2Dlod(samples, float4((0.5f + i + idx) / NUM_PRECOMPUTED_SAMPLES, 0.5f, .0f, .0f)).xy;
202
203                ////////////////////
204                //-- add random noise: reflect around random normal vector
205                //-- (affects performance for some reason!)
206
207                if (convergence < SSAO_CONVERGENCE_THRESHOLD)
208                {
209                        float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
210                        //offset = myreflect(samples[i], mynoise);
211                        //offset = myrotate(samples[i], mynoise.x);
212                        offset = myrotate(ssaoOffset, mynoise.x);
213                }
214                else
215                {
216                        offset = ssaoOffset;
217                }
218               
219                // weight with projected coordinate to reach similar kernel size for near and far
220                const float2 texcoord = IN.texCoord.xy + offset * radius;
221
222                const float4 sampleColor = tex2Dlod(colors, float4(texcoord, .0f, .0f));
223                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
224               
225
226                ////////////////
227                //-- compute contribution of sample using the direction and angle
228
229                float3 dirSample = samplePos - centerPosition;
230
231                const float minDist = 1e-6f;
232                const float delta = 1e-3f;
233
234                const float lengthToSample = length(dirSample);
235                const float sampleWeight = 1.0f / (lengthToSample + delta);
236
237                dirSample /= max(lengthToSample, minDist); // normalize
238
239
240                // angle between current normal and direction to sample controls AO intensity.
241                const float cosAngle = dot(dirSample, normal);
242
243                // the normal of the current sample
244                const float3 sampleNormal = normalize(tex2Dlod(normalTex, float4(texcoord, 0, 0)).xyz);
245               
246                // angle between current normal and direction to sample controls AO intensity.
247                //const float cosAngle2 = dot(-dirSample, sampleNormal);
248                const float cosAngle2 = .5f + dot(sampleNormal, -normal) * .5f;
249
250                dirSample *= minDist;
251                const float aoContrib = sampleIntensity * sampleWeight;
252
253                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
254                //total_ao += max(cosAngle, .0f) * max(cosAngle2, .0f) * aoContrib;
255                total_ao += max(cosAngle, .0f) * cosAngle2 * aoContrib;
256
257                ++ numSamples;
258
259                // check if the samples have been valid in the last frame
260                // only mark sample as invalid if in the last / current frame
261                // they possibly have any influence on the ao
262
263                const float changeFactor = sampleColor.y;
264                const float pixelValid = sampleColor.x;
265
266                // hack:
267                // we check if the sample could have been near enough
268                // to the current pixel or if the angle is small enough
269                // to have any influence in the current or last frame
270#if 1
271                const float tooFarAway = step(0.5f, lengthToSample - changeFactor);
272                const float partlyResetThres = 1.0f;
273
274                if (pixelValid <= partlyResetThres)
275                        validSamples = max(validSamples, pixelValid * (1.0f - tooFarAway) * step(-0.1f, cosAngle));
276                else
277                        validSamples = max(validSamples, pixelValid);
278#endif
279
280#ifdef USE_GTX
281                // we can bail out early and use a minimal #samples)
282                // if some conditions are met as long as the hardware supports it
283                if (numSamples >= MIN_SAMPLES)
284                {
285                        //break;
286                        // if the pixel belongs to a static object and all the samples stay valid in the current frame
287                        if (!isMovingObject && (validSamples < 1.0f) && (convergence > NUM_SAMPLES)) break;
288                        // if the pixel belongs to a dynamic object but the #accumulated samples for this pixel is sufficiently high
289                        // (=> there was no discontinuity recently)
290                        //else if (isMovingObject && (convergence > SSAO_CONVERGENCE_THRESHOLD)) break;
291                        else if (isMovingObject && (convergence > NUM_SAMPLES * 5)) break;
292                }
293#endif
294        }
295
296        // "normalize" ao contribution
297        total_ao /= numSamples;
298
299#if 1
300        // if surface normal perpenticular to view dir, approx. half of the samples will not count
301        // => compensate for this (on the other hand, projected sampling area could be larger!)
302        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
303        total_ao *= viewCorrection;
304#endif
305
306        //return float3(total_ao, validSamples, numSamples);
307        return float3(min(1.0f, total_ao), validSamples, numSamples);
308}
309
310
311/** The ssao shader returning the an intensity value between 0 and 1.
312        This version of the ssao shader uses the dotproduct between
313        pixel-to-sample direction and sample normal as weight.
314
315    The algorithm works like the following:
316        1) Check in a circular area around the current position.
317        2) Shoot vectors to the positions there, and check the angle to these positions.
318        3) Summing up these angles gives an estimation of the occlusion at the current position.
319*/
320float3 ssao(fragment IN,
321                        sampler2D colors,
322                        sampler2D noiseTex,
323                        sampler2D samples,
324                        float3 normal,
325                        float3 centerPosition,
326                        float radius,
327                        float3 bl,
328                        float3 br,
329                        float3 tl,
330                        float3 tr,
331                        float3 viewDir,
332                        float convergence,
333                        float sampleIntensity,
334                        bool isMovingObject,
335                        float oldIdx
336                        )
337{
338        float total_ao = .0f;
339        float validSamples = .0f;
340        float numSamples = .0f;
341
342        for (int i = 0; i < NUM_SAMPLES; ++ i)
343        {
344                float2 offset;
345
346                const float2 ssaoOffset =
347                        tex2Dlod(samples, float4((0.5f + i + oldIdx) / NUM_PRECOMPUTED_SAMPLES, 0.5f, .0f, .0f)).xy;
348
349
350                ////////////////////
351                //-- add random noise: reflect around random normal vector
352                //-- (affects performance for some reason!)
353
354                if (convergence < SSAO_CONVERGENCE_THRESHOLD)
355                {
356                        float2 mynoise = tex2Dlod(noiseTex, float4(IN.texCoord * 4.0f, 0, 0)).xy;
357                        //offset = myreflect(samples[i], mynoise);
358                        //offset = myrotate(samples[i], mynoise.x);
359                        offset = myrotate(ssaoOffset, mynoise.x);
360                }
361                else
362                {
363                        offset = ssaoOffset;
364                }
365
366
367                // weight with projected coordinate to reach similar kernel size for near and far
368                const float2 texcoord = IN.texCoord.xy + offset * radius;
369
370                const float4 sampleColor = tex2Dlod(colors, float4(texcoord, .0f, .0f));
371                const float3 samplePos = ReconstructSamplePos(sampleColor.w, texcoord, bl, br, tl, tr);
372               
373
374                ////////////////
375                //-- compute contribution of sample using the direction and angle
376
377                float3 dirSample = samplePos - centerPosition;
378
379                const float minDist = 1e-6f;
380                const float eps = 1e-3f;
381
382                const float lengthToSample = length(dirSample);
383                const float sampleWeight = 1.0f / max(lengthToSample, eps);
384
385                dirSample /= max(length(dirSample), minDist); // normalize
386
387                // angle between current normal and direction to sample controls AO intensity.
388                const float cosAngle = dot(dirSample, normal);
389
390                //const float aoContrib = sampleIntensity / sqrLen;
391                const float aoContrib = sampleIntensity * sampleWeight;
392                //const float aoContrib = (1.0f > lengthToSample) ? occlusionPower(9e-2f, DISTANCE_SCALE + lengthToSample): .0f;
393
394                total_ao += max(cosAngle, .0f) * aoContrib;
395
396                ++ numSamples;
397
398#ifdef PERFORMANCE_TEST
399                // check if the samples have been valid in the last frame
400                // only mark sample as invalid if in the last / current frame
401                // they possibly have any influence on the ao
402
403                const float changeFactor = sampleColor.y;
404                const float pixelValid = sampleColor.x;
405
406                // hack:
407                // we check if the sample could have been near enough to the current pixel
408                // or if the angle is small enough
409                // to have any influence in the current or last frame
410
411#if 1
412                const float partlyResetThres = 1.0f;
413
414                const float tooFarAway = step(0.5f, lengthToSample - changeFactor);
415                if (0)//pixelValid <= partlyResetThres)
416                        validSamples = max(validSamples, pixelValid * (1.0f - tooFarAway) * step(-0.1f, cosAngle));
417                else
418                        validSamples = max(validSamples, pixelValid);
419#endif
420
421#ifdef USE_GTX
422                // we can bail out early and use a minimal #samples)
423                // if some conditions are met as long as the hardware supports it
424                if (numSamples >= MIN_SAMPLES)
425                {
426                        //break;
427                        // if the pixel belongs to a static object and all the samples stay valid in the current frame
428                        if (!isMovingObject && (validSamples < 1.0f) && (convergence > NUM_SAMPLES)) break;
429                        // if the pixel belongs to a dynamic object but the #accumulated samples for this pixel is sufficiently high
430                        // (=> there was no discontinuity recently)
431                        //else if (isMovingObject && (convergence > SSAO_CONVERGENCE_THRESHOLD)) break;
432                        else if (isMovingObject && (convergence > NUM_SAMPLES * 5)) break;
433                }
434#endif
435
436#endif // PERFORMANCE_TEST
437        }
438
439        // "normalize" ao contribution
440        total_ao /= numSamples;
441
442#if 1
443        // if surface normal perpenticular to view dir, approx. half of the samples will not count
444        // => compensate for this (on the other hand, projected sampling area could be larger!)
445        const float viewCorrection = 1.0f + VIEW_CORRECTION_SCALE * max(dot(viewDir, normal), 0.0f);
446        total_ao *= viewCorrection;
447#endif
448
449        //return float3(total_ao, validSamples, numSamples);
450        return float3(min(1.0f, total_ao), validSamples, numSamples);
451}
452
453
454
455/** The mrt shader for screen space ambient occlusion
456*/
457pixel2 main(fragment IN,
458                        uniform sampler2D colors,
459                        uniform sampler2D normals,
460                        uniform sampler2D noiseTex,
461                        uniform sampler2D samples,
462                        uniform sampler2D oldTex,
463                        uniform float4x4 modelViewProj,
464                        uniform float4x4 oldModelViewProj,
465                        uniform float temporalCoherence,
466                        uniform float3 bl,
467                        uniform float3 br,
468                        uniform float3 tl,
469                        uniform float3 tr,
470                        uniform float3 oldEyePos,
471                        uniform float3 oldbl,
472                        uniform float3 oldbr,
473                        uniform float3 oldtl,
474                        uniform float3 oldtr,
475                        uniform sampler2D attribsTex,
476                        uniform float kernelRadius,
477                        uniform float sampleIntensity
478                        )
479{
480        pixel2 OUT;
481
482        //const float3 normal = normalize(tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz);
483        const float3 normal = tex2Dlod(normals, float4(IN.texCoord, 0 ,0)).xyz;
484
485        // reconstruct position from the eye space depth
486        const float3 viewDir = IN.view;
487        const float eyeSpaceDepth = tex2Dlod(colors, float4(IN.texCoord, 0, 0)).w;
488        const float4 eyeSpacePos = float4(-viewDir * eyeSpaceDepth, 1.0f);
489
490
491        ////////////////
492        //-- calculcate the current projected posiion (also used for next frame)
493       
494        float4 projPos = mul(modelViewProj, eyeSpacePos);
495        const float invw = 1.0f / projPos.w;
496        projPos *= invw;
497       
498        //const float radiusMult = kernelRadius;
499        //const float radiusMult = 3e-2;
500        const float radiusMult = kernelRadius * invw;
501       
502#ifdef PERFORMANCE_TEST
503//#if 0
504        float3 diffVec = tex2Dlod(attribsTex, float4(IN.texCoord, 0, 0)).xyz;
505
506        const float sqrMoveSpeed = SqrLen(diffVec);
507        const bool isMovingObject = (sqrMoveSpeed > DYNAMIC_OBJECTS_THRESHOLD);
508
509       
510        /////////////////
511        //-- compute temporal reprojection
512
513        float3 temporalVals = Reproject(eyeSpacePos, eyeSpaceDepth, IN.texCoord, oldEyePos,
514                                        oldTex, oldModelViewProj,
515                                                                        colors,
516                                                                        projPos.xyz,
517                                                                        invw,
518                                                                        oldbl, oldbr, oldtl, oldtr,
519                                                                        diffVec
520                                                                        );
521       
522        const float oldSsao = temporalVals.x;
523       
524        float oldWeight = temporalVals.y;
525        float oldIdx = temporalCoherence > 1 ? temporalVals.z : 0;
526        //float oldIdx = temporalVals.z;
527       
528#else
529
530        const float3 diffVec = float3(.0f);
531        const bool isMovingObject = false;
532        const float oldSsao = 0;
533       
534        float oldWeight = 0;
535        float oldIdx    = 0;
536       
537#endif
538
539        float3 ao;
540
541        // cull background note: this should be done with the stencil buffer
542        if (eyeSpaceDepth < DEPTH_THRESHOLD)
543        {
544                if (1)
545                {
546                        ao = ssao(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz,
547                                      radiusMult, bl, br, tl, tr, normalize(viewDir),
548                                          oldWeight, sampleIntensity, isMovingObject, oldIdx);
549                }
550                else
551                {
552                        ao = ssao2(IN, colors, noiseTex, samples, normal, eyeSpacePos.xyz, radiusMult,
553                                   bl, br, tl, tr, normalize(viewDir), oldWeight, sampleIntensity,
554                                           isMovingObject, normals, oldIdx);
555                }
556        }
557        else
558        {
559                 ao = float3(1.0f);
560        }
561
562
563#ifdef PERFORMANCE_TEST
564
565        ///////////
566        //-- check if we have to reset pixel because one of the sample points was invalid
567        //-- only do this if the current pixel does not belong to a moving object
568
569        // the weight equals the number of sampled shot in this pass
570        const float newWeight = ao.z;
571        // completely reset the ao in this pixel
572        const float completelyResetThres = 20.0f;
573        // don't fully reset the ao in this pixel, but give low weight to old solution
574        const float partlyResetThres = 1.0f;
575       
576        // don't check for moving objects, otherwise almost no coherence
577        if (!isMovingObject)
578        {
579                if (ao.y > completelyResetThres)
580                {
581                        oldWeight = .0f;
582                        oldIdx    = .0f;
583                }
584                else if (ao.y > partlyResetThres)
585                {
586                        oldWeight = min(oldWeight, 4.0f * newWeight);
587                        //oldWeight = .0f;
588                        //oldIdx    = .0f;
589                }
590        }
591
592
593        //////////
594        //-- blend ao between old and new samples (and avoid division by zero)
595
596        OUT.illum_col.x = (ao.x * newWeight + oldSsao * oldWeight);
597        OUT.illum_col.x /= (newWeight + oldWeight);
598
599        // the new weight for the next frame
600        const float combinedWeight = clamp(newWeight + oldWeight, .0f, temporalCoherence);
601
602        OUT.illum_col.y = combinedWeight;
603        OUT.illum_col.z = oldIdx + newWeight; // the new index
604        OUT.illum_col.w = eyeSpaceDepth;
605
606        // this value can be used to check if this pixel belongs to a moving object
607        OUT.col.x = SqrLen(diffVec);
608        //OUT.illum_col.z = SqrLen(diffVec);
609
610#else
611
612        OUT.illum_col.x = ao.x;
613        OUT.illum_col.w = eyeSpaceDepth;
614       
615#endif
616
617        return OUT;
618}
Note: See TracBrowser for help on using the repository browser.