[1743] | 1 | /*
|
---|
| 2 | * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
|
---|
| 3 | * ALL RIGHTS RESERVED
|
---|
| 4 | * Permission to use, copy, modify, and distribute this software for
|
---|
| 5 | * any purpose and without fee is hereby granted, provided that the above
|
---|
| 6 | * copyright notice appear in all copies and that both the copyright notice
|
---|
| 7 | * and this permission notice appear in supporting documentation, and that
|
---|
| 8 | * the name of Silicon Graphics, Inc. not be used in advertising
|
---|
| 9 | * or publicity pertaining to distribution of the software without specific,
|
---|
| 10 | * written prior permission.
|
---|
| 11 | *
|
---|
| 12 | * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
|
---|
| 13 | * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
|
---|
| 14 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
|
---|
| 15 | * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
|
---|
| 16 | * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
|
---|
| 17 | * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
|
---|
| 18 | * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
|
---|
| 19 | * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
|
---|
| 20 | * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
|
---|
| 21 | * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
|
---|
| 22 | * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
|
---|
| 23 | * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
|
---|
| 24 | *
|
---|
| 25 | * US Government Users Restricted Rights
|
---|
| 26 | * Use, duplication, or disclosure by the Government is subject to
|
---|
| 27 | * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
|
---|
| 28 | * (c)(1)(ii) of the Rights in Technical Data and Computer Software
|
---|
| 29 | * clause at DFARS 252.227-7013 and/or in similar or successor
|
---|
| 30 | * clauses in the FAR or the DOD or NASA FAR Supplement.
|
---|
| 31 | * Unpublished-- rights reserved under the copyright laws of the
|
---|
| 32 | * United States. Contractor/manufacturer is Silicon Graphics,
|
---|
| 33 | * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
|
---|
| 34 | *
|
---|
| 35 | * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
|
---|
| 36 | */
|
---|
| 37 | /*
|
---|
| 38 | * Trackball code:
|
---|
| 39 | *
|
---|
| 40 | * Implementation of a virtual trackball.
|
---|
| 41 | * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
|
---|
| 42 | * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
|
---|
| 43 | *
|
---|
| 44 | * Vector manip code:
|
---|
| 45 | *
|
---|
| 46 | * Original code from:
|
---|
| 47 | * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
|
---|
| 48 | *
|
---|
| 49 | * Much mucking with by:
|
---|
| 50 | * Gavin Bell
|
---|
| 51 | */
|
---|
| 52 | #include <math.h>
|
---|
| 53 | #include "trackball.h"
|
---|
| 54 |
|
---|
| 55 | /*
|
---|
| 56 | * This size should really be based on the distance from the center of
|
---|
| 57 | * rotation to the point on the object underneath the mouse. That
|
---|
| 58 | * point would then track the mouse as closely as possible. This is a
|
---|
| 59 | * simple example, though, so that is left as an Exercise for the
|
---|
| 60 | * Programmer.
|
---|
| 61 | */
|
---|
[2347] | 62 | #define TRACKBALLSIZE (0.8f)
|
---|
[1743] | 63 |
|
---|
| 64 | /*
|
---|
| 65 | * Local function prototypes (not defined in trackball.h)
|
---|
| 66 | */
|
---|
| 67 | static float tb_project_to_sphere(float, float, float);
|
---|
| 68 | static void normalize_quat(float [4]);
|
---|
| 69 |
|
---|
| 70 | void
|
---|
| 71 | vzero(float *v)
|
---|
| 72 | {
|
---|
| 73 | v[0] = 0.0;
|
---|
| 74 | v[1] = 0.0;
|
---|
| 75 | v[2] = 0.0;
|
---|
| 76 | }
|
---|
| 77 |
|
---|
| 78 | void
|
---|
| 79 | vset(float *v, float x, float y, float z)
|
---|
| 80 | {
|
---|
| 81 | v[0] = x;
|
---|
| 82 | v[1] = y;
|
---|
| 83 | v[2] = z;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | void
|
---|
| 87 | vsub(const float *src1, const float *src2, float *dst)
|
---|
| 88 | {
|
---|
| 89 | dst[0] = src1[0] - src2[0];
|
---|
| 90 | dst[1] = src1[1] - src2[1];
|
---|
| 91 | dst[2] = src1[2] - src2[2];
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | void
|
---|
| 95 | vcopy(const float *v1, float *v2)
|
---|
| 96 | {
|
---|
| 97 | register int i;
|
---|
| 98 | for (i = 0 ; i < 3 ; i++)
|
---|
| 99 | v2[i] = v1[i];
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | void
|
---|
| 103 | vcross(const float *v1, const float *v2, float *cross)
|
---|
| 104 | {
|
---|
| 105 | float temp[3];
|
---|
| 106 |
|
---|
| 107 | temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
|
---|
| 108 | temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
|
---|
| 109 | temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
|
---|
| 110 | vcopy(temp, cross);
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | float
|
---|
| 114 | vlength(const float *v)
|
---|
| 115 | {
|
---|
| 116 | return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | void
|
---|
| 120 | vscale(float *v, float div)
|
---|
| 121 | {
|
---|
| 122 | v[0] *= div;
|
---|
| 123 | v[1] *= div;
|
---|
| 124 | v[2] *= div;
|
---|
| 125 | }
|
---|
| 126 |
|
---|
| 127 | void
|
---|
| 128 | vnormal(float *v)
|
---|
| 129 | {
|
---|
| 130 | vscale(v,1.0/vlength(v));
|
---|
| 131 | }
|
---|
| 132 |
|
---|
| 133 | float
|
---|
| 134 | vdot(const float *v1, const float *v2)
|
---|
| 135 | {
|
---|
| 136 | return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | void
|
---|
| 140 | vadd(const float *src1, const float *src2, float *dst)
|
---|
| 141 | {
|
---|
| 142 | dst[0] = src1[0] + src2[0];
|
---|
| 143 | dst[1] = src1[1] + src2[1];
|
---|
| 144 | dst[2] = src1[2] + src2[2];
|
---|
| 145 | }
|
---|
| 146 |
|
---|
| 147 | /*
|
---|
| 148 | * Ok, simulate a track-ball. Project the points onto the virtual
|
---|
| 149 | * trackball, then figure out the axis of rotation, which is the cross
|
---|
| 150 | * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
|
---|
| 151 | * Note: This is a deformed trackball-- is a trackball in the center,
|
---|
| 152 | * but is deformed into a hyperbolic sheet of rotation away from the
|
---|
| 153 | * center. This particular function was chosen after trying out
|
---|
| 154 | * several variations.
|
---|
| 155 | *
|
---|
| 156 | * It is assumed that the arguments to this routine are in the range
|
---|
| 157 | * (-1.0 ... 1.0)
|
---|
| 158 | */
|
---|
| 159 | void
|
---|
| 160 | trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
|
---|
| 161 | {
|
---|
| 162 | float a[3]; /* Axis of rotation */
|
---|
| 163 | float phi; /* how much to rotate about axis */
|
---|
| 164 | float p1[3], p2[3], d[3];
|
---|
| 165 | float t;
|
---|
| 166 |
|
---|
| 167 | if (p1x == p2x && p1y == p2y) {
|
---|
| 168 | /* Zero rotation */
|
---|
| 169 | vzero(q);
|
---|
| 170 | q[3] = 1.0;
|
---|
| 171 | return;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | /*
|
---|
| 175 | * First, figure out z-coordinates for projection of P1 and P2 to
|
---|
| 176 | * deformed sphere
|
---|
| 177 | */
|
---|
| 178 | vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
|
---|
| 179 | vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
|
---|
| 180 |
|
---|
| 181 | /*
|
---|
| 182 | * Now, we want the cross product of P1 and P2
|
---|
| 183 | */
|
---|
| 184 | vcross(p2,p1,a);
|
---|
| 185 |
|
---|
| 186 | /*
|
---|
| 187 | * Figure out how much to rotate around that axis.
|
---|
| 188 | */
|
---|
| 189 | vsub(p1,p2,d);
|
---|
| 190 | t = vlength(d) / (2.0*TRACKBALLSIZE);
|
---|
| 191 |
|
---|
| 192 | /*
|
---|
| 193 | * Avoid problems with out-of-control values...
|
---|
| 194 | */
|
---|
[2332] | 195 | if (t > 1.0f) t = 1.0f;
|
---|
| 196 | if (t < -1.0f) t = -1.0f;
|
---|
| 197 | phi = 2.0f * asin(t);
|
---|
[1743] | 198 |
|
---|
| 199 | axis_to_quat(a,phi,q);
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | /*
|
---|
| 203 | * Given an axis and angle, compute quaternion.
|
---|
| 204 | */
|
---|
| 205 | void
|
---|
| 206 | axis_to_quat(float a[3], float phi, float q[4])
|
---|
| 207 | {
|
---|
| 208 | vnormal(a);
|
---|
| 209 | vcopy(a,q);
|
---|
| 210 | vscale(q,sin(phi/2.0));
|
---|
| 211 | q[3] = cos(phi/2.0);
|
---|
| 212 | }
|
---|
| 213 |
|
---|
| 214 | /*
|
---|
| 215 | * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
|
---|
| 216 | * if we are away from the center of the sphere.
|
---|
| 217 | */
|
---|
| 218 | static float
|
---|
| 219 | tb_project_to_sphere(float r, float x, float y)
|
---|
| 220 | {
|
---|
| 221 | float d, t, z;
|
---|
| 222 |
|
---|
| 223 | d = sqrt(x*x + y*y);
|
---|
| 224 | if (d < r * 0.70710678118654752440) { /* Inside sphere */
|
---|
| 225 | z = sqrt(r*r - d*d);
|
---|
| 226 | } else { /* On hyperbola */
|
---|
| 227 | t = r / 1.41421356237309504880;
|
---|
| 228 | z = t*t / d;
|
---|
| 229 | }
|
---|
| 230 | return z;
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | /*
|
---|
| 234 | * Given two rotations, e1 and e2, expressed as quaternion rotations,
|
---|
| 235 | * figure out the equivalent single rotation and stuff it into dest.
|
---|
| 236 | *
|
---|
| 237 | * This routine also normalizes the result every RENORMCOUNT times it is
|
---|
| 238 | * called, to keep error from creeping in.
|
---|
| 239 | *
|
---|
| 240 | * NOTE: This routine is written so that q1 or q2 may be the same
|
---|
| 241 | * as dest (or each other).
|
---|
| 242 | */
|
---|
| 243 |
|
---|
| 244 | #define RENORMCOUNT 97
|
---|
| 245 |
|
---|
| 246 | void
|
---|
| 247 | add_quats(float q1[4], float q2[4], float dest[4])
|
---|
| 248 | {
|
---|
| 249 | static int count=0;
|
---|
| 250 | float t1[4], t2[4], t3[4];
|
---|
| 251 | float tf[4];
|
---|
| 252 |
|
---|
| 253 | vcopy(q1,t1);
|
---|
| 254 | vscale(t1,q2[3]);
|
---|
| 255 |
|
---|
| 256 | vcopy(q2,t2);
|
---|
| 257 | vscale(t2,q1[3]);
|
---|
| 258 |
|
---|
| 259 | vcross(q2,q1,t3);
|
---|
| 260 | vadd(t1,t2,tf);
|
---|
| 261 | vadd(t3,tf,tf);
|
---|
| 262 | tf[3] = q1[3] * q2[3] - vdot(q1,q2);
|
---|
| 263 |
|
---|
| 264 | dest[0] = tf[0];
|
---|
| 265 | dest[1] = tf[1];
|
---|
| 266 | dest[2] = tf[2];
|
---|
| 267 | dest[3] = tf[3];
|
---|
| 268 |
|
---|
| 269 | if (++count > RENORMCOUNT) {
|
---|
| 270 | count = 0;
|
---|
| 271 | normalize_quat(dest);
|
---|
| 272 | }
|
---|
| 273 | }
|
---|
| 274 |
|
---|
| 275 | /*
|
---|
| 276 | * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
|
---|
| 277 | * If they don't add up to 1.0, dividing by their magnitued will
|
---|
| 278 | * renormalize them.
|
---|
| 279 | *
|
---|
| 280 | * Note: See the following for more information on quaternions:
|
---|
| 281 | *
|
---|
| 282 | * - Shoemake, K., Animating rotation with quaternion curves, Computer
|
---|
| 283 | * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
|
---|
| 284 | * - Pletinckx, D., Quaternion calculus as a basic tool in computer
|
---|
| 285 | * graphics, The Visual Computer 5, 2-13, 1989.
|
---|
| 286 | */
|
---|
| 287 | static void
|
---|
| 288 | normalize_quat(float q[4])
|
---|
| 289 | {
|
---|
| 290 | int i;
|
---|
| 291 | float mag;
|
---|
| 292 |
|
---|
| 293 | mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
---|
| 294 | for (i = 0; i < 4; i++) q[i] /= mag;
|
---|
| 295 | }
|
---|
| 296 |
|
---|
| 297 | /*
|
---|
| 298 | * Build a rotation matrix, given a quaternion rotation.
|
---|
| 299 | *
|
---|
| 300 | */
|
---|
| 301 | void
|
---|
| 302 | build_rotmatrix(float m[4][4], float q[4])
|
---|
| 303 | {
|
---|
| 304 | m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
|
---|
| 305 | m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
|
---|
| 306 | m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
|
---|
| 307 | m[0][3] = 0.0;
|
---|
| 308 |
|
---|
| 309 | m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
|
---|
| 310 | m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
|
---|
| 311 | m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
|
---|
| 312 | m[1][3] = 0.0;
|
---|
| 313 |
|
---|
| 314 | m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
|
---|
| 315 | m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
|
---|
| 316 | m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
|
---|
| 317 | m[2][3] = 0.0;
|
---|
| 318 |
|
---|
| 319 | m[3][0] = 0.0;
|
---|
| 320 | m[3][1] = 0.0;
|
---|
| 321 | m[3][2] = 0.0;
|
---|
| 322 | m[3][3] = 1.0;
|
---|
| 323 | }
|
---|
| 324 |
|
---|