[855] | 1 | /////////////////////////////////////////////////////////////////////////// |
---|
| 2 | // |
---|
| 3 | // Copyright (c) 2002, Industrial Light & Magic, a division of Lucas |
---|
| 4 | // Digital Ltd. LLC |
---|
| 5 | // |
---|
| 6 | // All rights reserved. |
---|
| 7 | // |
---|
| 8 | // Redistribution and use in source and binary forms, with or without |
---|
| 9 | // modification, are permitted provided that the following conditions are |
---|
| 10 | // met: |
---|
| 11 | // * Redistributions of source code must retain the above copyright |
---|
| 12 | // notice, this list of conditions and the following disclaimer. |
---|
| 13 | // * Redistributions in binary form must reproduce the above |
---|
| 14 | // copyright notice, this list of conditions and the following disclaimer |
---|
| 15 | // in the documentation and/or other materials provided with the |
---|
| 16 | // distribution. |
---|
| 17 | // * Neither the name of Industrial Light & Magic nor the names of |
---|
| 18 | // its contributors may be used to endorse or promote products derived |
---|
| 19 | // from this software without specific prior written permission. |
---|
| 20 | // |
---|
| 21 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 22 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 23 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 24 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 25 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 26 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 27 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 28 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 29 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 30 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 31 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 32 | // |
---|
| 33 | /////////////////////////////////////////////////////////////////////////// |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | #ifndef INCLUDED_IMATHMATH_H |
---|
| 38 | #define INCLUDED_IMATHMATH_H |
---|
| 39 | |
---|
| 40 | //---------------------------------------------------------------------------- |
---|
| 41 | // |
---|
| 42 | // ImathMath.h |
---|
| 43 | // |
---|
| 44 | // This file contains template functions which call the double- |
---|
| 45 | // precision math functions defined in math.h (sin(), sqrt(), |
---|
| 46 | // exp() etc.), with specializations that call the faster |
---|
| 47 | // single-precision versions (sinf(), sqrtf(), expf() etc.) |
---|
| 48 | // when appropriate. |
---|
| 49 | // |
---|
| 50 | // Example: |
---|
| 51 | // |
---|
| 52 | // double x = Math<double>::sqrt (3); // calls ::sqrt(double); |
---|
| 53 | // float y = Math<float>::sqrt (3); // calls ::sqrtf(float); |
---|
| 54 | // |
---|
| 55 | // When would I want to use this? |
---|
| 56 | // |
---|
| 57 | // You may be writing a template which needs to call some function |
---|
| 58 | // defined in math.h, for example to extract a square root, but you |
---|
| 59 | // don't know whether to call the single- or the double-precision |
---|
| 60 | // version of this function (sqrt() or sqrtf()): |
---|
| 61 | // |
---|
| 62 | // template <class T> |
---|
| 63 | // T |
---|
| 64 | // glorp (T x) |
---|
| 65 | // { |
---|
| 66 | // return sqrt (x + 1); // should call ::sqrtf(float) |
---|
| 67 | // } // if x is a float, but we |
---|
| 68 | // // don't know if it is |
---|
| 69 | // |
---|
| 70 | // Using the templates in this file, you can make sure that |
---|
| 71 | // the appropriate version of the math function is called: |
---|
| 72 | // |
---|
| 73 | // template <class T> |
---|
| 74 | // T |
---|
| 75 | // glorp (T x, T y) |
---|
| 76 | // { |
---|
| 77 | // return Math<T>::sqrt (x + 1); // calls ::sqrtf(float) if x |
---|
| 78 | // } // is a float, ::sqrt(double) |
---|
| 79 | // // otherwise |
---|
| 80 | // |
---|
| 81 | //---------------------------------------------------------------------------- |
---|
| 82 | |
---|
| 83 | #include <ImathPlatform.h> |
---|
| 84 | #include <math.h> |
---|
| 85 | |
---|
| 86 | // |
---|
| 87 | // The following pragmas instruct Silicon Graphics' MipsPro C++ |
---|
| 88 | // to generate inline code rather than function calls for sqrt() |
---|
| 89 | // and sqrtf(). |
---|
| 90 | // |
---|
| 91 | |
---|
| 92 | #if defined(PLATFORM_IRIX) || defined(PLATFORM_IRIX64) |
---|
| 93 | |
---|
| 94 | #pragma intrinsic (::sqrt) |
---|
| 95 | #pragma intrinsic (::sqrtf) |
---|
| 96 | |
---|
| 97 | #endif |
---|
| 98 | |
---|
| 99 | namespace Imath { |
---|
| 100 | |
---|
| 101 | |
---|
| 102 | template <class T> |
---|
| 103 | struct Math |
---|
| 104 | { |
---|
| 105 | static T acos (T x) {return ::acos (double(x));} |
---|
| 106 | static T asin (T x) {return ::asin (double(x));} |
---|
| 107 | static T atan (T x) {return ::atan (double(x));} |
---|
| 108 | static T atan2 (T x, T y) {return ::atan2 (double(x), double(y));} |
---|
| 109 | static T cos (T x) {return ::cos (double(x));} |
---|
| 110 | static T sin (T x) {return ::sin (double(x));} |
---|
| 111 | static T tan (T x) {return ::tan (double(x));} |
---|
| 112 | static T cosh (T x) {return ::cosh (double(x));} |
---|
| 113 | static T sinh (T x) {return ::sinh (double(x));} |
---|
| 114 | static T tanh (T x) {return ::tanh (double(x));} |
---|
| 115 | static T exp (T x) {return ::exp (double(x));} |
---|
| 116 | static T log (T x) {return ::log (double(x));} |
---|
| 117 | static T log10 (T x) {return ::log10 (double(x));} |
---|
| 118 | #if defined(PLATFORM_SUNOS5) // SUN does not seem to have floating point funcs !! |
---|
| 119 | // static T modf (T x, T *y) {return ::modf (double(x), double(y));} |
---|
| 120 | #else |
---|
| 121 | static T modf (T x, T *iptr) |
---|
| 122 | { |
---|
| 123 | double ival; |
---|
| 124 | T rval( ::modf (double(x),&ival)); |
---|
| 125 | *iptr = ival; |
---|
| 126 | return rval; |
---|
| 127 | } |
---|
| 128 | #endif |
---|
| 129 | static T pow (T x, T y) {return ::pow (double(x), double(y));} |
---|
| 130 | static T sqrt (T x) {return ::sqrt (double(x));} |
---|
| 131 | static T ceil (T x) {return ::ceil (double(x));} |
---|
| 132 | static T fabs (T x) {return ::fabs (double(x));} |
---|
| 133 | static T floor (T x) {return ::floor (double(x));} |
---|
| 134 | #if defined(PLATFORM_SUNOS5) // SUN does not seem to have floating point funcs !! |
---|
| 135 | // static T fmod (T x, T y) {return ::fmod (double(x), double(y));} |
---|
| 136 | #else |
---|
| 137 | static T fmod (T x, T y) {return ::fmod (double(x), double(y));} |
---|
| 138 | #endif |
---|
| 139 | #if !defined(PLATFORM_OSF1) |
---|
| 140 | static T hypot (T x, T y) {return ::hypot (double(x), double(y));} |
---|
| 141 | #endif |
---|
| 142 | }; |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | // Sun, Apple, and Microsoft don't have floating point funcs |
---|
| 146 | #if defined ( PLATFORM_SUNOS5 ) || defined ( PLATFORM_DARWIN_PPC ) |
---|
| 147 | |
---|
| 148 | template <> |
---|
| 149 | struct Math<float> |
---|
| 150 | { |
---|
| 151 | static float acos (float x) {return ::acos (x);} |
---|
| 152 | static float asin (float x) {return ::asin (x);} |
---|
| 153 | static float atan (float x) {return ::atan (x);} |
---|
| 154 | static float atan2 (float x, float y) {return ::atan2 (x, y);} |
---|
| 155 | static float cos (float x) {return ::cos (x);} |
---|
| 156 | static float sin (float x) {return ::sin (x);} |
---|
| 157 | static float tan (float x) {return ::tan (x);} |
---|
| 158 | static float cosh (float x) {return ::cosh (x);} |
---|
| 159 | static float sinh (float x) {return ::sinh (x);} |
---|
| 160 | static float tanh (float x) {return ::tanh (x);} |
---|
| 161 | static float exp (float x) {return ::exp (x);} |
---|
| 162 | static float log (float x) {return ::log (x);} |
---|
| 163 | static float log10 (float x) {return ::log10 (x);} |
---|
| 164 | // static float modf (float x, float *y) {return ::modf (x, y);} |
---|
| 165 | static float pow (float x, float y) {return ::pow (x, y);} |
---|
| 166 | static float sqrt (float x) {return ::sqrt (x);} |
---|
| 167 | static float ceil (float x) {return ::ceil (x);} |
---|
| 168 | static float fabs (float x) {return ::fabs (x);} |
---|
| 169 | static float floor (float x) {return ::floor (x);} |
---|
| 170 | // static float fmod (float x, float y) {return ::fmod (x, y);} |
---|
| 171 | static float hypot (float x, float y) {return ::hypot (x, y);} |
---|
| 172 | }; |
---|
| 173 | #else |
---|
| 174 | template <> |
---|
| 175 | struct Math<float> |
---|
| 176 | { |
---|
| 177 | static float acos (float x) {return ::acosf (x);} |
---|
| 178 | static float asin (float x) {return ::asinf (x);} |
---|
| 179 | static float atan (float x) {return ::atanf (x);} |
---|
| 180 | static float atan2 (float x, float y) {return ::atan2f (x, y);} |
---|
| 181 | static float cos (float x) {return ::cosf (x);} |
---|
| 182 | static float sin (float x) {return ::sinf (x);} |
---|
| 183 | static float tan (float x) {return ::tanf (x);} |
---|
| 184 | static float cosh (float x) {return ::coshf (x);} |
---|
| 185 | static float sinh (float x) {return ::sinhf (x);} |
---|
| 186 | static float tanh (float x) {return ::tanhf (x);} |
---|
| 187 | static float exp (float x) {return ::expf (x);} |
---|
| 188 | static float log (float x) {return ::logf (x);} |
---|
| 189 | static float log10 (float x) {return ::log10f (x);} |
---|
| 190 | static float modf (float x, float *y) {return ::modff (x, y);} |
---|
| 191 | static float pow (float x, float y) {return ::powf (x, y);} |
---|
| 192 | static float sqrt (float x) {return ::sqrtf (x);} |
---|
| 193 | static float ceil (float x) {return ::ceilf (x);} |
---|
| 194 | static float fabs (float x) {return ::fabsf (x);} |
---|
| 195 | static float floor (float x) {return ::floorf (x);} |
---|
| 196 | static float fmod (float x, float y) {return ::fmodf (x, y);} |
---|
| 197 | #if !defined(PLATFORM_OSF1) && !defined(_MSC_VER) |
---|
| 198 | static float hypot (float x, float y) {return ::hypotf (x, y);} |
---|
| 199 | #else |
---|
| 200 | static float hypot (float x, float y) {return ::sqrtf(x*x + y*y);} |
---|
| 201 | #endif |
---|
| 202 | }; |
---|
| 203 | #endif |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | //-------------------------------------------------------------------------- |
---|
| 207 | // Compare two numbers and test if they are "approximately equal": |
---|
| 208 | // |
---|
| 209 | // equalWithAbsError (x1, x2, e) |
---|
| 210 | // |
---|
| 211 | // Returns true if x1 is the same as x2 with an absolute error of |
---|
| 212 | // no more than e, |
---|
| 213 | // |
---|
| 214 | // abs (x1 - x2) <= e |
---|
| 215 | // |
---|
| 216 | // equalWithRelError (x1, x2, e) |
---|
| 217 | // |
---|
| 218 | // Returns true if x1 is the same as x2 with an relative error of |
---|
| 219 | // no more than e, |
---|
| 220 | // |
---|
| 221 | // abs (x1 - x2) <= e * x1 |
---|
| 222 | // |
---|
| 223 | //-------------------------------------------------------------------------- |
---|
| 224 | |
---|
| 225 | template <class T> |
---|
| 226 | inline bool |
---|
| 227 | equalWithAbsError (T x1, T x2, T e) |
---|
| 228 | { |
---|
| 229 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e; |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | |
---|
| 233 | template <class T> |
---|
| 234 | inline bool |
---|
| 235 | equalWithRelError (T x1, T x2, T e) |
---|
| 236 | { |
---|
| 237 | return ((x1 > x2)? x1 - x2: x2 - x1) <= e * ((x1 > 0)? x1: -x1); |
---|
| 238 | } |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | } // namespace Imath |
---|
| 243 | |
---|
| 244 | #endif |
---|