source: GTP/trunk/Lib/Vis/Preprocessing/src/Trackball.cpp @ 2347

Revision 2347, 8.6 KB checked in by mattausch, 18 years ago (diff)

debug version

  • Property svn:executable set to *
Line 
1/*
2 * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
3 * ALL RIGHTS RESERVED
4 * Permission to use, copy, modify, and distribute this software for
5 * any purpose and without fee is hereby granted, provided that the above
6 * copyright notice appear in all copies and that both the copyright notice
7 * and this permission notice appear in supporting documentation, and that
8 * the name of Silicon Graphics, Inc. not be used in advertising
9 * or publicity pertaining to distribution of the software without specific,
10 * written prior permission.
11 *
12 * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
13 * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
14 * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
15 * FITNESS FOR A PARTICULAR PURPOSE.  IN NO EVENT SHALL SILICON
16 * GRAPHICS, INC.  BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
17 * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
18 * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
19 * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
20 * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC.  HAS BEEN
21 * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
22 * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
23 * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
24 *
25 * US Government Users Restricted Rights
26 * Use, duplication, or disclosure by the Government is subject to
27 * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
28 * (c)(1)(ii) of the Rights in Technical Data and Computer Software
29 * clause at DFARS 252.227-7013 and/or in similar or successor
30 * clauses in the FAR or the DOD or NASA FAR Supplement.
31 * Unpublished-- rights reserved under the copyright laws of the
32 * United States.  Contractor/manufacturer is Silicon Graphics,
33 * Inc., 2011 N.  Shoreline Blvd., Mountain View, CA 94039-7311.
34 *
35 * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
36 */
37/*
38 * Trackball code:
39 *
40 * Implementation of a virtual trackball.
41 * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
42 *   the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
43 *
44 * Vector manip code:
45 *
46 * Original code from:
47 * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
48 *
49 * Much mucking with by:
50 * Gavin Bell
51 */
52#include <math.h>
53#include "trackball.h"
54
55/*
56 * This size should really be based on the distance from the center of
57 * rotation to the point on the object underneath the mouse.  That
58 * point would then track the mouse as closely as possible.  This is a
59 * simple example, though, so that is left as an Exercise for the
60 * Programmer.
61 */
62#define TRACKBALLSIZE  (0.8f)
63
64/*
65 * Local function prototypes (not defined in trackball.h)
66 */
67static float tb_project_to_sphere(float, float, float);
68static void normalize_quat(float [4]);
69
70void
71vzero(float *v)
72{
73    v[0] = 0.0;
74    v[1] = 0.0;
75    v[2] = 0.0;
76}
77
78void
79vset(float *v, float x, float y, float z)
80{
81    v[0] = x;
82    v[1] = y;
83    v[2] = z;
84}
85
86void
87vsub(const float *src1, const float *src2, float *dst)
88{
89    dst[0] = src1[0] - src2[0];
90    dst[1] = src1[1] - src2[1];
91    dst[2] = src1[2] - src2[2];
92}
93
94void
95vcopy(const float *v1, float *v2)
96{
97    register int i;
98    for (i = 0 ; i < 3 ; i++)
99        v2[i] = v1[i];
100}
101
102void
103vcross(const float *v1, const float *v2, float *cross)
104{
105    float temp[3];
106
107    temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
108    temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
109    temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
110    vcopy(temp, cross);
111}
112
113float
114vlength(const float *v)
115{
116    return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
117}
118
119void
120vscale(float *v, float div)
121{
122    v[0] *= div;
123    v[1] *= div;
124    v[2] *= div;
125}
126
127void
128vnormal(float *v)
129{
130    vscale(v,1.0/vlength(v));
131}
132
133float
134vdot(const float *v1, const float *v2)
135{
136    return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
137}
138
139void
140vadd(const float *src1, const float *src2, float *dst)
141{
142    dst[0] = src1[0] + src2[0];
143    dst[1] = src1[1] + src2[1];
144    dst[2] = src1[2] + src2[2];
145}
146
147/*
148 * Ok, simulate a track-ball.  Project the points onto the virtual
149 * trackball, then figure out the axis of rotation, which is the cross
150 * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
151 * Note:  This is a deformed trackball-- is a trackball in the center,
152 * but is deformed into a hyperbolic sheet of rotation away from the
153 * center.  This particular function was chosen after trying out
154 * several variations.
155 *
156 * It is assumed that the arguments to this routine are in the range
157 * (-1.0 ... 1.0)
158 */
159void
160trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
161{
162    float a[3]; /* Axis of rotation */
163    float phi;  /* how much to rotate about axis */
164    float p1[3], p2[3], d[3];
165    float t;
166
167    if (p1x == p2x && p1y == p2y) {
168        /* Zero rotation */
169        vzero(q);
170        q[3] = 1.0;
171        return;
172    }
173
174    /*
175     * First, figure out z-coordinates for projection of P1 and P2 to
176     * deformed sphere
177     */
178    vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
179    vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
180
181    /*
182     *  Now, we want the cross product of P1 and P2
183     */
184    vcross(p2,p1,a);
185
186    /*
187     *  Figure out how much to rotate around that axis.
188     */
189    vsub(p1,p2,d);
190    t = vlength(d) / (2.0*TRACKBALLSIZE);
191
192    /*
193     * Avoid problems with out-of-control values...
194     */
195    if (t > 1.0f) t = 1.0f;
196    if (t < -1.0f) t = -1.0f;
197    phi = 2.0f * asin(t);
198
199    axis_to_quat(a,phi,q);
200}
201
202/*
203 *  Given an axis and angle, compute quaternion.
204 */
205void
206axis_to_quat(float a[3], float phi, float q[4])
207{
208    vnormal(a);
209    vcopy(a,q);
210    vscale(q,sin(phi/2.0));
211    q[3] = cos(phi/2.0);
212}
213
214/*
215 * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
216 * if we are away from the center of the sphere.
217 */
218static float
219tb_project_to_sphere(float r, float x, float y)
220{
221    float d, t, z;
222
223    d = sqrt(x*x + y*y);
224    if (d < r * 0.70710678118654752440) {    /* Inside sphere */
225        z = sqrt(r*r - d*d);
226    } else {           /* On hyperbola */
227        t = r / 1.41421356237309504880;
228        z = t*t / d;
229    }
230    return z;
231}
232
233/*
234 * Given two rotations, e1 and e2, expressed as quaternion rotations,
235 * figure out the equivalent single rotation and stuff it into dest.
236 *
237 * This routine also normalizes the result every RENORMCOUNT times it is
238 * called, to keep error from creeping in.
239 *
240 * NOTE: This routine is written so that q1 or q2 may be the same
241 * as dest (or each other).
242 */
243
244#define RENORMCOUNT 97
245
246void
247add_quats(float q1[4], float q2[4], float dest[4])
248{
249    static int count=0;
250    float t1[4], t2[4], t3[4];
251    float tf[4];
252
253    vcopy(q1,t1);
254    vscale(t1,q2[3]);
255
256    vcopy(q2,t2);
257    vscale(t2,q1[3]);
258
259    vcross(q2,q1,t3);
260    vadd(t1,t2,tf);
261    vadd(t3,tf,tf);
262    tf[3] = q1[3] * q2[3] - vdot(q1,q2);
263
264    dest[0] = tf[0];
265    dest[1] = tf[1];
266    dest[2] = tf[2];
267    dest[3] = tf[3];
268
269    if (++count > RENORMCOUNT) {
270        count = 0;
271        normalize_quat(dest);
272    }
273}
274
275/*
276 * Quaternions always obey:  a^2 + b^2 + c^2 + d^2 = 1.0
277 * If they don't add up to 1.0, dividing by their magnitued will
278 * renormalize them.
279 *
280 * Note: See the following for more information on quaternions:
281 *
282 * - Shoemake, K., Animating rotation with quaternion curves, Computer
283 *   Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
284 * - Pletinckx, D., Quaternion calculus as a basic tool in computer
285 *   graphics, The Visual Computer 5, 2-13, 1989.
286 */
287static void
288normalize_quat(float q[4])
289{
290    int i;
291    float mag;
292
293    mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
294    for (i = 0; i < 4; i++) q[i] /= mag;
295}
296
297/*
298 * Build a rotation matrix, given a quaternion rotation.
299 *
300 */
301void
302build_rotmatrix(float m[4][4], float q[4])
303{
304    m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
305    m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
306    m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
307    m[0][3] = 0.0;
308
309    m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
310    m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
311    m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
312    m[1][3] = 0.0;
313
314    m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
315    m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
316    m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
317    m[2][3] = 0.0;
318
319    m[3][0] = 0.0;
320    m[3][1] = 0.0;
321    m[3][2] = 0.0;
322    m[3][3] = 1.0;
323}
324
Note: See TracBrowser for help on using the repository browser.