1 | /*
|
---|
2 | * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
|
---|
3 | * ALL RIGHTS RESERVED
|
---|
4 | * Permission to use, copy, modify, and distribute this software for
|
---|
5 | * any purpose and without fee is hereby granted, provided that the above
|
---|
6 | * copyright notice appear in all copies and that both the copyright notice
|
---|
7 | * and this permission notice appear in supporting documentation, and that
|
---|
8 | * the name of Silicon Graphics, Inc. not be used in advertising
|
---|
9 | * or publicity pertaining to distribution of the software without specific,
|
---|
10 | * written prior permission.
|
---|
11 | *
|
---|
12 | * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
|
---|
13 | * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
|
---|
14 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
|
---|
15 | * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
|
---|
16 | * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
|
---|
17 | * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
|
---|
18 | * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
|
---|
19 | * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
|
---|
20 | * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
|
---|
21 | * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
|
---|
22 | * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
|
---|
23 | * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
|
---|
24 | *
|
---|
25 | * US Government Users Restricted Rights
|
---|
26 | * Use, duplication, or disclosure by the Government is subject to
|
---|
27 | * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
|
---|
28 | * (c)(1)(ii) of the Rights in Technical Data and Computer Software
|
---|
29 | * clause at DFARS 252.227-7013 and/or in similar or successor
|
---|
30 | * clauses in the FAR or the DOD or NASA FAR Supplement.
|
---|
31 | * Unpublished-- rights reserved under the copyright laws of the
|
---|
32 | * United States. Contractor/manufacturer is Silicon Graphics,
|
---|
33 | * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
|
---|
34 | *
|
---|
35 | * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
|
---|
36 | */
|
---|
37 | /*
|
---|
38 | * Trackball code:
|
---|
39 | *
|
---|
40 | * Implementation of a virtual trackball.
|
---|
41 | * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
|
---|
42 | * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
|
---|
43 | *
|
---|
44 | * Vector manip code:
|
---|
45 | *
|
---|
46 | * Original code from:
|
---|
47 | * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
|
---|
48 | *
|
---|
49 | * Much mucking with by:
|
---|
50 | * Gavin Bell
|
---|
51 | */
|
---|
52 | #include <math.h>
|
---|
53 | #include "trackball.h"
|
---|
54 |
|
---|
55 | /*
|
---|
56 | * This size should really be based on the distance from the center of
|
---|
57 | * rotation to the point on the object underneath the mouse. That
|
---|
58 | * point would then track the mouse as closely as possible. This is a
|
---|
59 | * simple example, though, so that is left as an Exercise for the
|
---|
60 | * Programmer.
|
---|
61 | */
|
---|
62 | #define TRACKBALLSIZE (0.8f)
|
---|
63 |
|
---|
64 | /*
|
---|
65 | * Local function prototypes (not defined in trackball.h)
|
---|
66 | */
|
---|
67 | static float tb_project_to_sphere(float, float, float);
|
---|
68 | static void normalize_quat(float [4]);
|
---|
69 |
|
---|
70 | void
|
---|
71 | vzero(float *v)
|
---|
72 | {
|
---|
73 | v[0] = 0.0;
|
---|
74 | v[1] = 0.0;
|
---|
75 | v[2] = 0.0;
|
---|
76 | }
|
---|
77 |
|
---|
78 | void
|
---|
79 | vset(float *v, float x, float y, float z)
|
---|
80 | {
|
---|
81 | v[0] = x;
|
---|
82 | v[1] = y;
|
---|
83 | v[2] = z;
|
---|
84 | }
|
---|
85 |
|
---|
86 | void
|
---|
87 | vsub(const float *src1, const float *src2, float *dst)
|
---|
88 | {
|
---|
89 | dst[0] = src1[0] - src2[0];
|
---|
90 | dst[1] = src1[1] - src2[1];
|
---|
91 | dst[2] = src1[2] - src2[2];
|
---|
92 | }
|
---|
93 |
|
---|
94 | void
|
---|
95 | vcopy(const float *v1, float *v2)
|
---|
96 | {
|
---|
97 | register int i;
|
---|
98 | for (i = 0 ; i < 3 ; i++)
|
---|
99 | v2[i] = v1[i];
|
---|
100 | }
|
---|
101 |
|
---|
102 | void
|
---|
103 | vcross(const float *v1, const float *v2, float *cross)
|
---|
104 | {
|
---|
105 | float temp[3];
|
---|
106 |
|
---|
107 | temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
|
---|
108 | temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
|
---|
109 | temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
|
---|
110 | vcopy(temp, cross);
|
---|
111 | }
|
---|
112 |
|
---|
113 | float
|
---|
114 | vlength(const float *v)
|
---|
115 | {
|
---|
116 | return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
---|
117 | }
|
---|
118 |
|
---|
119 | void
|
---|
120 | vscale(float *v, float div)
|
---|
121 | {
|
---|
122 | v[0] *= div;
|
---|
123 | v[1] *= div;
|
---|
124 | v[2] *= div;
|
---|
125 | }
|
---|
126 |
|
---|
127 | void
|
---|
128 | vnormal(float *v)
|
---|
129 | {
|
---|
130 | vscale(v,1.0/vlength(v));
|
---|
131 | }
|
---|
132 |
|
---|
133 | float
|
---|
134 | vdot(const float *v1, const float *v2)
|
---|
135 | {
|
---|
136 | return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
|
---|
137 | }
|
---|
138 |
|
---|
139 | void
|
---|
140 | vadd(const float *src1, const float *src2, float *dst)
|
---|
141 | {
|
---|
142 | dst[0] = src1[0] + src2[0];
|
---|
143 | dst[1] = src1[1] + src2[1];
|
---|
144 | dst[2] = src1[2] + src2[2];
|
---|
145 | }
|
---|
146 |
|
---|
147 | /*
|
---|
148 | * Ok, simulate a track-ball. Project the points onto the virtual
|
---|
149 | * trackball, then figure out the axis of rotation, which is the cross
|
---|
150 | * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
|
---|
151 | * Note: This is a deformed trackball-- is a trackball in the center,
|
---|
152 | * but is deformed into a hyperbolic sheet of rotation away from the
|
---|
153 | * center. This particular function was chosen after trying out
|
---|
154 | * several variations.
|
---|
155 | *
|
---|
156 | * It is assumed that the arguments to this routine are in the range
|
---|
157 | * (-1.0 ... 1.0)
|
---|
158 | */
|
---|
159 | void
|
---|
160 | trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
|
---|
161 | {
|
---|
162 | float a[3]; /* Axis of rotation */
|
---|
163 | float phi; /* how much to rotate about axis */
|
---|
164 | float p1[3], p2[3], d[3];
|
---|
165 | float t;
|
---|
166 |
|
---|
167 | if (p1x == p2x && p1y == p2y) {
|
---|
168 | /* Zero rotation */
|
---|
169 | vzero(q);
|
---|
170 | q[3] = 1.0;
|
---|
171 | return;
|
---|
172 | }
|
---|
173 |
|
---|
174 | /*
|
---|
175 | * First, figure out z-coordinates for projection of P1 and P2 to
|
---|
176 | * deformed sphere
|
---|
177 | */
|
---|
178 | vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
|
---|
179 | vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
|
---|
180 |
|
---|
181 | /*
|
---|
182 | * Now, we want the cross product of P1 and P2
|
---|
183 | */
|
---|
184 | vcross(p2,p1,a);
|
---|
185 |
|
---|
186 | /*
|
---|
187 | * Figure out how much to rotate around that axis.
|
---|
188 | */
|
---|
189 | vsub(p1,p2,d);
|
---|
190 | t = vlength(d) / (2.0*TRACKBALLSIZE);
|
---|
191 |
|
---|
192 | /*
|
---|
193 | * Avoid problems with out-of-control values...
|
---|
194 | */
|
---|
195 | if (t > 1.0f) t = 1.0f;
|
---|
196 | if (t < -1.0f) t = -1.0f;
|
---|
197 | phi = 2.0f * asin(t);
|
---|
198 |
|
---|
199 | axis_to_quat(a,phi,q);
|
---|
200 | }
|
---|
201 |
|
---|
202 | /*
|
---|
203 | * Given an axis and angle, compute quaternion.
|
---|
204 | */
|
---|
205 | void
|
---|
206 | axis_to_quat(float a[3], float phi, float q[4])
|
---|
207 | {
|
---|
208 | vnormal(a);
|
---|
209 | vcopy(a,q);
|
---|
210 | vscale(q,sin(phi/2.0));
|
---|
211 | q[3] = cos(phi/2.0);
|
---|
212 | }
|
---|
213 |
|
---|
214 | /*
|
---|
215 | * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
|
---|
216 | * if we are away from the center of the sphere.
|
---|
217 | */
|
---|
218 | static float
|
---|
219 | tb_project_to_sphere(float r, float x, float y)
|
---|
220 | {
|
---|
221 | float d, t, z;
|
---|
222 |
|
---|
223 | d = sqrt(x*x + y*y);
|
---|
224 | if (d < r * 0.70710678118654752440) { /* Inside sphere */
|
---|
225 | z = sqrt(r*r - d*d);
|
---|
226 | } else { /* On hyperbola */
|
---|
227 | t = r / 1.41421356237309504880;
|
---|
228 | z = t*t / d;
|
---|
229 | }
|
---|
230 | return z;
|
---|
231 | }
|
---|
232 |
|
---|
233 | /*
|
---|
234 | * Given two rotations, e1 and e2, expressed as quaternion rotations,
|
---|
235 | * figure out the equivalent single rotation and stuff it into dest.
|
---|
236 | *
|
---|
237 | * This routine also normalizes the result every RENORMCOUNT times it is
|
---|
238 | * called, to keep error from creeping in.
|
---|
239 | *
|
---|
240 | * NOTE: This routine is written so that q1 or q2 may be the same
|
---|
241 | * as dest (or each other).
|
---|
242 | */
|
---|
243 |
|
---|
244 | #define RENORMCOUNT 97
|
---|
245 |
|
---|
246 | void
|
---|
247 | add_quats(float q1[4], float q2[4], float dest[4])
|
---|
248 | {
|
---|
249 | static int count=0;
|
---|
250 | float t1[4], t2[4], t3[4];
|
---|
251 | float tf[4];
|
---|
252 |
|
---|
253 | vcopy(q1,t1);
|
---|
254 | vscale(t1,q2[3]);
|
---|
255 |
|
---|
256 | vcopy(q2,t2);
|
---|
257 | vscale(t2,q1[3]);
|
---|
258 |
|
---|
259 | vcross(q2,q1,t3);
|
---|
260 | vadd(t1,t2,tf);
|
---|
261 | vadd(t3,tf,tf);
|
---|
262 | tf[3] = q1[3] * q2[3] - vdot(q1,q2);
|
---|
263 |
|
---|
264 | dest[0] = tf[0];
|
---|
265 | dest[1] = tf[1];
|
---|
266 | dest[2] = tf[2];
|
---|
267 | dest[3] = tf[3];
|
---|
268 |
|
---|
269 | if (++count > RENORMCOUNT) {
|
---|
270 | count = 0;
|
---|
271 | normalize_quat(dest);
|
---|
272 | }
|
---|
273 | }
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
|
---|
277 | * If they don't add up to 1.0, dividing by their magnitued will
|
---|
278 | * renormalize them.
|
---|
279 | *
|
---|
280 | * Note: See the following for more information on quaternions:
|
---|
281 | *
|
---|
282 | * - Shoemake, K., Animating rotation with quaternion curves, Computer
|
---|
283 | * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
|
---|
284 | * - Pletinckx, D., Quaternion calculus as a basic tool in computer
|
---|
285 | * graphics, The Visual Computer 5, 2-13, 1989.
|
---|
286 | */
|
---|
287 | static void
|
---|
288 | normalize_quat(float q[4])
|
---|
289 | {
|
---|
290 | int i;
|
---|
291 | float mag;
|
---|
292 |
|
---|
293 | mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
|
---|
294 | for (i = 0; i < 4; i++) q[i] /= mag;
|
---|
295 | }
|
---|
296 |
|
---|
297 | /*
|
---|
298 | * Build a rotation matrix, given a quaternion rotation.
|
---|
299 | *
|
---|
300 | */
|
---|
301 | void
|
---|
302 | build_rotmatrix(float m[4][4], float q[4])
|
---|
303 | {
|
---|
304 | m[0][0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
|
---|
305 | m[0][1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
|
---|
306 | m[0][2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
|
---|
307 | m[0][3] = 0.0;
|
---|
308 |
|
---|
309 | m[1][0] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
|
---|
310 | m[1][1]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
|
---|
311 | m[1][2] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
|
---|
312 | m[1][3] = 0.0;
|
---|
313 |
|
---|
314 | m[2][0] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
|
---|
315 | m[2][1] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
|
---|
316 | m[2][2] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
|
---|
317 | m[2][3] = 0.0;
|
---|
318 |
|
---|
319 | m[3][0] = 0.0;
|
---|
320 | m[3][1] = 0.0;
|
---|
321 | m[3][2] = 0.0;
|
---|
322 | m[3][3] = 1.0;
|
---|
323 | }
|
---|
324 |
|
---|