source: GTP/trunk/Lib/Vis/Preprocessing/src/HierarchyManager.h @ 1686

Revision 1686, 15.8 KB checked in by mattausch, 18 years ago (diff)
RevLine 
[1237]1#ifndef _HierarchyManager_H__
2#define _HierarchyManager_H__
3
4#include <stack>
5
6#include "Mesh.h"
7#include "Containers.h"
8#include "Statistics.h"
9#include "VssRay.h"
10#include "RayInfo.h"
11#include "gzstream.h"
[1239]12#include "SubdivisionCandidate.h"
[1237]13
14
15
16namespace GtpVisibilityPreprocessor {
17
18class ViewCellLeaf;
19class OspTree;
20class VspTree;
21class Plane3;
22class AxisAlignedBox3;
23class Ray;
24class ViewCellsStatistics;
25class ViewCellsManager;
26class MergeCandidate;
27class Beam;
28class ViewCellsTree;
29class Environment;
30class VspInterior;
31class VspLeaf;
32class VspNode;
33class KdNode;
34class KdInterior;
35class KdLeaf;
36class OspTree;
37class KdIntersectable;
38class KdTree;
39class VspTree;
40class KdTreeStatistics;
[1259]41class BvHierarchy;
[1287]42class Exporter;
[1667]43class ViewCellsParseHandlers;
[1237]44
[1667]45
[1649]46#define COUNT_ORIGIN_OBJECTS 1
[1237]47
[1551]48/** View space / object space hierarchy statistics.
[1288]49*/
50class HierarchyStatistics: public StatisticsBase
51{
52public:
[1576]53        /// total number of entries in the pvs
[1624]54        int mPvsEntries;
[1640]55        /// storage cost in MB
56        float mMemory;
[1288]57        /// total number of nodes
[1624]58        int mNodes;
[1288]59        /// maximal reached depth
[1624]60        int mMaxDepth;
[1288]61        /// accumulated depth
[1624]62        int mAccumDepth;
[1449]63        /// time spent for queue repair
[1624]64        float mRepairTime;
65
[1449]66        // global cost ratio violations
67        int mGlobalCostMisses;
[1624]68        /// total cost of subdivision
69        float mTotalCost;
70        /// render cost decrease of subdivision
71        float mRenderCostDecrease;
[1313]72
[1288]73        // Constructor
74        HierarchyStatistics()
75        {
76                Reset();
77        }
78
[1624]79        int Nodes() const {return mNodes;}
[1640]80        int Interior() const { return mNodes / 2 - 1; }
[1624]81        int Leaves() const { return (mNodes / 2) + 1; }
[1288]82       
83        // TODO: computation wrong
[1624]84        double AvgDepth() const { return mAccumDepth / (double)Leaves();}
[1288]85
[1449]86        void Reset()
[1288]87        {
[1449]88                mGlobalCostMisses = 0;
[1624]89                mTotalCost = 0;
90                mRenderCostDecrease = 0;
91
92                mNodes = 0;
93                mMaxDepth = 0;
94                mAccumDepth = 0;
95                mRepairTime = 0;
96                mMemory = 0;
97                mPvsEntries = 0;
[1288]98        }
99
100        void Print(ostream &app) const;
101
102        friend ostream &operator<<(ostream &s, const HierarchyStatistics &stat)
103        {
104                stat.Print(s);
105                return s;
106        }
107};
108
109
[1237]110/** This class implements a structure holding two different hierarchies,
111        one for object space partitioning and one for view space partitioning.
112
113        The object space and the view space are subdivided using a cost heuristics.
114        If an object space split or a view space split is chosen is also evaluated
115        based on the heuristics.
116       
117        The view space heuristics is evaluated by weighting and adding the pvss of the back and
118        front node of each specific split. unlike for the standalone method vspbsp tree,
119        the pvs of an object would not be the pvs of single object but that of all objects
120        which are contained in the same leaf of the object subdivision. This could be done
121        by storing the pointer to the object space partition parent, which would allow access to all children.
122        Another possibility is to include traced kd-cells in the ray casing process.
123
124        Accordingly, the object space heuristics is evaluated by storing a pvs of view cells with each object.
125        the contribution to an object to the pvs is the number of view cells it can be seen from.
126
127        @note
128        There is a potential efficiency problem involved in a sense that once a certain type
129        of split is chosen for view space / object space, the candidates for the next split of
130        object space / view space must be reevaluated.
131*/
132class HierarchyManager
133{
134public:
[1421]135        /** Constructor with the view space partition tree and
136                the object space hierarchy type as argument.
[1237]137        */
[1421]138        HierarchyManager(const int objectSpaceHierarchyType);
[1279]139        /** Hack: OspTree will copy the content from this kd tree.
140                Only view space hierarchy will be constructed.
141        */
[1421]142        HierarchyManager(KdTree *kdTree);
[1237]143
[1421]144        /** Deletes space partition and view space partition.
145        */
[1286]146        ~HierarchyManager();
147
[1237]148        /** Constructs the view space and object space subdivision from a given set of rays
149                and a set of objects.
150                @param sampleRays the set of sample rays the construction is based on
151                @param objects the set of objects
152        */
[1308]153        void Construct(
[1293]154                const VssRayContainer &sampleRays,
155                const ObjectContainer &objects,
156                AxisAlignedBox3 *forcedViewSpace);
[1237]157
[1259]158        enum
159        {
160                NO_OBJ_SUBDIV,
161                KD_BASED_OBJ_SUBDIV,
162                BV_BASED_OBJ_SUBDIV
163        };
[1237]164
[1370]165        enum
166        {
167                NO_VIEWSPACE_SUBDIV,
168                KD_BASED_VIEWSPACE_SUBDIV
169        };
170
[1259]171        /** The type of object space subdivison
172        */
[1370]173        int GetObjectSpaceSubdivisionType() const;     
174        /** The type of view space space subdivison
175        */
176        int GetViewSpaceSubdivisionType() const;
177        /** Sets a pointer to the view cells manager.
178        */             
[1279]179        void SetViewCellsManager(ViewCellsManager *vcm);
[1370]180        /** Sets a pointer to the view cells tree.
181        */
[1279]182        void SetViewCellsTree(ViewCellsTree *vcTree);
[1370]183        /** Exports the object hierarchy to disc.
184        */
[1279]185        void ExportObjectSpaceHierarchy(OUT_STREAM &stream);
[1370]186        /** Adds a sample to the pvs of the specified view cell.
187        */
[1279]188        bool AddSampleToPvs(
189                Intersectable *obj,
190                const Vector3 &hitPoint,
191                ViewCell *vc,
192                const float pdf,
193                float &contribution) const;
194
[1421]195        /** Print out statistics.
196        */
197        void PrintHierarchyStatistics(ostream &stream) const;
[1279]198
[1421]199        /** Returns the view space partition tree.
200        */
[1379]201        VspTree *GetVspTree();
[1279]202
[1421]203        /** Returns view space bounding box.
204        */
[1563]205        //AxisAlignedBox3 GetViewSpaceBox() const;
[1624]206
[1421]207        /** Returns object space bounding box.
208        */
[1416]209        AxisAlignedBox3 GetObjectSpaceBox() const;
[1379]210
[1421]211        /** Exports object space hierarchy for visualization.
212        */
[1626]213        void ExportObjectSpaceHierarchy(Exporter *exporter,
214                                                                        const ObjectContainer &objects,
215                                                                        const AxisAlignedBox3 *bbox,
216                                                                        const bool exportBounds = true) const;
[1279]217
[1421]218        /** Returns intersectable pierced by this ray.
219        */
[1626]220        Intersectable *GetIntersectable(const VssRay &ray, const bool isTermination) const;
[1418]221
[1626]222        /** Export object space partition bounding boxes.
223        */
224        void ExportBoundingBoxes(OUT_STREAM &stream, const ObjectContainer &objects);
225
[1419]226        friend ostream &operator<<(ostream &s, const HierarchyManager &hm)
227        {
[1421]228                hm.PrintHierarchyStatistics(s);
[1419]229                return s;
230        }
231
[1667]232        HierarchyStatistics &GetHierarchyStats() { return mHierarchyStats; };
233
234        inline bool ConsiderMemory() const { return mConsiderMemory; }
[1676]235        inline float GetMemoryConst() const { return mMemoryConst; }
[1667]236
[1686]237       
238        void EvaluateSubdivision(const VssRayContainer &sampleRays,                                                                                     
239                                                         const ObjectContainer &objects,
240                                                         const string &filename);
[1676]241
[1686]242        float mInitialRenderCost;
243
244
[1237]245protected:
246
[1625]247        /** Returns true if the global termination criteria were met.
248        */
[1237]249        bool GlobalTerminationCriteriaMet(SubdivisionCandidate *candidate) const;
250
251        /** Prepare construction of the hierarchies, set parameters, compute
252                first split candidates.
253        */
[1625]254        SubdivisionCandidate *PrepareObjectSpaceSubdivision(const VssRayContainer &sampleRays,
255                                                                                                                const ObjectContainer &objects);
[1237]256
[1625]257
[1640]258        /** Create bounding box and root.
259        */
260        void InitialiseObjectSpaceSubdivision(const ObjectContainer &objects);
261
262        /** Returns memory usage of object space hierarchy.
263        */
264        float GetObjectSpaceMemUsage() const;
265
[1667]266
[1625]267        //////////////////////////////
268        // the main loop
269
270        /** This is for interleaved construction / sequential construction.
271        */
272        void RunConstruction(const bool repairQueue,
273                                                 const VssRayContainer &sampleRays,
274                                                 const ObjectContainer &objects,
[1640]275                                                 AxisAlignedBox3 *forcedViewSpace);
[1449]276       
[1625]277        /** This is for interleaved construction using some objects
278                and some view space splits.
279        */
280        int RunConstruction(SplitQueue &splitQueue,
281                                                SubdivisionCandidateContainer &chosenCandidates,
[1667]282                                                //const float minRenderCostDecr,
283                                                SubdivisionCandidate *oldCandidate,
[1676]284                                                const int minSteps,
285                                                const int maxSteps);
[1625]286
287        /** Default subdivision method.
288        */
[1449]289        void RunConstruction(const bool repairQueue);
290               
[1625]291        ////////////////////////////////////////////////
292
[1580]293        /** Evaluates the subdivision candidate and executes the split.
294        */
[1625]295        bool ApplySubdivisionCandidate(SubdivisionCandidate *sc,
296                                                                   SplitQueue &splitQueue,
297                                                                   const bool repairQueue);
[1237]298
[1625]299        /** Tests if hierarchy construction is finished.
300        */
[1237]301        bool FinishedConstruction() const;
302
[1625]303        /** Returns next subdivision candidate from the split queue.
304        */
305        SubdivisionCandidate *NextSubdivisionCandidate(SplitQueue &splitQueue);
[1237]306
[1625]307        /** Repairs the dirty entries of the subdivision candidate queue. The
308                list of entries is given in the dirty list.
[1580]309        */
[1633]310        void RepairQueue(const SubdivisionCandidateContainer &dirtyList,
311                                         SplitQueue &splitQueue,
312                                         const bool recomputeSplitPlaneOnRepair);
[1237]313
[1625]314        /** Collect subdivision candidates which were affected by the splits from the
315                chosenCandidates list.
316        */
317        void CollectDirtyCandidates(const SubdivisionCandidateContainer &chosenCandidates,
318                                                                SubdivisionCandidateContainer &dirtyList);
319
[1580]320        /** Evaluate subdivision stats for log.
321        */
[1624]322        void EvalSubdivisionStats();
[1237]323
[1625]324        void AddSubdivisionStats(const int splits,
325                                                         const float renderCostDecr,
326                                                         const float totalRenderCost,
327                                                         const int totalPvsEntries,
[1640]328                                                         const float memory,
[1654]329                                                         const float renderCostPerStorage,
330                                                         const float vspOspRatio);
[1237]331
[1625]332        bool AddSampleToPvs(Intersectable *obj,
333                                                const float pdf,
334                                                float &contribution) const;
[1237]335
[1625]336        /** Collect affected view space candidates.
337        */
338        void CollectViewSpaceDirtyList(SubdivisionCandidate *sc,
339                                                                   SubdivisionCandidateContainer &dirtyList);
[1259]340
[1625]341        /** Collect affected object space candidates.
342        */
343        void CollectObjectSpaceDirtyList(SubdivisionCandidate *sc,
344                                                                         SubdivisionCandidateContainer &dirtyList);
[1259]345               
[1625]346        /** Export object space partition tree.
347        */
348        void ExportOspTree(Exporter *exporter,
349                                           const ObjectContainer &objects) const;
[1259]350
[1625]351        /** Parse the environment variables.
352        */
[1418]353        void ParseEnvironment();
[1415]354
[1418]355        bool StartObjectSpaceSubdivision() const;
356        bool StartViewSpaceSubdivision() const;
357
[1667]358
[1625]359        ////////////////////////////
360        // Helper function for preparation of subdivision
[1286]361
[1625]362        /** Prepare bv hierarchy for subdivision
363        */
364        SubdivisionCandidate *PrepareBvHierarchy(const VssRayContainer &sampleRays,
365                                                                           const ObjectContainer &objects);
[1286]366
[1625]367        /** Prepare object space kd tree for subdivision.
368        */
369        SubdivisionCandidate *PrepareOspTree(const VssRayContainer &sampleRays,
370                                                                   const ObjectContainer &objects);
[1308]371
[1625]372        /** Prepare view space subdivision and add candidate to queue.
373        */
374        SubdivisionCandidate *PrepareViewSpaceSubdivision(const VssRayContainer &sampleRays,
375                                                                                                          const ObjectContainer &objects);
376
377        /** Was object space subdivision already constructed?
378        */
[1313]379        bool ObjectSpaceSubdivisionConstructed() const;
[1625]380       
381        /** Was view space subdivision already constructed?
382        */
[1329]383        bool ViewSpaceSubdivisionConstructed() const;
[1311]384
[1625]385        /** Reset the split queue, i.e., reevaluate the split candidates.
386        */
[1640]387    void ResetQueue(SplitQueue &splitQueue, const bool recomputeSplitPlane);
[1313]388
[1625]389        /** After the suddivision has ended, do some final tasks.
390        */
[1654]391        void FinishObjectSpaceSubdivision(const ObjectContainer &objects,
392                                                                          const bool removeRayRefs = true) const;
[1313]393
[1625]394        /** Returns depth of object space subdivision.
395        */
[1370]396        int GetObjectSpaceSubdivisionDepth() const;
397
[1640]398        /** Returns number of leaves in object space subdivision.
399        */
400        int GetObjectSpaceSubdivisionLeaves() const;
[1663]401        int GetObjectSpaceSubdivisionNodes() const;
[1640]402
[1625]403        /** Construct object space partition interleaved with view space partition.
404                Each time the best object or view space candidate is selected
405                for the next split.
406        */
[1626]407        void ConstructInterleaved(const VssRayContainer &sampleRays,
408                                                          const ObjectContainer &objects,
409                                                          AxisAlignedBox3 *forcedViewSpace);
[1449]410
[1625]411        /** Construct object space partition interleaved with view space partition.
412                The method chooses a number candidates of each type for subdivision.
413                The number is determined by the "gradient", i.e., the render cost decrease.
414                Once this render cost decrease is lower than the render cost decrease
415                for the splits of previous type, the method will stop current subdivision and
416                evaluate if view space or object space would be the beneficial for the
417                next number of split.
418        */
[1626]419        void ConstructInterleavedWithGradient(const VssRayContainer &sampleRays,
420                                                                                  const ObjectContainer &objects,
421                                                                                  AxisAlignedBox3 *forcedViewSpace);
[1624]422
[1548]423        /** Use iteration to construct the object space hierarchy.
424        */
[1626]425        void ConstructMultiLevel(const VssRayContainer &sampleRays,
426                                                         const ObjectContainer &objects,
427                                                         AxisAlignedBox3 *forcedViewSpace);
[1449]428
[1640]429        /** Based on a given subdivision, we try to optimize using an
430                multiple iteration over view and object space.
431        */
432        void OptimizeMultiLevel(const VssRayContainer &sampleRays,                                                                                       
433                                                        const ObjectContainer &objects,
434                                                        AxisAlignedBox3 *forcedViewSpace);
435
[1548]436        /** Reset the object space subdivision.
437                E.g., deletes hierarchy and resets stats.
438                so construction can be restarted.
439        */
[1625]440        SubdivisionCandidate *ResetObjectSpaceSubdivision(const VssRayContainer &rays,
441                                                                                                          const ObjectContainer &objects);
[1449]442
[1625]443        SubdivisionCandidate *ResetViewSpaceSubdivision(const VssRayContainer &rays,
[1642]444                                                                                                        const ObjectContainer &objects,
445                                                                                                        AxisAlignedBox3 *forcedViewSpace);
[1557]446
[1614]447
[1686]448        ///////////////////////////
[1680]449
[1686]450        void ExportStats(ofstream &stats, SplitQueue &tQueue, const ObjectContainer &objects);
451
[1237]452protected:
453
[1627]454        /** construction types
455                sequential: construct first view space, then object space
456                interleaved: construct view space and object space fully interleaved
457                gradient: construct view space / object space until a threshold is reached
458                multilevel: iterate until subdivisions converge to the optimum.
459        */
460        enum {SEQUENTIAL, INTERLEAVED, GRADIENT, MULTILEVEL};
461
[1580]462        /// type of hierarchy construction
463        int mConstructionType;
464
465        /// Type of object space partition
[1308]466        int mObjectSpaceSubdivisionType;
[1580]467        /// Type of view space partition
[1329]468    int mViewSpaceSubdivisionType;
469
[1589]470        /// the traversal queue
471        SplitQueue mTQueue;
472       
[1580]473        ////////////
474        //-- helper variables
475       
476        // the original osp type
[1323]477        int mSavedObjectSpaceSubdivisionType;
[1580]478        // the original vsp type
[1329]479        int mSavedViewSpaceSubdivisionType;
[1580]480        /// the current subdivision candidate
[1624]481        //SubdivisionCandidate *mCurrentCandidate;
[1323]482
[1259]483
[1580]484        ///////////////////
485        // Hierarchies
486
487        /// view space hierarchy
[1259]488        VspTree *mVspTree;
[1580]489        /// object space partition kd tree
[1259]490        OspTree *mOspTree;
[1625]491
[1589]492        public:
[1580]493        /// bounding volume hierarchy
[1259]494        BvHierarchy *mBvHierarchy;
[1580]495       
[1589]496protected:
[1237]497
498
[1580]499        //////////
[1576]500        //-- global termination criteria
501
[1580]502        /// the mininal acceptable cost ratio for a split
[1237]503        float mTermMinGlobalCostRatio;
[1580]504        /// the threshold for global cost miss tolerance
[1237]505        int mTermGlobalCostMissTolerance;
[1580]506        /// maximum number of leaves
507        int mTermMaxLeaves;
[1649]508        /// Maximal allowed memory consumption.
509        float mTermMaxMemory;
[1580]510
[1667]511
[1576]512        ////////////////////
513
[1667]514        /// number of minimal steps of the same type
[1640]515        int mMinStepsOfSameType;
[1684]516        int mMaxStepsOfSameType;
[1640]517
[1580]518        /// statistics about the hierarchy
[1288]519        HierarchyStatistics mHierarchyStats;
520
[1308]521        int mMinDepthForObjectSpaceSubdivion;
[1370]522        int mMinDepthForViewSpaceSubdivion;
[1580]523       
[1625]524        //int mMinRenderCostDecrease;
[1624]525
[1237]526        ofstream mSubdivisionStats;
[1314]527
[1580]528        /// if the queue should be repaired after a subdivision steps
[1314]529        bool mRepairQueue;
[1370]530
531        bool mStartWithObjectSpace;
[1580]532        /** if multi level construction method should be used
533                where we iterate over both hierarchies until we
534                converge to the optimum.
535        */
[1449]536        bool mUseMultiLevelConstruction;
[1640]537
[1580]538        /// number of iteration steps for multilevel approach   
539        int mNumMultiLevels;
[1640]540
[1633]541        /** if split plane should be recomputed for the repair.
542                Otherwise only the priority is recomputed, the
543                split plane itself stays the same
544        */
545        bool mRecomputeSplitPlaneOnRepair;
[1662]546
547        /** If memory should be considered during choosing
548                of the next split type during gradient method.
549        */
550        bool mConsiderMemory;
[1666]551
[1673]552        /// constant value for driving the heuristics
[1666]553        float mMemoryConst;
[1673]554       
555        bool mConsiderMemory2;
[1667]556
[1679]557        int mTimeStamp;
[1667]558        friend VspTree;
559        friend OspTree;
560        friend BvHierarchy;
561        friend ViewCellsParseHandlers;
562
[1237]563};
564
565}
566
567#endif
Note: See TracBrowser for help on using the repository browser.